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Abstract

This paper proposes a novel approach to tackle

the challenging problem of ‘online action localization’

which entails predicting actions and their locations as

they happen in a video. Typically, action localization

or recognition is performed in an offline manner where

all the frames in the video are processed together and

action labels are not predicted for the future. This dis-

allows timely localization of actions - an important con-

sideration for surveillance tasks.

In our approach, given a batch of frames from the

immediate past in a video, we estimate pose and over-

segment the current frame into superpixels. Next, we dis-

criminatively train an actor foreground model on the su-

perpixels using the pose bounding boxes. A Conditional

Random Field with superpixels as nodes, and edges con-

necting spatio-temporal neighbors is used to obtain ac-

tion segments. The action confidence is predicted us-

ing dynamic programming on SVM scores obtained on

short segments of the video, thereby capturing sequen-

tial information of the actions. The issue of visual drift

is handled by updating the appearance model and pose

refinement in an online manner. Lastly, we introduce a

new measure to quantify the performance of action pre-

diction (i.e. online action localization), which analyzes

how the prediction accuracy varies as a function of ob-

served portion of the video. Our experiments suggest

that despite using only a few frames to localize actions

at each time instant, we are able to predict the action

and obtain competitive results to state-of-the-art offline

methods.

1. Introduction

Predicting what and where an action will occur is an

important and challenging computer vision problem for

automatic video analysis [17, 35, 41, 4]. In many ap-

Online&Action&Localization&=&Action&Detection&+&Prediction

Offline&Action&Localization&=&Action&Detection&+&Recognition

Figure 1. This figure illustrates the problem we address in this

paper. The top row shows the case when we have an entire

video to detect and recognize actions, i.e., offline action local-

ization. The bottom row is an example of online action local-

ization, which involves predicting the action class (e.g. Kick-

ing) as well as the location of the actor in every frame, as the

video is streamed.

plications associated with monitoring and security, it is

crucial to detect and localize actions in a timely fash-

ion. A particular example is detection and localization

of undesirable or malicious actions. There have been

recent efforts to predict activities by early recognition

[18, 16, 26, 14]. These methods only attempt to predict

the label of the action, what of an action, without any

localization. Thus, the important question about where

an action is being performed cannot be answered easily.

Existing action localization methods [17, 35, 41, 29,

10, 27] classify and localize actions after completely ob-

serving an entire video sequence (top row in Fig. 1).

The goal is to localize an action by finding the volume

that encompasses an entire action. Some approaches are

based on sliding-windows [29, 22], while others seg-

ment the video into supervoxels which are merged into

action proposals [10, 21, 27]. The action proposals from

either methods are then labeled using a classifier. Es-

sentially, an action segment is classified after it has been
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localized. Since offline methods have whole video at

their disposal, they can take advantage of observing en-

tire motion of action instances. In this paper, we address

the problem of Online Action Localization, which aims

at localizing an action and predicting its class label in

a streaming video (see bottom row in Fig. 1). Online

action localization involves the use of limited motion

information in partially observed videos for frame-by-

frame action localization and label prediction.

Low-level motion features, both hand-crafted [34]

and deep learned [36] have imparted significant gains

to the performance of action recognition and localiza-

tion algorithms. They have been extensively employed

in various action recognition methods. However, hu-

man actions inherently consists of articulation which

low-level features cannot model explicitly. On the other

hand, the compact and low-dimensional nature of high-

level representations such as human poses (locations

of different joints), makes them sensitive and unstable

for action recognition. An incorrect estimation of pose

translates to large variation in descriptors that aim to

capture the configuration of joints both in space and

time. This drawback can hamper the performance of any

action localization and recognition algorithm. Nonethe-

less, a few methods (e.g. [35]) have successfully em-

ployed pose features for offline action localization.

In this paper, we propose to use the high level struc-

tural information using pose in conjunction with a su-

perpixel based discriminative actor foreground model

that distinguishes the foreground action and the back-

ground. This superpixel-based model incorporates vi-

sual appearance using color features, as well as struc-

tural cues through joint locations. Using the superpixel-

based actor foreground model we generate a confidence

map, that is later used to predict and locate the action

segments by inferring on a Conditional Random Field.

Since the appearance of an actor changes due to articu-

lation and camera motion, we retrain foreground model

as well as impose spatio-temporal constraints on poses

in an online manner to maintain representation that is

both robust and adaptive.

In summary, 1) we address the problem of Online Ac-

tion Localization in a streaming video, 2) by using high-

level pose estimation to learn a mid-level superpixel-

based foreground model at each time instant. 3) The

label and confidences for action segments are predicted

using dynamic programming on SVM scores trained on

partial action clips. Finally, 4) we also introduce an eval-

uation measure to quantify performance of action pre-

diction and online localization. The rest of the paper

is organized as follows. In Sec. 2 we review literature

relevant to our approach. Sec. 3 covers the technical de-

tails of our approach. We report results in Sec. 4 and

conclude with suggestions for future work in Sec. 5.

