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Abstract

Correctly matching feature points in a pair of images is

an important preprocessing step for many computer vision

applications. In this paper we propose an efficient method

for estimating the number of correct matches without ex-

plicitly computing them. In addition, our method estimates

the region of overlap between the images. To this end, we

propose to analyze the set of matches using the spatial or-

der of the features, as projected to the x-axis of the image.

The set of features in each image is thus represented by a se-

quence. This reduces the analysis of the matching problem

to the analysis of the permutation between the sequences.

Using the Kendall distance metric between permutations

and natural assumptions on the distribution of the correct

and incorrect matches, we show how to estimate the above-

mentioned values. We demonstrate the usefulness of our

method in two applications: (i) a new halting condition

for RANSAC based epipolar geometry estimation methods

that considerably reduce the running time, and (ii) discard-

ing spatially unrelated image pairs in the Structure-from-

Motion pipeline. Furthermore, our analysis can be used to

compute the probability that a given match is correct based

on the estimated number of correct matches and the rank

of the features within the sequences. Our experiments on

a large number of synthetic and real data demonstrate the

effectiveness of our method. For example, the running time

of the image matching stage in the Structure-from-Motion

pipeline may be reduced by about 99% while preserving

about 80% of the correctly matched feature points.

1. Introduction

Matching feature points between a pair of images is a

fundamental problem in computer vision. The estimation

of epipolar geometry between images [13, 22], 3D struc-

ture reconstruction (SfM) [29, 30], and scene recognition

[17] are typical examples of useful tasks that are based on

feature matching. While many methods for feature match-

ing exist, the critical stage of filtering incorrect matches is

costly when using algorithms such as Random Sample Con-

sensus (RANSAC) [12, 13, 22, 3].

In this paper we propose to analyze the set of correct

matches, without explicitly computing it, using the spatial

order of the features in each image. We estimate the number

of correct matches and the probability that a given match is

correct. In addition, we estimate the overlap region of the

pair of images and whether they overlap at all. Our method

can be applied to sets of matching features irrespective of

their descriptors (e.g., [21, 1, 4, 24]) or the matching method

used to compute them. Our method can be used as a prepro-

cessing step to improve the efficiency of existing methods

such as RANSAC and SfM, as described below.

The basic idea is as follows. We represent the image fea-

tures as sequences defined by their spatial order along the

x-axis of the image. The matching between features in a

pair of images induces a permutation that relates the spatial

order in one image to that in the other image (see Fig. 1).

The matching is analyzed using a measure of correlation be-

tween permutations, the Kendall distance metric [9, 10]. We

use statistical assumptions on the distribution of correctly

and incorrectly matched features; the spatial order of cor-

rectly matched features is usually preserved, while incor-

rectly matched features are expected to have random order.

Note that the problem is not trivialized by these assump-

tions since simply computing the largest set of features that

preserve their spatial order does not necessarily provide the

correct set of matches (see discussion in Sec. 3). Hence, we

also consider the interaction between correct and incorrect

matches for obtaining our estimations.

Our estimation of the number of correct matches can

be used to improve the running time of RANSAC methods

[12, 13, 22, 3]. In adaptive RANSAC, a subset of matches in

a pair of images is randomly sampled and used to compute

the expected geometric transformation between the features

(e.g., homography or epipolar geometry), which is then

verified against all matches. The transformation with the

largest set of inliers, features consistent with the computed

geometric transformation, is chosen. Since the number of

inliers is usually unknown, the number of required itera-
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tions is high. This increases the running time of RANSAC,

which is its major drawback. Our estimate of the number

of correct matches can be used to improve the running time

by halting when a consensus set of this size is obtained (see

Sec. 6).

Computing the structure of the scene and the cameras’

parameters from a set of images using SfM methods (e.g.,

[29, 30]) is a fundamental problem in computer vision

with many applications. Such methods, which typically

require tens or hundreds of images, strongly rely on cor-

rect matches. A major time consuming step in SfM meth-

ods is the robust matching of features between image pairs,

which is typically obtained by RANSAC. Our method can

significantly shorten the SfM pipeline [29, 30] by running

RANSAC only on image pairs with a sufficiently large num-

ber of correct matches (see Sec. 6).

