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Abstract

In this paper, we present a novel computational puzzle

solver for square-piece image jigsaw puzzles with no prior

information such as piece orientation, anchor pieces or re-

sulting dimension of the puzzle. By “piece” we mean a

square dxd block of pixels, where we investigate pieces as

small as 7x7 pixels. To reconstruct such challenging puz-

zles, we aim to search for piece configurations which max-

imize the size of consensus (i.e. grid or loop) configura-

tions which represent a geometric consensus or agreement

among pieces. Pieces are considered for addition to the ex-

isting assemblies if these pieces increase the size of the con-

sensus configurations. In contrast to previous puzzle solvers

which goal for assemblies maximizing compatibility mea-

sures between all pairs of pieces and thus depend heavily

on the pairwise compatibility measure used, our new ap-

proach reduces the dependency on the pairwise compati-

bility measures which become increasingly uninformative

at small scales and instead exploits geometric agreement

among pieces. Our contribution also includes an improved

pairwise compatibility measure which exploits directional

derivative information along adjoining boundaries of the

pieces. For the challenging unknown orientation piece puz-

zles where the size of pieces is small, we reduce assembly

error by up to 75% compared with previous algorithms for

standard datasets.

1. Introduction

Recent advances in computer science and engineering

led to computational algorithms to solve digitized jigsaw

puzzles including images [4], broken ancient articles [22,

16], documents [26], photographs [13] and separated, frac-

tured bones [14]. The computational puzzle solver has been

an important tool to assist the time-consuming assembly of

otherwise infeasible jigsaw puzzles. Many state of the art

algorithms perform beyond human ability and thus play es-

sential roles in discovering unrevealed objects from many

fragments.

Introduced by Freeman et al. [8], the task of solving

square jigsaw puzzles has been a challenge to many re-

searchers. Many previous works [1, 4, 25, 18, 9, 7, 20,

23, 17] tackle non-overlapping square piece image jigsaw

puzzles and notable progress has been made. In addition,

researchers have demonstrated the utility of these methods

in applications such as seamless image editing via a bag

of patches [3], reconstructing a new image from a bag of

patches for image retrieval and recognition [12], and match-

ing templates [5].

In this paper, we propose a solver for challenging square

piece image jigsaw puzzles where no prior information –

piece orientation, anchor pieces (ground truth configura-

tions), and dimension of resulting puzzles (i.e number of

squares in the horizontal and vertical directions) are all un-

known. Furthermore, we also attempt to assemble puzzles

with small pieces, 14 by 14, 10 by 10 and 7 by 7 pixels,

in contrast to the more common 28 by 28 pixel benchmark.

When the size of a piece becomes smaller, the information

in the pieces is reduced so that the predefined compatibil-

ity measure is no longer reliable enough to configure the

puzzles correctly. Thus, we must develop smarter and more

robust strategies to assemble small size pieces successfully.

For assembling these demanding puzzles, we choose

a framework that estimates pairwise matching and subse-

quently aligns these matched pieces by making use of all

the pairwise costs involved in the aligned sets. Since we are

using this framework, our puzzle solver is capable of simul-

taneously reconstructing multiple puzzles, whose pieces are

mixed together, with no prior information. Our solver also

handles missing fragments, which is a common situation in

archaeological applications [24]. The most challenging as-

pect of this puzzle reconstruction strategy is that the consec-

utive pairwise matching should not include false pairwise

matches. Even a single initial false pairwise match may

lead to a entire incorrect configuration.

To overcome these issues, we contribute two crucial

steps in the matching-based assembly algorithm: an as-

sembly strategy and a pairwise compatibility measure. For

assembling pieces, we consider that the pairwise compat-

ibility measure could be noisy when the pieces are small,

the pieces are from textureless regions, or the boundaries of

pieces are aligned with boundaries of man-made structures.
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Thus, we exploit an idea that an assembly by multiple mod-

est bonds is more reliable than an assembly by a strong sin-

gle bond which is found by the predefined pairwise compat-

ibility measure. From this idea, we propose a new objective

for assembling puzzles, specifically maximizing consensus

(grid or loop) configurations. In order to search for con-

figurations which maximize consensus, we add a new piece

to the existing grid configurations if the addition increases

the size of grid configurations regardless of pairwise com-

patibility measure. In addition, we also improve the pair-

wise compatibility measure by adding derivative informa-

tion along the boundary in the piece to the pairwise compat-

ibility measure. Our proposed algorithm reduces assembly

error by up to 75% compared with previous algorithms for

the challenging unknown orientation puzzles from standard

datasets where the size of pieces is small.