2. Related Work

Online Action Prediction aims to predict actions

from partially observed videos without any localization.

These methods typically focus on maximum use of tem-

poral, sequential and past information to predict labels.

Li and Fu [18] predict human activities by mining se-

quence patterns, and modeling causal relationships be-

tween them. Zhao et al. [45] represent the structure of

streaming skeletons (poses) by a combination of human-

body-part movements and use it to recognize actions in

RGB-D. Hoai and De la Torre [8] simulate the sequential

arrival of data while training, and train detectors to rec-

ognize incomplete events. Similarly, Lan et al. [16] pro-

pose hierarchical ‘movemes’ to describe human move-

ments and develop a max-margin learning framework

for future action prediction.

Ryoo [26] proposed integral and dynamic bag-of-

words for activity prediction. They divide the train-

ing and testing videos into small segments and match

the segments sequentially using dynamic programming.

Kong et al. [14] proposed to model temporal dynamics

of human actions by explicitly considering all the his-

tory of observed features as well as features in smaller

temporal segments. Yu et al. [43] predict actions us-

ing Spatial-Temporal Implicit Shape Model (STISM),

which characterizes the space-time structure of the

sparse local features extracted from a video. Cao et al.

[2] perform action prediction by applying sparse coding

to derive the activity likelihood at small temporal seg-

ments, and later combine the likelihoods for all the seg-

ments. In contrast, we perform both action prediction as

well as localization in an online manner.

Offline Action Localization has received significant at-

tention in the past few years [41, 38, 9, 5, 13, 35, 11].

The first category of approaches uses either rectangular

tubes or cuboid-based representations. Lan et al. [17]

treated the human position as a latent variable, which is

inferred simultaneously while localizing an action. Yuan

et al. [44] used branch-and-bound with dynamic pro-

gramming, while Zhou et al. [46] used a split-and-merge

algorithm to obtain action segments that are then classi-

fied with LatentSVM [6]. Oneata et al. [22] presented

an approximation to Fisher Vectors for tractable action

localization. Tran et al. [30] used Structured SVM to

localize actions with inference performed using Max-

Path search method. Ma et al. [19] automatically discov-

ered spatio-temporal root and part filters, whereas Tian
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(a)$Input$Stream$
of$Video$Frames

(b)$Superpixel
Extraction$and$Pose$

Estimation

(c)$Learn$Superpixel
based$Appearance$
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(d)$Superpixel based$
Foreground$
Likelihood

(e)$Pose$
Refinement

(f)$Segment$Action$
with$CRF$+$Action$

Prediction$using$SVM

Figure 2. This figure shows the framework of the approach proposed in this paper. (a) Given an input video, (b) we over-segment

each frame into superpixels and detect poses using an off-the-shelf method [40]. (c) An appearance model is learned using all the

superpixels inside a pose bounding box as positive, and those outside as negative samples. (d) In a new frame, the appearance

model is applied on each superpixel of the frame to obtain a foreground likelihood. (e) To handle the issue of visual drift, poses are

refined using spatio-temporal smoothness constraints on motion and appearance. (f) Finally, a CRF is used to obtain local action

proposals, which are then utilized to predict the action through dynamic programming on SVM scores.

et al. [29] developed Spatio-temporal Deformable Parts

Model [6] to detect actions in videos and can handle de-

formities in parts, both in space and time. Recently, Yu

and Yuan [42] proposed a method for generating action

proposals obtained by detecting tubes with high action-

ness scores after non-maximal suppression.

The second category uses either superpixels or super-

voxels as the base representations [21, 10]. Jain et al.

[10] recently proposed a method that extends selective

search approach [31] to videos. They merge supervoxels

using appearance and motion costs and produce multi-

ple layers of segmentation for each video. Gkioxari and

Malik [7] use selective search [31] to generate candidate

proposals for video frames, whose spatial and motion

Convolutional Neural Network (CNN) features are eval-

uated using SVMs. The per-frame action detections are

then linked temporally for localization. There have been

few similar recent methods for quantifying actionness

[3, 42], which yield fewer regions of interest in videos.

Similar to these methods, our approach can delineate

contours of an action, but with the goal of performing

prediction and localization in a streaming fashion.

Pose for Action Recognition was used by Maji et al.

[20], who implicitly captured poses through ‘poselet ac-

tivation vector’ and employed those for action recogni-

tion in static images. However, such a representation is

not useful for detecting an action foreground. Xu et al.

