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Abstract

A novel method for visual place recognition is intro-

duced and evaluated, demonstrating robustness to percep-

tual aliasing and observation noise. This is achieved by

increasing discrimination through a more structured repre-

sentation of visual observations. Estimation of observation

likelihoods are based on graph kernel formulations, uti-

lizing both the structural and visual information encoded

in covisibility graphs. The proposed probabilistic model

is able to circumvent the typically difficult and expensive

posterior normalization procedure by exploiting the infor-

mation available in visual observations. Furthermore, the

place recognition complexity is independent of the size of

the map. Results show improvements over the state-of-the-

art on a diverse set of both public datasets and novel exper-

iments, highlighting the benefit of the approach.

1. Introduction

Efficient and reliable place recognition is a core require-

ment for mobile robot localization, used to reduce estima-

tion drift, especially in the case of exploring large, un-

constrained environments [7, 20]. In addition to robotics,

place recognition is increasingly being used within tasks

such as 3D reconstruction, map fusion, semantic recogni-

tion, and augmented reality [9, 11, 15, 28]. This paper

examines appearance-based place recognition approaches

which combine visual and structural information from cov-

isibility graphs for achieving robust results even under large

amounts of noise and variety in input data. For instance,

dealing with appearance changes, self-similar and repeti-

tive environments, viewpoint and trajectory variations, het-

erogeneous teams of robots or cameras, and other sources

of observation noise make the task particularly challeng-

ing. Figure 1 shows an example that illustrates how dif-

ferent cameras affect the appearance of a location.

By representing locations with their corresponding co-

visibility graphs, pseudo-geometric relations between local

visual features can boost the discriminative power of obser-

vations. Covisibility graphs can be constructed as the en-

Figure 1: In an effort to move towards robust mapping

and localization in unconstrained environments, this paper

investigates graph comparison approaches to visual place

recognition. Structural and visual information provided by

covisibility graphs is combined, in order to cope with varia-

tions and noise in observations, such as those coming from

heterogeneous teams of robots.

vironment is traversed, by detecting local landmarks, and

connecting those landmarks which are co-observed in a

sparse graph structure [24]. Candidate locations resembling

a given query can then be efficiently retrieved as clusters of

landmarks from a global map, using visual word labels as-

signed to each landmark and an inverted index lookup table.

Such a location-based covisibility subgraph will be referred

to as a location graph. Using this representation, inspiration

is taken from the field of graph theory, more specifically

graph kernels, for computing the similarity between the cor-

responding query and candidate location graphs. As a re-

sult, inference can be achieved using more spatial and struc-

tural information than bag-of-words or word co-occurrence

approaches to visual place recognition.

The presented approach does not require any detailed

prior representation of the environment, using only rough

priors on feature occurrences as additional input. Further-

more, computation does not scale with the size of the map.

The approach is therefore well suited to applications includ-

ing exploration and mapping of unknown areas.
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2. Background

State-of-the-art localization methods typically rely on vi-

sual cues from the environment, and using these, are able to

be applied even on large scales of several hundreds or thou-

sands of kilometers, and sometimes under changing condi-

tions [12, 21, 33]. However, the recent trend is to rely on

localizing within a prior map, or relying on enough train-

ing and sample data, as in the works of [23, 21]. One of

the main goals of this work is to achieve visual place recog-

nition using no prior data from the environment, in a way

which is robust to repetitive scene elements, observation

changes, and parameter settings.

Visual place recognition can be achieved using global

image attributes, as in the work of [25]. By comparing se-

quences of images, global image descriptors can produce

astounding results using relatively simple methods [33],

but rely on strong assumptions about view-point consis-

tency. Alternatively, methods using locally-invariant fea-

tures (such as SIFT [22], SURF [8], or FREAK [3]) are

commonly applied when such assumptions do not hold.