1.1. Related Works

Although Demaine et al. [6] discovered that puzzle as-

sembly is an NP-hard problem, many published algorithms

incrementally improved the performance with novel ideas.

For non-overlapping square piece jigsaw puzzles, many re-

searchers have studied solvers to enhance reconstruction

accuracy and reduce prior information needed. Earlier

works [1, 4, 25, 18, 7, 20] solved image puzzles where the

orientation of the puzzle pieces is known, and additional

information is given such as the dimensions of resulting

puzzles. The positions of the puzzle pieces are the only

unknowns. If the dimensions of the resulting puzzle are

known, the puzzle problem can be formulated as recover-

ing the optimal 2D permutation of labels where the labels

are the IDs of the pieces. Implicitly or explicitly, their

objectives are to maximize a predefined pairwise compat-

ibility measure between neighbor pieces and various opti-

mization methods were applied such as a belief propaga-

tion [4], particle filtering [25], greedy algorithms [18], con-

strained quadratic function minimization [9] and genetic al-

gorithms [20]. Over the years these methods substantially

enhanced reconstruction accuracy, increased the number of

puzzle pieces that the solver can perfectly assemble, and

reduced computational time. However, when their compati-

bility measures are not reliable enough, their objective func-

tions lead to false configurations.

Gallagher [9] introduced a new type of image puzzle

where the orientation of the piece is also unknown with

no prior information such as a resulting puzzle dimen-

sion. Since the dimension of the puzzle is unknown, Gal-

lagher formulated the puzzle problem as optimally linking

the pieces without geometric conflicts such as piece over-

laps and solved it with Kruskal’s algorithm [11]. Gallagher

also proposed a powerful pairwise compatibility measure,

Mahalanobis Gradient Compatibility (MGC) which penal-

izes changes across the pieces when they are more than ex-

pected and normalizes them with sample covariance esti-

mated by pixels around the edge of the piece. Paikin et

al. [17] also proposed a similar greedy assembly strategy

with a more careful initial configuration. These assembly

strategies [9, 17] are also based on a strong belief on the

possibly incorrect pairwise compatibility measure. They ac-

cept a puzzle configuration as long as there is a single strong

bond even though the other sides of these pieces are incom-

patible with their neighbors. Thus, when false pair matches

return high compatibility values or true pair matching re-

turns low compatibility value, their assembly strategies fail

to build true assemblies.

Son et al. [23] also proposed a solver for unknown ori-

entation piece puzzles with no prior knowledge. They dis-

covered that if pairwise compatible pieces form a loop, the

pairwise matches are more reliable than for pieces that do

not form a loop. Based on this idea, they assembled puzzles

by recursively building loops of loops (e.g. 4 overlapping

2x2 loops into a 3x3 wide loop). Son et al. [23] also relies

on a predefined compatibility measure which may be possi-

bly incorrect. They search for configurations where a piece

is compatible with “all” of its neighbors. If the pairwise

compatibility measure misses even a single true neighbor,

the algorithm loses many true configurations and fails to

find true assemblies.

Different from the previous algorithms, our assembly

strategy depends less on the predefined pairwise compatibil-

ity measure used. When a pairwise compatibility measure

returns high values on false pairs, we do not accept these

pairs unless these pairs agree with the other neighbor pieces.

Conversely, when true pairs output low compatibility mea-

sure values, we accept these configurations if these pairs

receive agreements from the other neighbors pieces. By

exploiting consensus information from the neighbors, our

proposed algorithm is robust to noisy compatibility mea-

sure values which occur in many challenging puzzles with

small size pieces and/or non-informative pieces.

“Consensus” information has been utilized in many

fields. Robust estimation, exploiting consensus of the mea-

surements such as RANSAC has presented impressive im-

provement on many computer vision applications [10, 19].