[39] detect poses through [40] and couple them with in-

dependently computed local motion features around the

joints for action recognition. Wang et al. [33] also ex-

tended [40] to videos and represented videos in terms of

spatio-temporal configurations of joints to perform ac-

tion recognition. Raptis and Sigal [24] recognize and

detect interactions from videos by modeling poselets as

latent variables in a structured SVM formulation. Joint

recognition of action and pose estimation in videos was

recently proposed by Nie et al. [37]. They divide the ac-

tion into poses, spatio-temporal parts and then parts, and

model their inter-relationships through And-Or graphs.

Pirsiavash et al. [23] predict quality of sports actions by

training a regression model from spatio-temporal pose

features, to scores from expert judges. Poses were re-

cently used for offline action localization by Wang et al.

[35], who detect actions using a unified approach that

discovers action parts using dynamical poselets, and the

relations between them. In contrast to these methods,

we use pose in conjunction with low-level iDTF features

[34] and mid-level superpixels. Moreover, we predict

and localize actions in an online manner in partially ob-

served videos.

3. Localizing and Predicting Actions

The proposed approach (Fig. 2) begins by segment-

ing the testing video frames into superpixels and de-

tecting pose hypotheses within each frame. The fea-

tures computed for each superpixel are used to learn

a superpixel-based appearance model, which distin-

guishes the foreground from the background. Simulta-

neously, the conditional probability of pose hypotheses

at current time-step (frame) is computed using pose con-

fidences and consistency with poses in previous frames.

The superpixel and pose-based foreground probability is

used to infer the action location at each frame through

Conditional Random Field. The action label is pre-

dicted within the localized action bounding box through

dynamic programming using scores from Support Vec-

tor Machines (SVMs) on short video clips. These

SVMs were trained on temporal segments of the training

videos. After localizing action at each time-step (frame),

we refine poses in a batch of few frames by imposing

spatio-temporal consistency. Similarly, the appearance

model is updated to avoid visual drift. This process is
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repeated for every frame in an online manner (see Fig.

2) and gives action localization and prediction at every

frame.

Let st represent superpixels by its centroid in frame

t and pt represent poses in frame t. Since our goal is to

localize the action in each frame, we use Xt to represent,

a sequence of bounding boxes (tube) in a small window

of δ frames. Each bounding box is represented by its

centroid, width and height. Similarly, let St and Pt re-

spectively represent all the superpixels and poses within

that time window. Given the pose and superpixel-based

observations till time t, S1:t and P1:t, the state estimate

Xt at time t is obtained using the following equation

through Bayes Rule:

p(Xt|S1:t,P1:t) = Z−1p(St|Xt).p(Pt|Xt).
∫

p(Xt|Xt−1).p(Xt−1|S1:t−1,P1:t−1)dXt−1, (1)

where Z is the normalization factor, and the state tran-

sition model is assumed to be Gaussian distributed, i.e.,

p(Xt|Xt−1) = N (Xt;Xt−1,Σ). Eq. 1 accumulates

the evidence over time on the superpixels and poses in

batch-streaming mode. The state which maximizes the

posterior (MAP) estimate in Eq. 1 is selected as the new

state. Next, we define the pose and superpixel based

foreground likelihoods used for estimating Eq. 1.

3.1. Superpixelbased Foreground Likelihood

Learning an appearance model helps in distinguish-

ing the foreground actions from the background. Given

foreground and background superpixels in the previous

frames t−δ : t−1, we group them into k = 1 . . .K clus-

ters. Furthermore, let ξk define the ratio of foreground

to background superpixels for the kth cluster. Then, the

appearance-based foreground score is given by:

Hfg(st) = exp
(‖φcolor(st)− ck)‖

rk

)

· ξk

+ exp
(‖φflowst)− µk‖

σk

)

, (2)

where ck is the center, rk is the radius, µk is the mean

optical flow and σk is the flow variance for kth cluster.

In Eq. 2, the clusters are updated incrementally at

each time-step (frame) to recover from the visual drift

using a temporal window of past δ frames. Note that,

background pixels within a foreground bounding box

are inevitably considered as foreground, and introduce

noise during model update. The ξk helps to compensate

for this issue by quantifying the foreground/background

ratio for each cluster. Finally, the superpixel-based fore-

ground likelihood in Eq. 1 is given as: p(St|Xt) =
αfg ·Hfg(st), where αfg is the normalization factor.