Furthermore, relative positions of these visual features

can be used to perform geometric reconstruction and lo-

calization, such as in the work of [2]. The efficiency

of these methods can be substantially improved by using

techniques including hamming-embedding [16], product-

quantization [18], inverted multi-indices [4], and descriptor

projection [23] for efficient and accurate descriptor retrieval

and matching. However, problems with these approaches

appear in the case of repetitive elements and scenes, a com-

mon occurrence especially in large environments. Repe-

tition can happen on several scales, such as burstiness of

visual elements within a scene (e.g. plant leaves, windows

on building facades) [17, 34] causing difficulty for descrip-

tor lookup and matching with the ratio test; and repetitive

scenes themselves (e.g. streets in a suburb) causing percep-

tual aliasing during geometric matching. On the other hand,

other approaches quantize local features into visual words,

providing a useful representation for probabilistic and infor-

mation theoretic formulations to avoid the aforementioned

issues. Typically, geometry is no longer explicitly used dur-

ing inference, rather relying on more sophisticated location

models in order to avoid perceptual aliasing due to the loss

of global structure [12, 21, 31].

In order to incorporate relative spatial information from

geometric constraints into observation models, a number of

methods have been investigated. For example, the work

of [27] incorporates learned distributions of 3D distances

between visual words into the generative model in order

to increase robustness to perceptual aliasing. In [19], fea-

tures are quantized in both descriptor and image space. This

means that visual features are considered in a pairwise fash-

ion, and additionally assigned a spatial word, which de-

scribes their relative positions in terms of quantized angles,

distances, orientations, and scales. In recent years, graph

comparison techniques have become popular in a wide ar-

ray of recognition tasks, including place recognition. Ap-

plied to visual data, graphs of local features are created and

used to represent and compare things such as objects. The

work of [36] uses graph matching techniques which allow

for inclusion of geometric constraints and local deforma-

tions which often occur in object recognition tasks, by intro-

ducing a factorized form for the affinity matrix between two

graphs. This approach explicitly solves for node correspon-

dences of object features. Alternatively, the works of [14]

and [5] apply graph kernels to superpixels and point clouds

in order to recognize and classify visual data in a way which

does not explicitly solve the node correspondence problem,

but provides a similarity metric between graphs by map-

ping them into a linear space. In the described approaches,

graph comparison was applied on relatively small graphs

consisting of only tens of nodes due to complexity. For the

case of graph kernels, random walk and subtree kernels ap-

plied in [5, 14], scale with at least O(n3) with respect to the

number of nodes n [35]. Other types of graph kernels have

since been proposed, which strengthen node labels with ad-

ditional structural information in order to reduce the relative

kernel complexity [6, 29] and open the door for applications

to larger graphs. For example, in [29], Weisfeiler-Lehman

(WL) graph kernels scale with O(m) with respect to the

number of edges m. Further details regarding graph kernels

will be discussed in Section 3.2.2. In regards to visual place

recognition, graph comparison has been applied in works

such as [26, 32] which make use of landmark covisibility

to compare locations based on visual word co-occurrence

graphs, and also scale with the number of edges. The work

of [26] demonstrates how the defined similarity measures

can be interpreted as simplified random-walk kernels.

In this work, we take further inspiration from existing

work on graph kernels and the graph-based location inter-

pretation to boost the reliability of visual place recognition

in difficult scenarios. Specifically, this paper offers the fol-

lowing contributions:

• an analysis into using graph kernels for visual place

recognition – with the development of a novel graph

kernel which is both efficient, and robust to noisy ob-

servations and perceptual aliasing

• insight into the Bayesian normalization term – with the

introduction of a constant normalization scheme which

greatly reduces computational cost without compro-

mising results

The following section will outline how visual obser-

vations are represented as graphs of visual words, and

how efficient inference can be done using such observation

models. The proposed methods are additionally validated

through experimental analysis in Section 4.
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3. Methodology