The robust estimation has proven its robustness for cam-

era geometry estimation [21]. The consensus information

was used in low-level vision [2]. Chakrabarti et al. intro-

duced a multi-scale framework to accumulate information

from all the scales and found a consensus to reject the out-

lier information. The consensus concept, “Best Buddy” was

introduced for solving the jigsaw puzzles by Pomeranz et

al. [18]. They discovered that if both pieces agree that they

are the best neighbors, the matching is more reliable.

2The assemblies in the bag of consensus are always square, and N by

N consensus configuration means that the assembly is square with side

dimension N. We also refer to the number N as the size of the configuration.
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Figure 1. An exemplary single iteration of increasing consen-

sus configurations. The squares represent pieces and the numbers

their unique IDs. From the bag of consensus configurations, 1© we

search for incomplete 3 by 3 2consensus from three of 2 by 2 con-

sensuses and 2© find pairwise matching candidates to complete

this 3 by 3 consensus. Since top of piece 7 matches with bottom

of pieces 9, 90 and 20, the right side of piece 2 to the left side of

those pieces are considered as new pairwise matching candidates.

Likewise, pairwise matches with right side of piece ID 2 could

propose more pairwise matching candidates with piece ID 7. 3© If

the pairwise matching completes at least two of 2 by 2 consensus

configurations, we accept the pairwise matching. If the pairwise

matching is true, this addition sometimes generates 2 or more ad-

ditional bigger size of consensus configurations. In this example,

two of 3 by 3 consensus configurations are generated additionally.

4© If the candidate match conflicts with existing larger consensus

configurations (in this example, 3 by 3 and 4 by 4 configurations),

we reject the pairwise match. Otherwise, 5© we hold off the deci-

sion to the next iteration. We note that the decision is made only

by existing consensus configurations in the bag, independent of

the pairwise compatibility strength.

2. Puzzle Assembly by Growing Consensus

Prior works [4, 18, 25, 7, 9, 20, 23] present methods to

search for assemblies based on predefined pairwise com-

patibility measures. These algorithms perform accurately

on puzzles where the pairwise compatibility measure ex-

actly identifies which pieces are true neighbors. If the pair-

wise compatibility measure is inaccurate the algorithms of-

ten fail. These cases happen frequently when the size of

the pieces is small, the textures on the pieces have no dis-

tinguishing characteristics, or the boundaries of the pieces

are aligned with edges of man-made structures. Here, we

propose a new objective for puzzle assembly – maximiz-

ing consensus configurations. In contrast to previous algo-

rithms, we attempt to find configurations which maximize

a geometric consensus between pieces. i.e. We believe har-

monious (non-conflicting and supporting each other) piece

configurations are more important than a single bond be-

tween two pieces defined by the pairwise compatibility

measure. With the proposed objective, we reduce the de-

pendency on the possibly erroneous pairwise compatibility

measure and instead exploit the geometric information of

existing piece configurations. In the case where the compat-

ibility measure fails to distinguish the true neighbor pieces,

we successfully assemble the puzzle with help of geometric

consensus from neighbor pieces.

Outline. From a predefined pairwise compatibility mea-

sure, we initially generate a bag of consensus configurations

(Section 2.1). Iteratively, we propose new pairwise match-

ing candidates which possibly increase the size of the con-

sensus bag (Section 2.2), and determine if we accept the

candidate or not (Section 2.3). See Figure 1 and Algo-

rithm 1 for detailed illustration.

2.1. Initialization

We first search for initial pairwise matching candidates.

From the pairwise compatibility measure, dissimilarity val-

ues are calculated for all combinations of two pieces. For

puzzles with unknown piece orientation, there exist 16 dif-

ferent relative poses between two pieces. When orientation

is known, there exist 4 different configurations between two

pieces. For each side of the pieces, we divide the dissimi-

larity values with other pieces by the second smallest dis-

similarity value to output relative dissimilarity as proposed

by Gallagher [9]. If a pair presents the relative dissimilar-

ity value smaller than a threshold (1.07), we consider it as a

pairwise matching. Each side of a piece is allowed to have

a maximum of 10 candidate matches.