3.2. Posebased Foreground Likelihood

We use a pre-trained pose detector to obtain pose hy-

potheses in each frame. Each pose pt is graphically rep-

resented with a tree, given by T = (Π,Λ). The body

joints π ∈ Π are based on appearance, that are con-

nected by λ ∈ Λ edges capturing deformations. The

joint j with its location in pose pt is represented by π
j
t ,

consisting of its x and y locations. Then, the cost for a

particular pose pt is the sum of appearance and defor-

mation costs:

Hraw(pt) =
∑

j∈Πt

Ψ
(
π

j
t

)
+

∑

(j,j′)∈Λt

Φ
(
π

j
t ,π

j′

t

)
, (3)

where Ψ and Φ are linear functions of appearance fea-

tures of pose joints, and their relative joint displacements

(deformations) w.r.t each other. Poses are obtained using

[40], which optimizes over latent variables that capture

different joint locations and pose configurations. Since

the pose estimation in individual frames is inherently

noisy, and does not take into account the temporal in-

formation available in videos, we impose the following

smoothness constraints in the previous δ frames to re-

evaluate poses in Eq. 3.

Appearance Smoothness of Joints: Since the appear-

ance of a joint is not expected to change drastically in

a short window of time, we impose the appearance con-

sistency between superpixels at joint locations:

Japp(pt) =

|Πt|∑

j=1

‖Hfg(ŝ
j
t )−Hfg(ŝ

j
t−1)‖, (4)

where ŝ
j
t is the enclosing superpixel of the joint π

j
t .

Location Smoothness of Joints: We ensure that joint lo-

cations are smooth over time. This is achieved by fitting

a spline to each joint on the past δ frames, γ
j
t . Then the

location smoothness cost is given by:

Jloc(pt) =

|Πt|∑

j=1

‖γj
t − π

j
t ‖. (5)

Scale Smoothness of Joints: Let jmin, jmax respectively

denote minimum and maximum for γ, i.e. the vertical

dimension of the bounding box circumscribing all the

splines fitted on joints. And j′min, j
′
max denote minimum

and maximum for joints in actual poses πt ∈ Πt. Then,

the scale smoothness cost essentially computes the over-

lap between vertical dimensions of the two:
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Jsc(pt) = ‖(jmax − jmin)− (j′max − j′min)‖. (6)

The cost of a particular pose is defined as its raw cost

plus the smoothness costs across time, i.e., Hpose(pt) =
Hraw(pt)+Japp(pt)+Jloc(pt)+Jsc(pt). Similar to Sec.

3.1, we use a temporal window of past δ frames to refine

the pose locations. We propose an iterative approach to

select poses in the past t− δ : t frames. Given an initial

set of poses, we fit a spline to each joint π
j
t . Then, our

goal is to select a set of poses from t − δ to t frames,

such that the following cost function is minimized:

(∗pt−δ, . . . ,
∗pt) = argmin

pt−δ,...,pt

t∑

τ=t−δ

(

Hpose(pτ )

)

. (7)

This function optimizes over pose detection, and

the appearance, location and scale smoothness costs of

joints (see Fig.2 (e)) by greedily selecting the minimum

cost pose in every frame through multiple iterations. Fi-

nally, the pose-based foreground likelihood in Eq. 1

is given by p(Pt|Xt) = exp(αpose · Hpose(pt)), where

αpose is the normalization factor.

3.3. Action Localization using CRF

Once we have the superpixel and pose-based fore-

ground likelihoods, we infer the action segments using

a history of δ frames. Although the action location is

computed online for every frame, using past δ frames

adds robustness to segmentation. We form a graph

G(V,E) with superpixels as nodes connected through

spatial and temporal edges. Let variable a denote the

foreground/background label of a superpixel. Then, the

objective function of CRF becomes:

− log
(
p(at−δ, . . . , at|st−δ, . . . , st,pt−δ, . . . ,pt)

)

=
t∑

τ=t−δ

(

Θ
(
aτ |sτ ,pτ

)

︸ ︷︷ ︸

unary potential

+Υ
(
aτ , a

′
τ |sτ , s

′
τ

)

︸ ︷︷ ︸

spatial smoothness

)

+

t−1∑

τ=t−δ

Γ
(
aτ , a

′
τ+1|sτ , s

′
τ+1

)

︸ ︷︷ ︸

temporal smoothness

, (8)

where the unary potential, with the associated weights

symbolized with α, is given by:

Θ
(
aτ |sτ ,pτ

)
= αfgHfg(sτ ) + αposeHpose(pτ ), (9)

and the spatial and temporal binary potentials, with

weights β and distance functions d, are given by:

Υ
(
aτ , a

′
τ |sτ , s

′
τ

)

= βcoldcol(sτ , s
′
τ ) + βhofdhof(sτ , s

′
τ ) + βµdµ(sτ , s

′
τ )

+ βmbdmb(sτ , s
′
τ ) + βedgededge(sτ , s

′
τ ), (10)

and

Γ
(
aτ , a

′
τ−1|sτ , s

′
τ−1

)
= βcoldcol(sτ , s

′
τ−1)

+ βhofdhof(sτ , s
′
τ−1) + βµdµ(sτ , s

′
τ−1), (11)

respectively. In Eqs. 10, and 11, βcoldcol(.) is the

cost of color features in HSI color space, βhofdhof(.)
and βµdµ(.) compute compatibility between histogram

of optical flow, and mean of optical flow magni-

tude, of two superpixels. Similarly, βmbdmb(.) and

βedgededge(.) quantify incompatibility between superpix-

els with prominent boundaries.