3.1. Location Graphs

Given a query location (e.g. the current position of a

robot), the idea is for the system to be able to evaluate if

and where the same location was seen before. The approach

developed in this paper relies on location descriptions com-

prised of sets of visual words (also referred to as bag of

words) [30, 10], enabling efficient comparison of the query

with a set of candidate locations retrieved from the current

map. Quantized visual words are therefore used to represent

feature descriptors provided by each landmark (distinct vi-

sual features in the image). A map is then constructed as

an undirected covisibility graph, with these landmarks as

nodes, and edges representing relationships between land-

marks. In this work we choose the number of times fea-

tures are seen together as the edge information, following

the procedure described in [24, 31]. For place recognition,

edges are additionally weighted according to the amount of

information their corresponding landmarks convey, which

can be estimated using visual word priors for each land-

mark: I = − log[P (wu)P (wv)] [32]. At query time, the

graph can be searched for clusters of landmarks which share

strong similarity with the query using an inverted index,

extracting subgraphs which represent candidate locations

for further analysis. These candidate locations are not pre-

determined, but depend on the information in the query, pro-

viding some invariance to the sensor trajectory and image

frame-rate [31].

The average size of each retrieved location is typically

on the order of hundreds of nodes, depending on the en-

vironment and feature detector. Location graphs tend to

be densely structured, with each node being connected to

roughly one hundred other nodes on average. Furthermore,

the size of the label set associated to nodes in the graph cor-

responds to the size of the visual vocabulary used (in our

case roughly 10,000 words). The size and structure of these

graphs are an important factor when considering the meth-

ods of analysis which can be applied, as it drives subsequent

approximations and complexity.

3.2. Place Recognition

3.2.1 Probabilistic Framework

The posterior probability of being in a certain location, Li,

given a query observation, Zq , can be framed using Bayes’

rule as follows,

P (Li|Zq) =
P (Zq|Li)P (Li)

P (Zq)
(1)

Typically, the normalization term, P (Zq), is either com-

puted by summing likelihoods over the entire map and/or

sampling observation likelihoods from a set of representa-

tive locations; or often skipped entirely and the observation

likelihood is used directly (at the loss of meaningful proba-

bility thresholds) [31]. This normalization term can be for-

mulated as the marginalization over the particular location

of interest, Li, and the rest of the world, Li:

P (Zq) = P (Zq|Li)P (Li) + P (Zq|Li)P (Li) (2)

resulting in the following equation for the posterior proba-

bility:

P (Li|Zq) =
P (Zq|Li)P (Li)

P (Zq|Li)P (Li) + P (Zq|Li)P (Li)
(3)

In this work, we propose that the representation of vi-

sual observations is unique enough such that the average

observation likelihood of the observation coming from a

place which does not match the query, P (Zq|Li), remains

approximately constant. As a result, this value can be es-

timated once and then used in the posterior normalization

step without the need of its costly calculation for each query.

This assumption arose from the difficulty in actually pro-

ducing reliable results using sampling. This is due to the

fact that the sample space for such complex observation

models becomes too large to sample effectively. However,

upon further introspection, and based on the selected repre-

sentation of locations, it can be seen that the dependence on

sample locations becomes unnecessary as our assumption

provides an effective approximation. Perceptual aliasing,

can of course still happen, if scene similarity is very high.

However without having a prior map of the environment,

this cannot easily be avoided. In essence, normalization by

a sample set typically prevents perceptual aliasing due to

common sets of scene elements, while in this paper we ar-

gue that given enough context and structure, the confusion

between locations containing similar elements is greatly re-

duced.

The following section will now explain how graph com-

parison techniques can be used to estimate observation like-

lihoods by locations using their covisibility graphs, and later

Section 4 will validate the proposed assumptions with ex-

perimental results.