From the pairwise matching candidates, we generate a

bag of consensus assemblies. Following Son et al. [23], we

discover cycles (loops) of four pairwise matches resulting in

assemblies of 2 by 2 pieces. Once we find pairwise match-

ing of 2 by 2 super pieces, we perform the same process

as before to generate 3 by 3 super pieces from four 2 by 2

super pieces. More generally, with this process we generate

N+1 by N+1 super pieces from four N by N super pieces.

We iteratively increase the size of super pieces, one row and

one column at a time, until we find the maximum size super

pieces for the puzzle. We refer the entire set of generated

super piece from size 2 to maximum as “a bag of consensus

configurations”. As noted by Son et al. [23], as the con-

sensus configurations become larger, the correctness of the

assemblies grows.

2.2. Proposing New Pair Matching Candidates

In this step, we discover new pairwise matching can-

didates which are not found by the pairwise compatibility

measure in the initial step. The new pair matching candidate

should possibly increase size of consensus configurations in

the bag. For this purpose, we examine from the largest to

the smallest consensus configurations in the bag, and search
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Algorithm 1: Growing consensus

- Initialize a Bag of Consensus Configurations (BCC)

while Incomplete consensus exists in BCC do
- Find the largest and unvisited incomplete

consensuses from 3 consensus config. in BCC

- Find new candidate pairwise matches to

complete the incomplete consensuses

for all the new candidate pairwise matches do
- Determine Accept, Reject or TBD

- Accept: Construct new consensus

configurations and add them to BCC

- Reject : Discard the pairwise matches

- TBD : Defer the decision to next iteration
end

end

return BCC

for incomplete consensus from three of same size (order) of

consensus configurations in the bag. When three of N by

N super pieces are matched well but only one N by N su-

per piece is missing so that they cannot form a N+1 by N+1

consensus, we call them an incomplete consensus. If a sin-

gle pairwise matching completes the incomplete consensus

as exemplified in Figure 1, we count it as a new pairwise

matching candidate. We do not accept the new pairwise

matching candidate now since the matching received insuf-

ficient agreement from its neighbor pieces.

2.3. Rejecting or Accepting

For the each new pairwise matching candidate, we

take action of rejection, acceptance, or To Be Determined

(TBD). A pairwise matching candidate is rejected if the

pairwise matching is geometrically inconsistent with ex-

isting consensus configurations whose size is greater than

size of consensus configurations that are used for generat-

ing the new pairwise matching candidates. We accept a pair-

wise matching candidate as a true matching if the pairwise

matching candidate generates 2 or more new consensus con-

figurations. Otherwise, we consider the pairwise matching

candidates as TBD which will be determined in the next it-

eration. That is, if the new pairwise matching candidates

neither conflict with current configurations nor contribute

increase size of consensus, we leave the decision to the next

iteration. We note that the decision is made only by the cur-

rent consensus configurations in the bag and is independent

of pairwise compatibility measure.

2.4. Merging, Trimming and Filling

We merge consensus configurations in the bag based on

the overlapped pieces. If two configurations conflict we re-

move the smaller one. If they are the same size average pair-

wise compatibility measures in the consensuses are used as

a tiebreaker. The resulting assemblies from these steps are

not guaranteed to be a rectangular shape, since the proposed

algorithm is a matching-based algorithm whose results are

free-formed. We adopt the trimming and filling steps to

make the result rectangular from Gallagher [9].

3. Validations of Maximizing Consensus

To validate our new proposed assembly algorithm, we

show that a number of positive neighbor matches (consen-

sus from neighbor pieces) is more important than a sin-

gle strong positive match for a correct piece configuration.

When a compatibility measure between a piece of interest

and a adjacent piece is smaller than a threshold, we refer

that the neighbor as positive and otherwise as negative.

We first calculate a probability that a piece configuration

is correct where ǫ number of the neighbors are negatives and

the others are positives. Let us define events,

Mp: A pairwise piece configuration is positive.

Mn: A pairwise piece configuration is negative. (1)

Mt: A pairwise piece configuration is true.