We show that the number of correct matches can also be

used to compute the probability that a given match is cor-

rect. One application of such probability is in improving

the performance of guided RANSAC, where matches that

are more likely to be correct are sampled more often (e.g.,

[13, 3, 22, 5, 7, 6]). In existing methods the probability

that a given match is correct is based only on feature de-

scriptors, whereas in our method it is based on the features’

order in the image. Thus, our method by itself or in combi-

nation with appearance based methods give a more accurate

probability for the correctness of a match than when using

the method based only on feature descriptors (see details in

Sec. 5).

The main contribution of the paper is a novel analysis

of the correct and incorrect matches with respect to their

spatial order in the images. Given a set of putative matches,

our method efficiently estimates the number of correct ones,

the region of overlap between a pair of images, and for each

match the probability that it is correct. These estimations

can be used to improve the efficiency of RANSAC and SfM

methods, as demonstrated empirically in Sec. 6.

2. Related Work

Feature point matching between a pair of images has

been studied extensively in computer vision. Over the years

many interest point detectors and patch descriptors were

proposed to detect and match the images of the same 3D

points in the scene (e.g., [21, 1, 4, 24]). Appearance based

methods, such as [15], discard descriptors by learning their

success rate in matching between their corresponding fea-

tures, in order to increase the proportion of correct to incor-

rect matches. Other methods use local geometric structures

between a number of matches in order to decrease the prob-

ability of mismatching, e.g., [23].

A major drawback of the RANSAC method for filter-

ing incorrect matches is its running time; for example, run-

ning RANSAC on a pair of images with 1000 matches may

[N ]:
σ:
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2
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4
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8
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2
1

Figure 1. Correctly/incorrectly matched features are marked

as green/yellow circles, respectively. The feature sequences

are given by [N ] = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 and σ =
〈9, 5, 1, 3, 4, 2, 6, 7, 8〉. For example, σ(1) = 9 and σ(5) = 4.

Note that the green lines (correct matches) do not intersect, while

most of the yellow lines (incorrect matches) do.

take a few seconds, which can be a major bottleneck in on-

line applications involving large sets of images. To improve

RANSAC’s runtime, methods for guiding the sampling of

matches according to their probability to be correct (instead

of a uniform sampling) were proposed [13, 3, 22, 5, 7, 6].

For example, the similarity of feature appearance defined by

Lowe’s distance ratio between the closest and the second

closest matches [21] is used as a match correctness likeli-

hood by [13, 22]. This method ignores important geometric

information. In our method, we use the spatial order of the

matched features, which carries geometric information. A

comparison between probabilities computed by our method

and Lowe’s distance ratio is provided in Sec. 6.

An inlier rate estimation was also used by [20] to com-

pute a homography transformation between two images,

which is guaranteed to find an approximation to the global

optimum. The rate is computed by counting the number

of homographies that agree with each inlier rate. The draw-

back of the method is the search process, which is time con-

suming and is applicable only to homographies.

3. Problem Formulation

Let M = {(pi, qj)} be a set of putative matches between

two feature sequences, p1, . . . , pN and q1, . . . , qN , in a pair

of images, I1 and I2, respectively. The index i of pi repre-

sents the position (the rank) of the feature in the sequence

of I1, when sorted according to the x coordinate. Similarly,
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the index j of qj corresponds to the rank in the feature se-

quence of I2. For the rest of the paper, let us represent M by

two sequences of indexes, [N ] = 〈1, . . . , N〉 and σ, where

(pi, qσ(i)) ∈ M (see Fig. 1).

The set of matches, M, can be partitioned into two dis-

joint sets, the correct (“Good”) and the incorrect (“Bad”)

matches. Let G and B be the sets of indexes in I1 for which

the matching is correct and incorrect, respectively. In this

case, the number of matches is given by N = NG + NB,

where NG = |G| and NB = |B|.
We analyze the spatial orders of matched features in the

pair of images, which is represented by the permutation σ.

We use statistical assumptions on the distribution of the cor-

rect and incorrect matches, which allows us to estimate the

number of correct matches, NG without explicitly comput-

ing the set of correct matches. In addition, we propose a

method to compute the probability that a given match is cor-

rect.