3.4. Action Prediction

Since localization requires predicting the class of an

action in every frame of the streaming video, we make

online prediction of actions in the tubes localized by

our approach. Our aim is to capture the sequential in-

formation present in a video. For training, we divide

the videos into 1 second temporal segments and train an

SVM on each segment 0 → 1 sec, 1 → 2 sec, . . . of all

the videos for that action. Given testing video segments,

we apply SVM classification for all the 1 second training

segments to each segment of the test video, and then use

dynamic programming to accumulate matching confi-

dences of the most similar sequence. At each step of the

dynamic programming, the system effectively searches

for the best matching segment that maximizes the SVM

confidences from past segments. This method is applied

independently for each action, and gives the confidence

for each action. This shares resemblance to Dynamic

Bag-Of-Words approach [26] who used RBF function

to compute distance between training and testing seg-

ments. Note that the performance of classification for

action localization depends on the quality of localized

tubes / cuboids, as the classifiers are only evaluated on

such video segments. This is in contrast to other action

prediction methods [26, 18, 14, 8] which do not spatially

localize the actions of interest.

4. Experiments

We evaluate our online action localization approach

on two challenging datasets: 1) JHMDB and 2) UCF

Sports. We provide details for the experimental setup

followed by the performance evaluation and analysis of

the proposed algorithm.

Features: For each frame of the testing video we ex-

tract superpixels using SLIC [1]. This is followed by

extraction of color features (HSI) for each superpixel in

the frame, as well as improved Dense Trajectory fea-

tures (iDTF: HOG, HOF, MBH, Traj) [34] within the
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Figure 3. This figure shows action prediction and localization performance as a function of observed video percentage. (a) shows

prediction accuracy for JHMDB and UCF Sports datasets; (b) and (c) show localization accuracy for JHMDB and UCF Sports,

respectively. Different curves show evaluations at different overlap thresholds: 10% (red), 30% (green) and 60% (pink).

streamed volumes of the video. Each superpixel descrip-

tor has a length of 512 and we set K = 20. The pose

detections are obtained using [40] and pose features us-

ing [12]. We build a vocabulary of 20 words for each

pose feature, and represent a pose with 180d vector.

Parameters and Distance Functions: We use Eu-

clidean distance for dµ, chi-squared distance for dhof and

dcol, and geodesic distance for dmb and dedge. We nor-

malize the scores used in CRF, therefore, we set absolute

values of all the parameters α and β to 1.

Evaluation Metrics: Since the online localization al-

gorithm generates tubes or cuboids with associated con-

fidences, the Receiver Operating Characteristic (ROC)

curves are computed at fixed overlap thresholds. Follow-

ing experimental setup of Lan et al. [17], we show ROC

@ 20% overlap. Furthermore, Area Under the Curve

(AUC) of ROC at various thresholds gives an overall

measure of performance.

Inspired from early action recognition and predic-

tion works [26], we also quantify the performance as

a function of Video Observation Percentage. For this

method, the localization and classification for testing

videos are sampled at different percentages of observed

video (0, 0.1, 0.2, . . . , 1). The ROC curve is computed at

multiple overlap thresholds, and AUC is computed un-

der ROC curves at different thresholds.

Baseline for Online Action Localization: We com-

pare with offline methods which use entire videos to lo-

calize actions, and also compute results for a compet-

itive online localization baseline for comparison. For

the proposed baseline, we exhaustively generate bound-

ing boxes with overlaps at multiple scales in each frame.

These boxes are connected with appearance similarity

costs. Over time, the boxes begin to merge into tubes.

For temporal window of δ = 5 frames (same as our

method), we evaluate each tube with classifiers for all

the actions using iDT features.

4.1. Datasets

JHMDB Dataset: The JHMDB [12] dataset is a sub-

set of the larger HMDB51 [15] dataset collected from

digitized movies and YouTube videos. It contains 928
videos consisting of 21 action classes. The dataset has

annotations for all the body joints and has recently been

used for offline action localization [7]. We use a code-

book size of 4000 to train SVMs using iDTF features.