A true pairwise piece configuration means a ground truth

configuration that we goal for. Let us assume that 1)

all the pairwise piece configurations are independent and

2) share the same conditional probabilities, P (Mt|Mn),
P (Mt|Mp). When we find a piece configuration which has

ǫ number of negative neighbors and 4−ǫ number of positive

neighbors, the probability that this configuration is true is,

P (Mt|Mn)
ǫP (Mt|Mp)

(4−ǫ). (2)

Now, we summarize the error of pairwise matching can-

didates from the initial step of our algorithm by two metrics,

precision β (ratio of true positives to positives) and recall α

(ratio of true positives to trues). Let’s set φ as a number

of positive pairs and ν as a number of negative pairs. Then,

conditional probabilities are estimated by counting numbers

of false negative matches and true positive matches,

P (Mt|Mn) = β
φ

ν

1− α

α
, P (Mt|Mp) = β. (3)

Thus, the probability in the Equation 2 becomes

P (Mt|Mn)
ǫP (Mt|Mp)

(4−ǫ) = β4(
φ

ν
)ǫ(

1− α

α
)ǫ. (4)

We find 10 positive pairwise matches maximally for each

side of the pieces so that the number of positive pairs are

φ = O(#pieces), (5)

where #pieces represents a number of puzzle pieces. And,

the other possible pairwise piece configurations are all neg-

ative so that the number of negative pairs are

ν = O(#pieces2). (6)
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Figure 2. Importance of derivative information for defining dis-

similarity between pieces. Defining dissimilarity between two

pieces can be thought as defining dissimilarity between two dis-

cretized curves where the two curves represent the values along

the boundaries of the two pieces. Prior works define L2 norm as

dissimilarity of two curves. In (a), two curves are more dissimi-

lar than two curves in (b). But, the L2 norm of the two curves in

(b) is greater than that in (a) which is not desired. The L2 norm

of the two curves does not exactly represent the dissimilarity be-

tween two curves. By considering the derivatives in a direction

along the boundary, we can compensate the erroneous measure.

The value of the L2 norm of the derivative curve error in (a) is

greater than that in (b) which is correct. For this reason, we incor-

porate derivative information along the adjoining boundaries for

defining pairwise compatibility measure.

With the fixed and moderate α and β ranging from

0.1∼0.9, as a piece configuration includes more negative

neighbors, the piece configuration drastically reduces its

probability to be a correct configuration due to the term

(φ
ν
)ǫ in the Equation 4.

If we think that one of the 4 neighbors is a strong posi-

tive i.e. P (Mt|Mp) ≈ 1 ,and the others are negatives, the

probability in the Equation 2 becomes

P (Mt|Mn)
3P (Mt|Mp) = β3(

φ

ν
)3(

1− α

α
)3β′, (7)

where β′ is almost 1. Because this probability is already

very small due to the term (φ
ν
)3, the β′ does not strongly af-

fect the probability. This represents a single neighbor bond

does not heavily increase the probability to be a correct con-

figuration.

4. Pairwise Compatibility Measure

For measuring compatibility between two pieces, we cal-

culate the dissimilarity between adjoining boundary pixel

values of the two pieces. Our pairwise compatibility mea-

sure is constructed by two ideas. We first consider pixel

intensity changes crossing the border between two pieces.

If the changes are greater or smaller than expected, we pe-

nalize it. This is similar to Mahalanobis Gradient Compati-

bility (MGC) by Gallagher [9] but we estimate the expected

changes more accurately than is done in MGC. Secondly,

we also incorporate directional derivative information along

the adjoining boundaries of the pieces for defining the pair-

wise compatibility measure. If the directional derivative

changes across the pieces are greater or smaller than ex-

pected, we also penalize it. The proposed pairwise compat-

ibility measure is robust to the illumination changes on the

boundary pixels that result in different offset levels because

the derivative information is invariant to offset of pixel val-

ues as explained in Figure 2.