To do so, we use the Kendall [18] distance that corre-

sponds to the sum of order inversions in σ. The two main

statistical assumptions used are:

A1: The spatial order of the correctly matched features in

I1 is preserved in I2. This assumption holds when (i)

the cameras have no relative roll (rotation around the

z-axis), and (ii) there are no “poles”, i.e., features with

significant difference in depth on different surfaces.

A2: The spatial order of incorrect matches is random. This

can be justified since the spatial location of incorrectly

matched features in different images is arbitrary.

Assumption A1 mostly holds since in natural scenes there

are few inversions between correct matches. (This as-

sumption is often used in stereo matching algorithms e.g.,

[31, 2].) Moreover, the roll value is often available in the

camera so it can be compensated for.

We note here that, based on assumptions A1 and A2, it

may seem that the set of correct matches can be obtained

directly by finding the longest increasing (nonconsecutive)

subsequence, L(N). This approach yields poor results for

two reasons. First, due to local order inversions between

adjacent correct matches, caused by small changes in depth

and camera roll, |L(N)| is usually not a good estimation for

NG. Second, it is proven in [28] that for a random permu-

tation of size N the expectation of |L(N)| is 2
√
N ; thus,

when NG is low, L(N) may correspond to only incorrect

matches or to a mixture of correct and incorrect matches. In

contrast to this naı̈ve approximation, our analysis also con-

siders the distribution of the order of the incorrect matches

and therefore better estimates NG even for low values.

4. The Number of Correct Matches

Two sequences are considered fully overlapped if the

fields of view (FOV) of the corresponding images consist

of the same region of the scene. We first consider the case

of fully overlapped sequences (Sec. 4.2) and then present a

method to compute the regions of overlap between the pair

of images (Sec. 4.3). The Kendall distance metric that is

used to estimate NG is reviewed next.

4.1. The Kendall Distance

The Kendall distance is the number of pairwise order

inversions in the two sequences [N ] and σ. Two pairs of

matched features, (pi, qσ(i)) and (pj , qσ(j)), have order in-

version if the orders (i, j) and (σ(i), σ(j)) are inverted.

Formally, let us define a binary function, ησ:

ησ(i, j) =



















1 (i < j) ∧ (σ(i) > σ(j))

or

(i > j) ∧ (σ(i) < σ(j))

0 otherwise.

(1)

The Kendall distance is thus given by:

K([N ], σ) =
∑

1≤i≤N

∑

i<j≤N

ησ(i, j). (2)

To compute NG from the value K = K([N ], σ) we for-

mulate K as the sum of three terms:

K = KG +KB +KGB, (3)

where KG corresponds to the number of order inversions

between correct matches, KB between incorrect matches,

and KGB between pairs of correct and incorrect matches.

That is,

KG =
∑

i∈G

∑

j∈G

i<j

ησ(i, j),

KB =
∑

i∈B

∑

j∈B

i<j

ησ(i, j),

KGB =
∑

i∈G

∑

j∈B

i<j

ησ(i, j).

(4)

For NG = N (i.e., |B| = 0) it follows directly from A1

that K = KG = 0. On the other hand it follows directly

from A2 that if NG < N (i.e., |B| > 0), then K > KB > 0.

Hence, a simple case to consider is when K = 0 which

implies NG = N .

To obtain an explicit equation in NG for K > 0, the

terms in Eq. 3 are normalized by the maximal possible num-

ber of pairwise order inversions; that is, the number of pairs

in each term. The number of pairs are given by N(N−1)/2
in a sequence of length N , and by NGNB between two dis-

joint sequences of lengths NG and NB. That is,

K̂B = 2KB

NB(NB−1) , K̂G = 2KG

NG(NG−1) ,

K̂ = 2K
N(N−1) , K̂GB = KGB

NGNB
.

(5)
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O1 O2 R2L1

I1 I2

Figure 2. A partial overlap between a pair of images from the

ZuBuD dataset.

Using some algebraic manipulation after substituting the

terms in Eq. 3 by Eq. 5 and replacing NB = N − NG, we

obtain the following quadratic equation in NG:

0 = N2
G
[K̂G + K̂B − 2K̂GB]+

NG[2NK̂GB − (2N − 1)K̂B − K̂G]+

N(N − 1)(K̂B − K̂).