UCF Sports Dataset: The UCF Sports [25, 28] dataset

consists of 150 videos with 10 action classes. We eval-

uated our approach using the methodology proposed by

Lan et al. [17], with a train-test split and intersection-

over-union criterion at an overlap of 20%. To train

SVMs, we use a codebook size of 1000 on iDTFs.

4.2. Results and Analysis

Action Prediction with Time: The prediction accuracy

is evaluated with respect to the percentage of video ob-

served. Fig. 3(a) shows the accuracy against time for

JHMDB and UCF Sports datasets. It is evident that pre-

dicting the class of an action based on partial observa-

tion is very challenging, and the accuracy of correctly

predicting the action increases as more information be-

comes available. An analysis of prediction accuracy per

action class is shown in Fig. 4 for (a) JHMDB and (b)

UCF Sports datasets. This figure shows that certain ac-

tions are more challenging to predict compared to oth-

ers. For example, the actions Jump and Swing Side are

the most challenging actions when compared to Golf

and Kicking. This is due to the difficulty in correctly

estimating pose under high human body articulation.

Since each action has its own predictability, we ana-

lyze how early we can predict each action. We arbitrar-

ily set the prediction accuracy to 30% and show the per-

centage of video observation required for each action of

JHMDB and UCF Sports datasets in Table 1. Although

we set a reasonable prediction target, certain actions do
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Figure 4. This figure shows per-action prediction accuracy as a function of observed video percentage for (a) JHMDB and (b) UCF

Sports datasets.

JHMDB

Actions Pullup Golf
Brush
Hair Push Clap Pour

Climb
Stairs Sit

Shoot
Bow Walk Run

Video (%) 14% 23% 25% 30% 31% 32% 33% 40% 41% 43% 45%

JHMDB

Actions
Shoot
Gun Stand

Shoot
Ball

Swing

Baseball Pick Wave
Kick
Ball Catch Throw Jump

Video (%) 48% 60% 70% 70% - - - - - -

UCF Sports

Actions Kicking Lifting Walking

Golf

Swing

Riding

Horse Run
Skate

Boarding

Swing

Bench Diving

Swing

Side

Video (%) 1% 1% 12% 16% 26% 26% 28% 31% 55% 67%

Table 1. This figure shows the the percentage of video observation required to achieve a prediction accuracy of 30%. Results in the

first two rows are from JHMDB, and the last row is from UCF Sports dataset. Actions with missing values indicate that they did

not reach a prediction accuracy of 30% until video completion.

not reach such prediction accuracy even until the com-

pletion of the video. This shows the challenging nature

of online action prediction and localization.

Action Localization with Time: To evaluate online

performance, we analyze how the localization perfor-

mance varies across time by computing accuracy as a

function of observed video percentage. Fig. 3(b-c)

shows the AUC against the percentage of observed video

for different overlap thresholds (10%−60%) for (b) JH-

MDB and (c) UCF Sports. We compute the AUC with

time in a cumulative manner such that the accuracy at

50% means localizing an action from start till one-half

of the video has been observed. This gives an insight

into how the overall localization performance varies as

a function of time or observed percentage in testing

videos. These graphs show that it is challenging to lo-

calize an action at the beginning of the video, since there

is not enough discriminative motion observed by the al-

gorithm to distinguish different actions. Furthermore,

our approach first learns an appearance model from pose

bounding boxes, which are improved and refined as time

progresses. This improves the superpixel-based appear-

ance confidence, which then improves the localization,

and stabilizes the AUC. The curves also show that the

AUC is inversely proportional to the overlap threshold.

There are two interesting observations that can be

made from these graphs. First, for the JHMDB dataset in

Fig. 3(b), the results improve initially, but then deterio-

rate in the middle, i.e. when the observation percentage

is around 60%. The reason is that most of the articu-

lation and motion happens in the middle of the video.

Thus, the segments in the middle are the most difficult

to localize, resulting in drop of performance. Second,

the curves for UCF Sports in Fig. 3(c) depict a rather

unexpected behavior in the beginning, where localiza-

tion improves and then suddenly worsens at around 15%
observation percentage. On closer inspection, we found

that this is due to rapid motion in some of the actions,

such as diving and swinging (side view). For these ac-

tions, the initial localization is correct when the actor is

stationary, but both actions have very rapid motion in

the beginning, which violates the continuity constraints

applicable to many other actions. This results in a drop

in performance, and since this effect accumulates as the

percentage of video observation increases, the online al-

gorithm never attains the peak again for many overlap

thresholds despite observing the entire video.

Action Localization with Offline Methods: We also

evaluate the performance of our method against existing

offline state-of-the-art action localization methods. Fig.
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Figure 5. This figure shows localization results of proposed method along with existing methods on JHMDB and UCF Sports

datasets. (a) shows AUC curves for JHMDB, while (b) and (c) show AUC and ROC @ 20%, respectively, for UCF Sports dataset.