Our proposed pairwise compatibility measure of a piece

xi on the left side of xj consists of four terms,

CLR(xi, xj) =DLR(xi, xj) +DRL(xi, xj)

+D′

LR(xi, xj) +D′

RL(xi, xj). (8)

The first two terms penalize larger or smaller changes of the

pixel value across the two pieces than expected. When the

size of piece is P ,

DLR(xi, xj) =

P∑

p=1

(Λij
LR(p)− E

ij
LR(p))V

−1
iL (Λij

LR(p)− E
ij
LR(p))

T , (9)

where,

Λij
LR(p) = xj(p, 1)− xi(p, P ), (10)

E
ij
LR(p) =

1

2
(xi(p, P )− xi(p, P − 1) + xj(p, 2)− xj(p, 1)). (11)

xi(k1, k2) is a 3 dimensional vector representing red, green

and blue pixel intensities at the position (k1, k2) in the

puzzle piece i. Λij
LR(p) is a pixel intensity change across

the boundary of the two pieces and E
ij
LR(p) is a expected

change across the boundary of the two pieces. We normal-

ize the changes with the sample covariance ViL calculated

from samples, {xi(p, P ) − xi(p, P − 1))|p = 1, 2, . . . P}.

DRL(xi, xj) is calculated by the same way.

D′

LR(xi, xj) is calculated with the similar manner.

The only difference is that we substitute the pixel values

xi(k1, k2) in the Equations 9, 10 and 11 with directional

derivative of pixel values along the boundary of the piece,

δi(k1, k2) = xi(k1, k2)− xi(k1− 1, k2). (12)

And, the sample variance ViL for D′

LR(xi, xj) is calculated

from samples, {δi(p, P )− δi(p, P − 1))|p = 2, . . . P}.

MGC assumes that the expected change across the piece

boundaries is an average difference between the final two

column in xi whereas we estimate the expected changes as

an average of local pixel changes in both pieces. Our ex-

pected changes are more accurate than those used in MGC

especially when the size of the piece is large.
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Figure 3. Pairwise compatibility measure performance.

5. Experiments

We performed experiments with many standard image

datasets from Cho et al. [4] (MIT dataset), Olmos et al. [15]

(Mcgill dataset) and Pomeranz et al. [18] (Pomeranz 805,

2360 and 3300 dataset). The MIT, Mcgill and Pomeranz

805 dataset each include 20 images and the Pomeranz 2360

and 3300 dataset each contain 3 large images.

5.1. Pairwise Compatibility Measure Performance

For unknown orientation puzzles, a strict accuracy met-

ric is inappropriate to compare the performance of pairwise

compatibility measures because the number of true nega-

tives is far larger than the number of positives and false

negatives. Chance is vanishingly small and thus accuracy

tends to be small in absolute terms. Thus, the accuracy met-

ric does not distinctly show the performance difference be-

tween the algorithms. One approach to evaluate the perfor-

mance of pairwise compatibility measure is precision and

recall [1].

We used the MIT dataset and generate challenging un-

known orientation puzzles where the piece size is P=28

pixels and the number of pieces is K=432 to evaluate per-

formance of compatibility measures. In Figure 3 (a), pre-

cision and recall curves for MGC [9], Sum of Squared

Distance(SSD) [4] and the proposed pairwise compatibil-

ity measure are presented. In Figure 3 (b), We also calcu-

late precision and recall values when each side of a piece

matches with a single piece with lowest dissimilarity value.

Our method reduces precision and recall error by 20%
compared to MGC. Furthermore, we performed component

analysis of our proposed pairwise compatibility measure

with the same setup. Figure 4 shows that our method per-

forms better than the MGC [9] without derivative informa-

tion. And, with the derivative information, the performance

is even more enhanced.

5.2. Unknown Orientation Piece Puzzles

We compared our algorithm with previous works [9, 23,

17] for solving the most challenging unknown orientation

piece puzzles. For evaluation, we utilized metrics from

Cho et al. [4] and Gallagher [9]. “Direct Comparison”

measures a percentage of pieces whose absolute position
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Figure 4. Component analysis of compatibility measure.

Direct Neighbor Largest Perfect

Gallagher [9] 82.2% 90.4% 88.9% 9

Son et al. [23] 94.7% 94.9% 94.6% 12

Paikin et al. [17] 95.4% 95.4% - -

Proposed 95.9% 95.6% 95.9% 12

Table 1. Reconstruction performance on unknown orientation

piece puzzles from the MIT dataset.