(6)

Note that N is given and K̂ can be directly computed

from the set of matches, M, using Eq. 2. Using assump-

tion A1 it directly follows that K̂G = 0, from assumption

A2 it follows that E(K̂B) = 1/2, where E(x) is the ex-

pected value of x (see our proof in supplementary material;

and alternative proof [11, p. 257]). We next show how to

estimate E(K̂GB) for fully overlapped and partially over-

lapped sequences.

4.2. Full Overlap

For fully overlapping sequences a third statistical as-

sumption is used:

A3: The distribution of the features that correspond to cor-

rect matches within the features that correspond to in-

correct matches is uniform in [N ] and σ; that is, the

expected number of features in G and B in every inter-

val of size s is sNG/N and sNB/N , respectively.

This assumption obviously does not hold for the non-

overlapping margins which contain only incorrect matches

(see Sec. 4.3 which considers this case). In the full-overlap

case, the following claim holds:

Claim 1. Under assumptions A1-A3, E(K̂GB) = 1/3.

To prove this claim, let us first define Hσ(i) to be the

number of inversions in which a match, (i, σ(i)), partici-

pates. The desired value, E(K̂GB), is obtained by averaging

E(Hσ(i)) over all i ∈ G and normalizing it by NGNB. By

definition, Hσ(i) is the number of features from the left of

i that match features to the right of σ(i) and those from the

right of i that match a features to the left of σ(i). We can use

assumption A2 to compute the expected value of Hσ(i) for

i ∈ G given the number of indexes with incorrect matches

to the left and right of i (βl
1 and βr

1) and to the left and right

of σ(i) (βl
2 and βr

2). The probability of inversion between

i ∈ G and j < i is given by βr
2/NB. A similar argument is

used for j ∈ B and j > i. Hence we obtain:

E(Hσ(i)|i ∈ G, βl
1, β

r
1 , β

l
2, β

r
2) = βl

1

βr
2

NB

+ βl
2

βr
1

NB

. (7)

Using assumption A3 we can approximate σ(i) ≈ i, and

E(βl
1) = E(βl

2) = iNB/N and E(βr
1) = E(βr

2) = (N −
i)NB/N ; thus

E(Hσ(i)) = 2
i(N − i)NB

N2
= 2NBx(1− x),

where x = i/N . The mean of x(1 − x) for 0 ≤ x ≤ 1 is

1/6, and thus

E(K̂GB) =
1

NGNB

∑

i∈G

E(Hσ(i)) =
2NGNB

NGNB

1

6
=

1

3
.

Substituting E(K̂G), E(K̂B) and E(K̂GB) with their ob-

tained values in Eq. 6, we obtain the following quadratic

equation in NG:

0 = 1
6N

2
G
− ( 12 − 1

3N)NG −N(N − 1)( 12 − K̂). (8)

There are two solutions to this equation; when 0 ≤ K̂ ≤
1/2, we take the only solution in the range [0, N ].
When K̂ > 1/2, we set NG = 0.

4.3. Partial Overlap

When the sequences are not fully overlapping (e.g.,

Fig. 2) the value of E(KGB) depends on the non-

overlapping margins of the sequences, defined below. In

this case, the estimation of NG given by Eq. 8 is an un-

derestimation (see Claim 2). We next describe a method to

estimate NG by computing the regions of overlap, using this

observation.

Formally, the sequence [N ] is partitioned into three in-

tervals: L1, O1, and R1, defined by the lowest, i1
L

, and

highest, i1
H

, indexes of the correct matches. Similarly, we

define L2, O2, and R2 with the indexes i2
L

and i2
H

. Note

that an index of an incorrect match, i ∈ O1 ∩ B, is not

necessarily matched to an index in O2. To use our results

for the fully overlapped sequences (Sec. 4.2), we discard

such indexes and define the fully overlapped subsequences,

Ô = (Ô1, Ô2) as follows:

Ô1 = {i | (i ∈ O1) ∧ (σ(i) ∈ O2)} , (9)

and Ô2 is the sequence of indexes of the matched features

to Ô1.