3.2.2 Graph Comparison

As previously discussed, graph kernels can provide an effi-

cient means of graph comparison. A graph kernel function,

k(G,G′) = 〈φ(G), φ(G′)〉 (4)

defined between two graphs, G and G′, effectively maps the

graphs into a linear feature space, and can act as a similarity

measure. In this work, we investigate the use of graph ker-

nel representations to define similarities between location

graphs and estimate the observation likelihood of being in

a given location, P (Zq|Li). Kernels can be defined in a
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(a) input graphs with original labels (b) node re-labelling with

neighbourhood vectors

(c) node-to-node comparison with

neighbourhood vectors

Figure 2: Illustration of the graph comparison process. The input graphs with node labels are shown, followed by the

re-labelled graphs including each corresponding neighbourhood vector, and a node-to-node comparison of neighbourhood

vectors from each graph. Colours in the node labels represent elements from the given vocabulary, and edge values are

represented by line thickness.

number of different ways, and kernel choice is often impor-

tant for achieving useful results, as it acts as an information

bottleneck. Therefore, in kernel selection, prior knowledge

about data types and domain patterns is valuable.

The most commonly described graph kernels typically

decompose graphs into sets of subgraphs of a given struc-

ture, and then compare the sets of subgraphs in a pairwise

fashion, for instance by counting the number of matching

subgraphs. However, comparing all subgraphs between two

graphs is an NP-hard problem, and therefore the types of

subgraphs considered are generally limited [35]. Examples

of this include random walks, shortest paths, and graphlet

kernels (typically enumerating subgraphs of three to five

nodes) [35]. When considering subgraphs of even a few

nodes, the computational complexity of these kernels re-

mains prohibitive for online place recognition with large

and densely connected location graphs.

Alternative approaches consist of relabelling graphs to

incorporate additional structural information into simpler

structures. For example, in the Weisfeiler-Lehman (WL)

kernel, node labels are updated to include the labels of their

neighbours in an iterative scheme. At each iteration, each

node is represented by a new label based on the combina-

tion of its own label and those of its neighbours, propagating

information from further nodes. By augmenting node la-

bels in this way, the WL kernel can achieve practical results

by simply counting the number of matching labels between

two graphs at each iteration. Computation therefore scales

only linearly in the number of edges in the graph [29].

In this work, inspiration is taken from the WL kernel,

attempting to find a way which is better suited to noisy ob-

servations. In the WL kernel, a single noisy node label or

missing edge in the original graph will result in a differ-

ence in each further node label iteration which incorporates

information from the noisy label, since only the number

of exactly matching node labels between two graphs con-

tribute to the final score. In our approach, rather than re-

labelling nodes with a single new value, node labels are

augmented by a vector corresponding to their neighbour-

hood. The length of the vector is equal to the size of the la-

bel vocabulary (in this case the visual dictionary), and each

element is weighted by the strength of the connecting edges

in the covisibility graph. This concept is illustrated in Fig-

ures 2a and 2b. After one iteration of re-labelling, graph

similarity can be measured by taking the dot product be-

tween the neighbourhood vectors of corresponding nodes

in each graph (illustrated in Figure 2c), and summing the

results. This process remains efficient, as only neighbour-

hood vectors from nodes with the same base-labels (original

node label) are compared. In the case where more than one

node in a graph have the same base-labels, comparison is

done between all available pairs and the maximal value is

used in the sum. As a result, nodes are not strictly matched

one-to-one, but similarity scores remain symmetric by en-

suring that the graph with fewer nodes of a given base-label

is used to form the sets of node pairs for comparison. In

order to obtain a normalized similarity measure between 0
and 1, the sum of neighbourhood comparisons is divided by

the sum of total neighbourhood comparisons of each input

graph to itself.
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KITTI 00:

KITTI 05:

sFly:

Narrow/Wide Angle:

Figure 3: Example images from each of the datasets used for testing.

.

The final metric is therefore normalized, symmetric, and

can be used to create a positive-definite kernel matrix be-

tween location graphs. The resulting complexity of the

observation likelihood calculation is on the order O(nd)
(bounded by O(n2)), where n is the number of common

nodes, and d is the degree of the graph, likewise to the meth-

ods presented in [29, 32]. Furthermore, due to the sparse

nature of visual word observations, a sparse implementation

ensures that the complexity does not scale with the vocabu-

lary size (typically on the order of tens or hundreds of thou-

sand words). In addition, the approach inherently includes

invariance to observation trajectories, view-points, and rota-

tions, due to the underlying use of locally-invariant features

and covisibility clustering. Query retrieval from the cov-

isibility map using an inverted index also ensures that the

overall complexity does not scale with the size of the map.