The curves for the proposed method is shown in red, while other offline localization methods including Lan et al. [17], Tian et al.

[29], Wang et al. [35], Gemert et al. [32], Jain et al. [10], Jain et al. [11], and Gkioxari et al. [7] are shown with different colors,

with baseline for online localization in gray.

5(a) shows the results of the proposed method, on JH-

MDB dataset, in red, and that of [7] in blue. The differ-

ence in performance is attributed to the online vs. offline

nature of the methods, as well as the use of CNN fea-

tures by [7]. Furthermore, we outperform a competitive

online localization baseline shown in gray. A quantita-

tive comparison on UCF Sports using AUC and ROC @

20% is shown in Fig. 5(b) and (c) respectively.

Pose Refinement: Pose-based foreground likelihood re-

fines poses in an iterative manner using spatio-temporal

smoothness constraints. Our qualitative results in Fig. 6

show the improvement in pose joint locations.

Action Segments: Since we use superpixel segmenta-

tion to represent the foreground actor, our approach out-

puts action segments. Our qualitative results in Fig. 7

show the fine contour of each actor (yellow) along with

the ground truth (green). Using superpixels and CRF, we

are able to capture the shape deformation of the actors.

5. Conclusion

In this paper, we introduced a new prediction problem

of online action localization where the goal is to simulta-

neously localize and predict actions in an online manner.

We presented an approach which uses representations at

B
e
fo
re

A
ft
e
r

(a) (b)

Figure 6. This figure shows qualitative results for pose refine-

ment. Results show a comparison of raw poses (top row) and

refined poses (bottom row) for (a) Kicking and (b) Walking.

different granularities - from high-level poses for initial-

ization, mid-level features for generating action tubes,

and low-level features such as iDTF for action predic-

tion. We also refine pose estimation in a small batch

of frames using spatio-temporal constraints. The local-

ized tubes are obtained using CRF, and classification

confidences come from dynamic programming on SVM

scores. The intermediate results and ablation study indi-

cate that such an approach is capable of addressing this

difficult problem, and performing on par with some of

the recent offline action localization methods. For future

research, we plan to leverage training data to perform

localization and prediction simultaneously by learning

costs for superpixel merging for different actions.
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Figure 7. This figure shows qualitative results of the proposed

approach, where each action segment is shown with yellow

contour and ground truth with green bounding box. Results

in the top three rows are from JHMDB, and the bottom three

rows are from UCF Sports datasets.

2655



References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. Slic superpixels compared to state-of-the-

art superpixel methods. IEEE TPAMI, 34(11), 2012. 5

[2] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu,

A. Michaux, Y. Lin, S. Dickinson, J. M. Siskind, and

S. Wang. Recognize human activities from partially ob-

served videos. In CVPR, 2013. 2

[3] W. Chen, C. Xiong, R. Xu, and J. J. Corso. Actionness

ranking with lattice conditional ordinal random fields. In

CVPR, 2014. 3

[4] A. Dehghan, H. Idrees, and M. Shah. Improving seman-

tic concept detection through the dictionary of visually-

distinct elements. In CVPR, 2014. 1

[5] C. Desai and D. Ramanan. Detecting actions, poses, and

objects with relational phraselets. In ECCV. 2012. 2

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and

D. Ramanan. Object detection with discriminatively

trained part-based models. IEEE TPAMI, 32(9), 2010.

2, 3

[7] G. Gkioxari and J. Malik. Finding action tubes. In CVPR.

2015. 3, 6, 8

[8] M. Hoai and F. De la Torre. Max-margin early event

detectors. IJCV, 107(2), 2014. 2, 5

[9] Y. Hu, L. Cao, F. Lv, S. Yan, Y. Gong, and T. S. Huang.

Action detection in complex scenes with spatial and tem-

poral ambiguities. In ICCV, 2009. 2

[10] M. Jain, J. Gemert, H. Jegou, P. Bouthemy, and C. Snoek.

Action localization with tubelets from motion. In CVPR,

2014. 1, 3, 8

[11] M. Jain, J. C. van Gemert, and C. G. Snoek. What do

15,000 object categories tell us about classifying and lo-

calizing actions? In CVPR, 2015. 2, 8

[12] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black.

Towards understanding action recognition. In ICCV,

2013. 6

[13] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in

crowded videos. In ICCV, 2007. 2

[14] Y. Kong, D. Kit, and Y. Fu. A discriminative model with

multiple temporal scales for action prediction. In ECCV.

2014. 1, 2, 5

[15] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and

T. Serre. Hmdb: a large video database for human mo-

tion recognition. In ICCV, 2011. 6

[16] T. Lan, T.-C. Chen, and S. Savarese. A hierarchical rep-

resentation for future action prediction. In ECCV. 2014.