Note that Ô1 and Ô2 are defined by the 4-tuple of in-

dexes, ω∗ = (i1
L
, i1

H
, i2

L
, i2

H
). Moreover, N , NG and K̂,
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on the subsequences defined by ω∗ are given by N(ω∗),
NG(ω

∗) and K̂(ω∗). We can now use these new values in

Eq. 8 to obtain:

0 = 1
6N

2
G
(ω∗)− ( 12 − 1

3N(ω∗))NG(ω
∗)

−N(ω∗)(N(ω∗)− 1)( 12 − K̂(ω∗)).
(10)

In this case we claim the following:

Claim 2. The expected maximal value of NG(ω), for any ω,

is obtained for ω = ω∗, i.e.,

max
ω

NG(ω) = NG(ω
∗). (11)

We use assumptions A1-A3 to prove it (see the supplemen-

tary material). We use this claim to estimate ω∗, which

determines the region of overlap between the pair of im-

ages, as described below. Given ω∗ we can estimate the

desired NG using Eq. 10.

Estimating ω∗. To compute NG(ω
∗), we need to consider

all 4-tuples ω ∈ [1, . . . , N ]4. For efficiency, we consider

only a small subset of intervals. Formally, we consider all

intervals in the sequence of the form [i, j] = [tiq + 1, tjq]
where 0 < ti < tj ≤ N/q are integers. The algorithm that

considers all these intervals in I1 and I2, we name K2D. To

further improve efficiency, we propose the K1D algorithm

which considers sequentially the intervals in each image.

That is, we first use the intervals, ω = (i1
L
, j1

H
, 1, N), to

sample the values of NG(ω). The resulting interval, [i1
L
, j1

H
],

is then used to fix the interval in I1 and estimate the interval

in I2; that is, we use the intervals ω = (i1
L
, j1

H
, i2

L
, j2

H
) to

arrive at our final estimate for ω∗ and NG(ω
∗).

Kendall distance computation. The Kendall distance

can be computed in O(N logN) time using the merge sort

algorithm [19], applied on σ. The basic idea is that the num-

ber of inversions can be computed at the merge stage (when

merging two sorted arrays into one). The number of in-

versions that should be added to the count is the number of

elements that remain in the left array when the next minimal

element is taken from the right array.

For partial overlap, maximizing the estimated value of

NG(ω) in Eq. 11 requires multiple Kendall distance com-

putations for various intervals. We compute these distances

efficiently by first computing the Kendall distance for each

of the non-overlapping intervals of size q using the merge

sort algorithm. The Kendall distance of an interval of size

dq is obtained by counting the inversions when merging two

successive intervals of size d1q and d2q, where d1+d2 = d.

5. Matching Probabilities

We propose to compute a probability, PK(i), that a

match, m = (pi, qσ(i)), is correct, given the com-

puted Hσ(i) (defined in Sec. 4.2) and our estimation of

Figure 3. A graph of order inversions, Hσ , for an image from the

Middlebury2014 dataset. The x-axis corresponds to the rank of

the feature in I1, and the y-axis corresponds to the percentage of

order inversions out of the maximal value, N − 1. Computed by

USAC, the blue and red dots correspond to the inliers and outliers,

respectively. The green and cyan lines correspond to the range

of inversions for the incorrect matches. The expected number of

inversions for the correct matches is given by the green line.

θ = (Ô1, Ô2, NG). This probability can then be used as a

likelihood function for sampling matches, in particular in

guided RANSAC methods.

When i /∈ Ô1 or σ(i) /∈ Ô2 we set PK(i) = 0 (or to a

small value), since, by the definition of Ô1 and Ô2, i ∈ B.

Hence we would like to compute PK(i) for the remaining

indices. For a full overlap, a typical graph of the number of

order inversions, Hσ(i), as a function of the index i is pre-

sented in Fig. 3. For i ∈ B (blue dots), Hσ(i) is approxi-

mately uniformly distributed in a range which depends on i.
As expected from the analysis presented in Sec. 4.2, the dis-

tribution of i ∈ G (red dots) is around the function x(1−x),
where x = i/N and N = |Ô1|.