4. Experimental Validation

In order to validate and analyze the approach described

in this paper, this section presents experiments on a number

of benchmark datasets in varied environments. Evaluation

is done on each dataset by incrementally processing monoc-

ular images in the sequence, updating the map at each step,

and using the current location as a query into the current

map. If a matching location already exists in the map, it is

expected to be retrieved. The proposed method, referred

to here as neighbourhood graph or nbhdGraph, is com-

pared alongside the commonly applied FAB-MAP frame-

work [12], and the word co-occurrence comparisons of [32],

referred to here as wordGraph.

4.1. Test Sequences

A wide variety of datasets are used, in order evaluate

the applicability and robustness of each approach. Example

images from each dataset can be seen in Figure 3 to pro-

vide an idea of the different environments and image char-

acteristics. Two of the sequences are from the KITTI vi-

sual odometry datasets [13] and provide examples of widely

used, urban datasets. Specifically, the KITTI 00 and KITTI

05 sequences are used here, as they contain interesting loop-

closures. The KTITI 00 sequence is 3.7km long, and the

KITTI 05 is 2.2km long, both through suburban streets with

good examples of perceptual aliasing. The sFly dataset [1]

shows a very different environment. It contains imagery

from a multi-copter flying over rubble with a downward-

looking camera, and is about 350m long. Finally, the Nar-

row/Wide Angle datasets demonstrate a challenging local-

ization scenario using different types of camera lenses. In

these sequences a few streets are traversed once with a stan-

dard camera lens, and once with a wide-angle lens. A large

portion of the two traversals overlap, but some areas also ex-

ist which are unique to one traversal. These sequences are

tested twice, once in each order, providing a Narrow-Wide

sequence and a Wide-Narrow sequence.

4.2. Test Configurations

Any parameter settings for each framework are set ac-

cording to values documented in their respective publica-

tions [12, 32], with the exception of the masking parameter

in FAB-MAP, as we found a value of 5 images provided bet-

ter results. FAB-MAP was run using the Chow-Liu tree im-

plementation, and a basic forward-moving motion model.

Additionally, the visual word existence parameters were set

to P (z|e) = 0.39 and P (z|ē) = 0.005. In all tested meth-

ods, the same feature detector, descriptors, and visual dic-

tionary were used, namely 128-dimensional SURF descrip-

tors and the 10987-word dictionary provided alongside the

available FAB-MAP implementation. In both the imple-
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Figure 4: Precision-recall results on the KITTI 00 sequence

for the proposed method (nbhdGraph), the wordGraph

method of [32] and the FAB-MAP framework of [12].
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Figure 5: Precision-recall results on the KITTI 05 sequence

for the proposed method (nbhdGraph), the wordGraph

method of [32] and the FAB-MAP framework of [12].

mentation of nbhdGraph and wordGraph, the same covisi-

bility clustering parameter of 0.05 was used [32]. The effec-

tive P (Zq|Li) was set to 0.002 after estimating it once from

samples. Importantly, these parameters are kept constant

through testing across datasets. The exception is for the

more challenging Narrow/Wide Angle datasets, where con-

figurations were allowed to change slightly. In the case of

FAB-MAP the P (z|ē) parameter had to be increased to 0.05
to account for differences in observations, and the masking

parameter had to be set to 30 images to account for tighter

image spacing. In the nbhdGraph framework, the differ-

ent extent of observations is simply handled by normaliz-

ing graph similarity scores by the sum of neighbourhood

comparisons of only the common words between the two

graphs, rather than all nodes (in a sense normalizing by the

graph intersection rather than union).