Mcgill dataset(K=540, P=28)

Direct Neighbor Largest Perfect

Gallagher [9] 72.0% 73.3% 72.8% 7

Son et al. [23] 89.1% 92.5% 89.0% 10

Proposed 91.4% 94.5% 91.4% 11

Pomeranz dataset(K=805, P=28)

Direct Neighbor Largest Perfect

Gallagher [9] 83.2% 85.5% 83.5% 5

Son et al. [23] 86.4% 88.8% 86.3% 10

Proposed 88.7% 93.3% 88.7% 9

Pomeranz dataset(K=2360, P=28)

Direct Neighbor Largest Perfect

Gallagher [9] 60.5% 62.5% 60.8% 0

Son et al. [23] 94.0% 95.3% 94.0% 0

Proposed 94.1% 95.2% 94.0% 1

Pomeranz dataset(K=3300, P=28)

Direct Neighbor Largest Perfect

Gallagher [9] 80.3% 81.9% 80.2% 1

Son et al. [23] 89.9% 93.4% 89.9% 1

Proposed 89.5% 95.3% 89.5% 1

Table 2. Reconstruction performance on unknown orientation

piece puzzles from the Mcgill and the Pomeranz dataset.

and orientation are both correct. And if “Direct Compari-

son” is 100%, ”Perfect Reconstruction” is 1 and otherwise

0. “Neighbor Comparison” is a percentage of true positive

pairwise matches. “Largest Component” is the area of the

largest group of correctly assembly parts.

MIT dataset: We first verified that the proposed as-

sembly algorithm increases the size of consensus config-

urations. Figure 6 shows largest size (i.e. order or dimen-

sion) of consensus assemblies for each image puzzle (un-

known orientation piece puzzle, P=28, K=432) from MIT

dataset before and after our proposed assembly algorithm.

We observed that our assembly algorithm increases the size

of largest consensus assemblies and reaches the maximum

possible size of consensus assembly for most of image puz-

zles.

Figure 5 qualitatively compares assembly results on un-

known orientation piece puzzles from previous works and
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Unknown  

orientation pieces 

Ground truth Gallagher 

Direct: 79.2% 

Son et al. 

Direct: 96.3% 

Proposed 

Direct: 100% 

Unknown  

orientation pieces 

Ground truth Gallagher 

Direct: 0% 

Son et al. 

Direct: 84.3% 

Proposed 

Direct: 96.1% 

Figure 5. Qualitative reconstruction performance on unknown orientation piece puzzles. The prior algorithms return false configura-

tions in the red rectangle regions whereas our proposed algorithm correctly assembles those challenging pieces. Refer to the supplemental

material for more qualitative results. https://sites.google.com/site/kilhoson/puzzle2d_mc
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Figure 6. Analysis of proposed assembly algorithm.

our algorithm. The size of each piece is P=28 pixels and

the number of pieces in a puzzle is K=432. These images in

Figure 5 are very challenging images from the MIT dataset

due to lack of texture or man-made structures aligned with

boundary of puzzle pieces. The other algorithms [9, 23]

struggled to correctly assemble the puzzles (See the red

rectangles in Figure 5) whereas our algorithm successfully

assembled the demanding image puzzles. We note that our

result of the second image puzzle in Figure 5 is visually

perfect but the direct comparison is not 100% due to the

saturated pieces where all the pixel values are maximum

so that no information is included in the pieces. We per-

formed quantitative analysis with the same setup (Table 1).

Our method reduces reconstruction error from the prior al-

gorithms. We note that the MIT dataset includes 5 images

where parts of the images are saturated such as the second

image in the Figure 5. Due to these pieces, it is not possible

to reach to 100% reconstruction accuracy.

Mcgill and Pomeranz dataset: We also tested our algo-

rithm with Mcgill dataset [15] and Pomeranz dataset [18].

For images from the Mcgill, Pomeranz805, Pomeranz2360

and Pomeranz3300, we generated K = 540, 805, 2360, 3300

numbers of puzzle pieces, respectively, where the orienta-

tion of pieces is unknown and the size of the pieces is P=28.

Our algorithm outperforms the previous works (Table 2).