To compute PK(i) for i ∈ G, we use the Bayes’ theorem

and the law of total probability:

PK(i) = P
(

i ∈ G
∣

∣Hσ(i)
)

=
P

(

Hσ(i)
∣

∣i∈G

)

P

(

i∈G

)

P

(

Hσ(i)
)

=
PH|GPG

PH|GPG+PH|BPB
,

(12)

where PH|G = P
(

Hσ(i)
∣

∣i ∈ G
)

, PH|B = P
(

Hσ(i)
∣

∣i /∈
G
)

, PG = P
(

i ∈ G
)

and PB = P
(

i /∈ G
)

. We assume

w.l.g. that there is a full overlap; hence, the probabilities

PG = NG/N and PB = 1−PG are given by the ratio of the

correct and the incorrect matches to N , respectively.

We next describe our estimation of PH|G. Consider β =
(βl

1, β
r
1 , β

l
2, β

r
2) (defined in Sec. 4.2). Note that βr

1 and βr
2

are given directly from βl
1, βl

2, N , and the estimated NG.

Since β is unknown, we compute PH|G using the law of
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Dataset Value KGT K K2D K1D

Syn1 µ(NG) 0.6 14.5 3.2 4

µ(O) n.a. n.a. 0.91 0.89

Runtime 2 2.2 83.2 11.2

Syn2 µ(NG) 0.5 10.4 3.2 3.7

µ(O) n.a. n.a. 0.9 0.8

Runtime 2.9 2 79.2 11.1

Table 1. The mean normalized absolute error (percentage) in the

estimation of NG in the synthetic datasets.

total probability over the set of possible values, β ∈ Sβ :

P (Hσ(i)|i ∈ G) =
∑

β∈Sβ

P (Hσ(i)|i ∈ G, β)P (β).

For efficiency, only k values of β ∈ Sβ are considered by

restricting the values of βl
1 and βl

2 to be around their expec-

tations, (i − 1)PB and (σ(i) − 1)PB, respectively (in our

implementation we set k = 5).

The probability P (β) is modeled as the product of two

hypergeometric distributions, one for βl
1 and the other for

βl
2. Given a value for β, we model P (Hσ(i)|i ∈ G, β) as

a product of two hypergeometric distributions. In a simi-

lar way we estimate P (Hσ(i)|i ∈ B, β). Substituting these

terms into Eq. 12 yields PK(i). We approximate the hy-

pergeometric PDFs by Gaussian PDFs with the same mean

and standard deviation, and approximate PH|B as a uniform

distribution whose boundaries we compute (see the supple-

mentary material for the complete derivation).

6. Experiments

Our method was tested on both synthetic and real data.

For each dataset we tested the following algorithms. The

first, which we refer to as K, is the basic one where NG is es-

timated using the entire sequence and ignoring the margins;

that is, without first computing the overlap (see Sec. 4.2).

The other two algorithms compute NG, O1 and O2. One

uses the joint sampling of intervals from I1 and I2, while

the other uses a separate sampling of intervals in I1 and I2
(see Sec. 4.3). These algorithms are referred to as K2D and

K1D, respectively. For evaluation purpose we also consider

KGT, where the ground truth of O1 and O2 are given, and

compute only NG.

To evaluate the accuracy of NG we measure the normal-

ized absolute error, µ(NG) = |NG −NGT

G
|/N , where NGT

G

is the ground truth. Note that µ(NG) is presented as a per-

centage in all tables. To evaluate the accuracy of O1 and

O2, we measure the average of their normalized overlap

with the ground truth; that is, the average between the two

µ(O) = 100|O ∩ OGT |/|O ∪ OGT |, for O ∈ {O1,O2},

where OGT is the ground truth.

Figure 4. Scatter plot for synthetic experiment Syn2.

6.1. Synthetic Data

A matching between features in a pair of images is de-

picted by a permutation. We generated 500 different permu-

tations of N = 1000 indexes, using our assumptions A1-

A3, for various values of O1, O2 and NG.

Test Syn1: We set NG = 300, the size (> NG) and loca-

tion of O1 and O2 are randomly chosen. Tab. 1 presents

µ(NG), µ(O) and the mean runtime (displayed in millisec-

onds). The error µ(NG) is the largest for K, while K2D and

K1D are similar and closer to KGT.

Test Syn2: We set NG between 0 to 1000, and randomly

choose O1 and O2 as in “Test Syn1” (see results in Tab. 1).