Ground truth is given for most datasets by provided met-

ric global position information. As a result, true location

matches are those which lie within a given radius of the

query position. For the KITTI datasets, a radius of 6m was

used, while for the sFly dataset, a radius of 2m was used

since the downward-looking images provide a more local-

ized view. However, nearby images to the query (trivial
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Figure 6: Precision-recall results on the sFly sequence for

the proposed method (nbhdGraph), the wordGraph method

of [32] and the FAB-MAP framework of [12].

matches) cannot provide to true-positive match scores. For

the Narrow/Wide datasets, metric position information was

not available, and therefore ground truth was given by ge-

ometric feature matching between images which was then

hand-corrected to remove false matches and fill in false neg-

atives. Furthermore, for the Narrow/Wide datasets, only

location matches from the opposite part of the sequence

count toward true-positive matches, however images from

the same part of the sequence can provide false-positive

matches.

4.3. Results

Figures 4, 5, and 6 show precision-recall plots for the

KITTI and sFly datasets as a threshold on the posterior

probability P (Li|Zq) is varied, comparing the proposed

method (nbhdGraph), to the methods proposed in [32]

(wordGraph), and [12] (FAB-MAP 2.0). All configuration

parameters for each framework are kept the same for each

of these datasets, and values are provided in Section 4.2.

To give a notion of the complexity implications of the al-

gorithm, our prototype code in python results in location

comparisons which take 0.041 ± 0.027s for the KITTI 05

dataset, with future capabilities for code optimization and

parallelization.

In general, the results show improvements over the state-

of-the-art, most notably against the FAB-MAP framework

which incorporates far less spatial information about the vi-

sual features than the other two methods. Although the re-

sults are not strictly better than those from the wordGraph

method, they are especially meaningful due to the fact

that explicit posterior normalization calculations are not re-

quired, therefore simplifying computation and removing the

dependency on previously acquired sample locations.

Precision-recall plots for the Narrow-Wide and Wide-

Narrow angle sequences are shown in Figure 7. From these

plots, one can see how each method can handle heteroge-

neous observations. Comparing the two plots, results for
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RANSAC inliers: 19% RANSAC inliers: 47% RANSAC inliers: 24%

FAB-MAP: P (Li|Zq) = 7.6e− 4% FAB-MAP: P (Li|Zq) = 7.2e− 7% FAB-MAP: P (Li|Zq) = 5.0e− 7%

wordGraph: P (Li|Zq) = 98% wordGraph: P (Li|Zq) = 94% wordGraph: P (Li|Zq) = 75%

nbhdGraph: P (Li|Zq) = 96% nbhdGraph: P (Li|Zq) = 95% nbhdGraph: P (Li|Zq) = 38%

Figure 8: Example true and false-positive matches from the KITTI 05 dataset. Each column shows one example, where the

query locations are shown in the top row in blue, with a candidate location below. True matches are designated in green,

while false matches are designated in red. These examples represent some difficult locations for place recognition.
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Figure 7: Precision-recall results on the Narrow-Wide and

Wide-Narrow Angle sequences for the proposed method

(nbhdGraph), the wordGraph method of [32] and the FAB-

MAP framework of [12].

the Narrow-Wide sequence are better than the Wide-Narrow

sequence. This can be explained by the fact that in the

first case, the more complete wide-field-of-view images are

used to query the narrow-field-of-view images, making re-

trieval from the covisibility map more reliable in the case

of nbhdGraph and wordGraph, and the observation model

parameters more applicable in the case of FAB-MAP.

RANSAC inliers: 0% RANSAC inliers: 45%

FAB-MAP: FAB-MAP:

P (Li|Zq) = 1.0e− 3% P (Li|Zq) = 5.7e− 5%

wordGraph: wordGraph:

P (Li|Zq) = 46% P (Li|Zq) = 22%

nbhdGraph: nbhdGraph:

P (Li|Zq) = 95% P (Li|Zq) = 90%

Figure 9: Example true and false-positive matches from the

Narrow-Wide dataset. Each column shows one example,

where the query locations are shown in the top row in blue,

with a candidate location below. True matches are desig-

nated in green, while false matches are designated in red.