1, 2

[17] T. Lan, Y. Wang, and G. Mori. Discriminative figure-

centric models for joint action localization and recogni-

tion. In ICCV, 2011. 1, 2, 6, 8

[18] K. Li and Y. Fu. Prediction of human activity by discov-

ering temporal sequence patterns. IEEE TPAMI, 36(8),

2014. 1, 2, 5

[19] S. Ma, J. Zhang, N. Ikizler-Cinbis, and S. Sclaroff. Ac-

tion recognition and localization by hierarchical space-

time segments. In ICCV, 2013. 2

[20] S. Majiwa, L. Bourdev, and J. Malik. Action recognition

from a distributed representation of pose and appearance.

In CVPR, 2011. 3

[21] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-

temporal object detection proposals. In ECCV. 2014. 1,

3

[22] D. Oneata, J. Verbeek, and C. Schmid. Efficient action

localization with approximately normalized fisher vec-

tors. In CVPR, 2014. 1, 2

[23] H. Pirsiavash, C. Vondrick, and A. Torralba. Assessing

the quality of actions. In ECCV. 2014. 3

[24] M. Raptis and L. Sigal. Poselet key-framing: A model

for human activity recognition. In CVPR, 2013. 3

[25] M. Rodriguez, A. Javed, and M. Shah. Action mach:

a spatio-temporal maximum average correlation height

filter for action recognition. In CVPR, 2008. 6

[26] M. Ryoo. Human activity prediction: Early recognition

of ongoing activities from streaming videos. In ICCV,

2011. 1, 2, 5, 6

[27] K. Soomro, H. Idrees, and M. Shah. Action localization

in videos through context walk. In ICCV, 2015. 1

[28] K. Soomro and A. R. Zamir. Action recognition in real-

istic sports videos. In Computer Vision in Sports, pages

181–208. Springer, 2014. 6

[29] Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal

deformable part models for action detection. In CVPR,

2013. 1, 3, 8

[30] D. Tran and J. Yuan. Max-margin structured output re-

gression for spatio-temporal action localization. In NIPS,

2012. 2

[31] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. IJCV,

104(2), 2013. 3

[32] J. C. van Gemert, M. Jain, E. Gati, and C. G. Snoek. Apt:

Action localization psroposals from dense trajectories. In

BMVC, volume 2, page 4, 2015. 8

[33] C. Wang, Y. Wang, and A. L. Yuille. An approach to

pose-based action recognition. In CVPR, 2013. 3

[34] H. Wang and C. Schmid. Action recognition with im-

proved trajectories. In ICCV, 2013. 2, 3, 5

[35] L. Wang, Y. Qiao, and X. Tang. Video action detection

with relational dynamic-poselets. In ECCV. 2014. 1, 2,

3, 8

[36] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. arXiv

preprint arXiv:1505.04868, 2015. 2

[37] B. Xiaohan Nie, C. Xiong, and S.-C. Zhu. Joint action

recognition and pose estimation from video. In CVPR,

2015. 3

[38] Y. Xie, H. Chang, Z. Li, L. Liang, X. Chen, and D. Zhao.

A unified framework for locating and recognizing human

actions. In CVPR, 2011. 2

2656



[39] R. Xu, P. Agarwal, S. Kumar, V. N. Krovi, and J. J. Corso.

Combining skeletal pose with local motion for human ac-

tivity recognition. In Articulated Motion and Deformable

Objects. 2012. 3

[40] Y. Yang and D. Ramanan. Articulated pose estimation

with flexible mixtures-of-parts. In CVPR, 2011. 3, 4, 6

[41] G. Yu, N. A. Goussies, J. Yuan, and Z. Liu. Fast ac-

tion detection via discriminative random forest voting

and top-k subvolume search. IEEE Transactions on Mul-

timedia, 13(3), 2011. 1, 2

[42] G. Yu and J. Yuan. Fast action proposals for human ac-

tion detection and search. In CVPR, 2015. 3

[43] G. Yu, J. Yuan, and Z. Liu. Predicting human activi-

ties using spatio-temporal structure of interest points. In

ACM MM, 2012. 2

[44] J. Yuan, Z. Liu, and Y. Wu. Discriminative video pattern

search for efficient action detection. IEEE TPAMI, 33(9),

2011. 2

[45] X. Zhao, X. Li, C. Pang, X. Zhu, and Q. Z. Sheng. Online

human gesture recognition from motion data streams. In

ACM MM, 2013. 2

[46] Z. Zhou, F. Shi, and W. Wu. Learning spatial and tempo-

ral extents of human actions for action detection. IEEE

Transactions on Multimedia, 17(4), 2015. 2

2657