The scatter plot of the four algorithms with respect to the

ground truth is presented in Fig. 4. The K algorithm, where

|O1| = |O2| = N is wrongly assumed, underestimates

NG, and µ(NG) is relatively large. The estimation using

K2D and K1D are similar and slightly underestimate of NG.

These results are probably due to the sampling used for esti-

mating O1 and O2, since for KGT, the errors are negligible.

For both tests, K1D is almost an order of magnitude faster

than K2D.

6.2. Real Data

We use the Middlebury 2005&2006 and 2014 datasets

[26, 16, 25], for real data with ground truth (denoted by

MFull05&06 and MFull14, respectively). We also evaluate

our method on the USAC dataset [22] and BLOGS dataset

[3] (combined), and the ZuBuD dataset [27], for which no

ground truth is available (denoted by U&B and ZuBuD, re-

spectively). We run the BEEM [13] and USAC [22] algo-

rithms (both with their default settings), where the number

of inliers returned is compared to NG. The lowest and high-

est inlier indexes returned by these methods can be regarded

as their estimations of O1 and O2.

Middlebury Full Overlap. The mean errors and runtimes

(in milliseconds) are presented in Tab. 2. The error, µ(NG),
is similar for K, K2D and K1D, while K2D is much slower.

The K1D and BEEM are similar in µ(NG), while USAC is

more accurate. The runtime of K1D is between one and two

orders of magnitude faster than USAC and BEEM’s run-
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Dataset #im pairs NGT
G BEEM USAC K K2D K1D

µ(NG) Time µ(NG) Time µ(NG) Time µ(NG) Time µ(NG) Time

MFull14 23 1584 9.9 2065 3 1782 10 30 9.9 291 9.9 62

MFull05&06 27 2776 13 4198 3 1670 3.3 51 3.3 427 3.3 76

MPar14 23 712 5 1825 3.6 1152 11.5 13 6.8 195 7.1 31

MPar05&06 27 1032 5.3 2344 4.1 1276 23.1 11 6.3 249 6.7 39

Table 2. The mean normalized absolute error (percentage), µ(NG), in comparison to the ground truth (its mean, NGT
G ) and the mean

runtime (in milliseconds) for each of the methods in the Middlebury datasets.

Dataset #im pairs |GBEEM | BEEM USAC K K2D K1D

µ(NG) Time µ(NG) Time µ(NG) Time µ(NG) Time µ(NG) Time

U&B 21 138 n.a. 1444 8.6 1440 11.7 11 8.8 142 9 18

ZuBuD 201 69 n.a. 692 7.3 1257 9.3 2 6.1 90 6.5 11

Table 3. The mean normalized absolute error (percentage), µ(NG), in comparison to BEEM (its mean, |GBEEM |) and the mean runtime

(in milliseconds) for each of the methods in the USAC&BLOGS and ZuBuD datasets.

time. Fig. 5 presents the complete comparison details.

Middlebury Partial Overlap. The overlap between im-

age pairs in the Middlebury datasets is very large (about

90% of the image). Therefore, we randomly vertically cut

them to obtain smaller overlaps. This enables us to test the

partial-overlap method (Sec. 4.3) against the ground truth

(Tab. 2). These datasets are denoted by MPartial05&06 and

MPartial14 for Middlebury 2005&2006 and 2014, respec-

tively. Both the errors of K2D and K1D are low and sim-

ilar to the full overlap case, demonstrating the success of

the partial overlap method. However, the running time is

much lower for K1D. The error, µ(NG), is large for method

K since it ignores the margins. As in the full overlap case,

BEEM is similar in accuracy to K2D and K1D, while USAC

is more accurate. The similarity of the O evaluation, µ(O),
is 0.89 and 0.89 for both the K2D and K1D methods. Fig. 5

presents the complete comparison details.

USAC & BLOGS and ZuBuD. Since no ground truth is

available for these datasets, the estimation results are com-

pared to BEEM (see Tab. 3). The errors for K2D and K1D

and USAC are similar (K is larger as expected). K2D and

K1D are one and two orders of magnitude faster than BEEM

and USAC. Fig. 5 presents the complete comparison details.

6.3. Applications

We next evaluate three applications of NG estimation.