These examples represent some difficult locations for place

recognition

Figure 8 shows three representative examples of difficult

locations for visual place recognition from the KITTI 05

sequence. In each example a query and a candidate loca-

tion are depicted, and scores corresponding to various com-

parison methods are shown below. Generally speaking, the

nbhdGraph method tends to localize more precisely than the
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Figure 10: Precision-recall results on the KITTI 05 se-

quence, comparing the results using a constant value for

P (Zq|Li), and one which calculated P (Zq|Li) using the

dataset ground-truth.

wordGraph method, providing better resistance to percep-

tual aliasing and more tightly located location matches, but

possibly reducing recall in locations like the boundaries of

overlapping areas. From this figure, one can also see prob-

lems with the posterior normalization method of the FAB-

MAP framework (presented in [12]), as the posterior prob-

ability mass is distributed among all nearby locations in the

map, resulting in unintuitive values in most locations.

Similarly, Figure 9 shows examples of difficult areas

from the Narrow-Wide dataset. Here one can see that dif-

ferentiating between true and false matches is more chal-

lenging since landmark detection and appearance tends to

differ largely between the two camera lenses. The second

example of Figure 9 is challenging because the buildings

and foliage produce similar features, and in particular, al-

most all detected features came from the trees in this case,

leaving degenerate location graphs.

The validity of the normalization scheme proposed in

Section 3.2.1 was also investigated experimentally. In or-

der to do so, the results obtained with a constant value for

P (Zq|Li) were compared to results obtained from conduct-

ing normalization using the ground truth data, and can be

seen in Figure 10. Using the global position information,

P (Zq|Li) was calculated for each query, by comparing the

given query observation to every other location in the map.

It turns out that this normalization using ground truth posi-

tion information even produces slightly worse results than

the proposed constant P (Zq|Li) approach. This could in

part be due to the fact segmenting out the query location

from the map is non-trivial (for example, distant objects

may be observed over large areas). Furthermore, P (Zq|Li)
should become more stable as the size of the map increases,

and therefore it is possible that not enough locations were

used in the estimation. These results confirm the difficulty

in accurately normalizing posterior probabilities, and pro-

vide support for the assumption that P (Zq|Li) can be ap-

proximated as constant.

5. Conclusion

This paper has introduced a probabilistic place recogni-

tion framework which combines visual and spatial informa-

tion in a flexible yet discriminative manner. Efficient ap-

proaches of graph comparison have been explored for cal-

culating similarity between locations represented by their

corresponding covisibility graphs. As a result, a novel ob-

servation likelihood formulation has been developed which

analyzes the similarity of local neighbourhoods within each

graph. The resulting graph comparison method can be for-

mulated as a symmetric and positive-definite graph kernel,

additionally providing the potential for further uses in learn-

ing algorithms such as semantic understanding of location

graphs.

The inclusion of structural information from the cov-

isibility graph allows the inference algorithm to disam-

biguate between repetitive and self-similar patterns in the

environment using only noisy visual information. Conse-

quently, this allows for a more efficient posterior normaliza-

tion scheme due to the fact that the average probability of

an observation coming from a random location can be effec-

tively estimated as a constant value. This not only reduces

the overall computational complexity of the approach, but

also eliminates the dependence on detailed sample loca-

tions or prior map information that most state-of-the-art ap-

proaches rely on. The presented method is therefore well

suited to applications which involve exploration of large,

unconstrained environments. Experiments on several chal-

lenging datasets validate the reliability and applicability of

the approach in a number of different environments.

Future work includes extending the application of the

framework to long-term place recognition in dynamic en-

vironments, and tasks such as semantic scene understand-

ing, or object recognition. In addition, the probabilistic

framework could include additional sensory information

and more sophisticated location priors based on a motion

model. Furthermore, since the approach remains general

with respect to the underlying features, visual words could

be replaced or used in conjunction with other, possibly

higher-level features such as objects.
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