Evaluation on various size and number of pieces: As

proposed by Gallagher [9], we performed more experiments

by varying the size of pieces P=7,10,14,28 pixels and the

number of puzzle pieces K=221, 432, 1064 using the MIT

dataset. When the size of a piece is small, each piece in-

cludes less information so that the compatibility measure is

unreliable. Thus, we can evaluate the robustness of the as-

sembly algorithms with weaker guidance from the pairwise

compatibility measure. The Figure 7 shows the reconstruc-

tion performance comparisons for each case. It is notable

that our proposed method significantly reduced the recon-

struction error by up to 75% from Son et al. [23] when the

size of a piece is P=14. In fact, our proposed algorithm al-

most maintained the reconstruction performance although

the size of a piece was reduced to P=14 whereas the pre-

vious works [9, 23] drastically reduced their reconstruction

performance.

Algorithm component analysis: We analyzed the con-

tribution of each step in our algorithm. We used two pair-

wise compatibility measures, MGC [9] and our pairwise

compatibility measure (refer to DC), and two assembly

strategies, tree-based [9] and our assembly algorithm (re-

fer to consensus-based). From the methods, we formed 4

different assembly algorithms from all combinations of the

algorithms. Figure 8 shows the reconstruction performance

comparison on an unknown orientation piece puzzle from

images from the MIT dataset (P=28, K=432). Each step of

our method contributes the performance improvement.

Our algorithm solves puzzles where the pieces are from

multiple images and some pieces are missing (Figure 9).

5.3. Known Orientation Piece Puzzles

We compared our algorithm with the previous works [18,

7, 20, 23, 17] when orientation of each piece is known and

only position of piece is unknown in Table 3. Our perfor-
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Figure 7. Reconstruction performance of unknown orientation piece puzzle with various piece size and number of pieces.

MIT(432 Pieces) Mcgill(540 Pieces) Pomeranz(805 Pieces) Pomeranz(2360Pieces) Pomeranz(3300Pieces)

Direct Neighbor Direct Neighbor Direct Neighbor Direct Neighbor Direct Neighbor

Pomeranz et al. [18] 94.0% 95.0% 83.5% 90.9% 80.3% 89.7% 33.4% 84.7% 80.7% 85.0%

Andalo et al. [7] 91.7% 94.3% 90.6% 95.3% 82.5% 93.4% - - - -

Sholomon et al. [20] 86.2% 96.2% 92.8% 96.0% 94.7% 96.3% 85.7% 88.9% 89.9% 92.8%

Son et al. [23] 95.6% 95.5% 92.2% 95.2% 93.1% 94.9% 94.4% 96.4% 92.0% 96.4%

Paikin et al. [17] 96.2% 95.8% 93.2% 96.1% 92.5% 95.1% 94.0% 96.3% 90.6% 95.3%

Proposed 95.4% 95.5% 93.6% 96.1% 92.8% 95.0% 94.1% 96.7% 94.9% 95.1%

Table 3. Reconstruction performance on known orientation piece puzzles from the Mcgill and Pomeranz dataset. P=28, K=432.
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Figure 8. Algorithm component analysis. DC and consensus-

based refer to our proposed pairwise compatibility measure and

assembly strategy respectively.

Figure 9. Mixed, missed and unknown orientation piece puzzle.

The size of pieces is P=28. Puzzles are from two images and 5%

of pieces are missing.

mance on the known orientation piece puzzle is comparable

with those of previous works.

Our algorithm is implemented in Matlab and takes 120

seconds for assembling 432 pieces on a modern PC.

6. Conclusion

We present a novel computational puzzle solver for

square piece image jigsaw puzzles with no prior informa-

tion such as piece orientation, anchor pieces, or resulting

dimension of the puzzle. When the size of pieces becomes

smaller so that pairwise compatibility measures become un-

reliable, our algorithm achieves much higher reconstruction

accuracy than state of the art methods. The strength of our

algorithm derives from its reduced dependency on a pair-

wise compatibility measure, which is often erroneous, and

instead exploits geometric information from reliable neigh-

bor configurations for puzzle assembly. In addition, a more

accurate pairwise compatibility measure which utilizes di-

rectional derivative information along adjoining boundaries

of the pieces is proposed and used.
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