Halting condition. The classic halting condition [14,

Chapter 11.6] for adaptive RANSAC methods is based on

the probability that at iteration t at least one consensus set

was constructed from an uncontaminated minimal set of

matches. This probability is computed as a function of the

number of correct matches. As this number is usually un-

known, the probability is updated when a larger consensus

set is found. The method halts when the confidence in the

solution is high based on the size of the consensus set. Since

our algorithm is able to estimate NG, we are able to halt

RANSAC instantly when a consensus set of at least NG

matches has been found

To test this we run USAC with and without the halting

condition on all the datasets and compare the inlier rate and

runtime (see Fig. 7). The total runtime with the halting con-

dition is 69% of the total runtime without the halting con-

dition. This is achieved with nearly no loss of inliers (nor-

malized absolute error of 0.78%).

SfM image pairs. A major time-consuming stage in the

pipeline of SfM methods [30] is running RANSAC on all

image pairs to filter out incorrect matches. We propose to

run RANSAC only on image pairs with sufficiently large

NG, avoiding spatially unrelated image pairs.

We use the dataset “Barcelona” [8], which consists of

191 images taken from all around a building. We consider

the total number of inliers and the total runtime from run-

ning USAC on all image pairs as 100% of inliers and run-

time. Our goal is to maintain the inliers, while reducing the

runtime. We use a threshold, t, to discard image pairs for

which our estimation of NG < t, using the K2D and K1D

algorithms. Fig. 6(a)&(b) shows the reduction in inliers and

runtime as a function of t.

For K2D, the total runtime decreases to 17% (or 4.5%)

while maintaining 91% (or 86%) of the inliers. In both of

these examples, all images remain with at least one other

image for which the fundamental matrix could be calcu-

lated. For K1D, the total runtime decreases to 7% (or

1.2%!) while maintaining 87% (or 80%) of the inliers. In

the second example only one image out of the 191 images

was lost. Note that the percentage of time spent discard-

ing matches outliers in a typical SfM method (e.g., [30]) is

∼ 25 % of the total runtime.

Matching probability. Computing matching probabili-

ties, PK , can be useful for several applications, including
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Figure 5. Scatter plots for the real datasets. From left to right: K, K2D and K1D methods. Top against the ground truth (only in Middlebury

datasets), and bottom is a comparison against BEEM. The axes correspond to NG/N .

(a) (b) (c)

Figure 6. (a)-(b) Using our estimate for NG to discard pairs of images from a SfM pipeline in the “Barcelona” dataset; (a) percentage of

the remaining correct matches as a function of the threshold; (b) percentage of the remaining runtime as a function of the threshold; (c)

Comparison of sampling methods for Guided RANSAC using the pairs of images from all datasets (except for “Barcelona”). The x axis

corresponds to the rank of the matches when sorted according to the probability. The y axis corresponds to the precision of correct matches;

that is, a point on the graph, (x, y), denotes the ratio of the number of correct matches from the x matches to all x matches.

guided RANSAC. For evaluating our estimate for PK , we

present the mean inlier precision of the x ≤ 200 high-

est ranked matches, given by PK (Fig. 6(c)). It is com-

pared with the Lowe ranking ([21]), denoted by PL. The

mean precision was calculated on all image pairs from all

datasets. The curve for the mean PK (green) is below the

curve for the mean PL (red) for the first 50 matches, and

then vice versa. A combination of the two probabilities,

given by PC = PKPL

PKPL+(1−PK)(1−PL) . is the blue curve. Us-

ing low values of x, PC outperforms its components. For

higher values of x, our estimation is better.

7. Conclusions and Future Work

In this paper we introduced a novel method to estimate

the number of correct matches, and a method to estimate

the region of overlap between a pair of images. We also

derive a probability function for a match to be correct. All

these were done using only the spatial order of a given set of

matches, and some reasonable statistical assumptions. We

demonstrated the effectiveness of this estimation on real

datasets for an analysis of feature matches using only the

spatial order of features in each image. Our method suc-

cessfully competes with methods that compute the set of

inliers explicitly by recovering the epipolar geometry, but

at a much lower cost. It is impressive to see what can be

learned about matching using only spatial orders.
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Figure 7. USAC for inlier rate estimation without the halting con-

dition (y-axis) vs with the halting condition (x-axis).
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