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Abstract

We are dealing with the problem of fine-grained vehi-

cle make & model recognition and verification. Our contri-

bution is showing that extracting additional data from the

video stream – besides the vehicle image itself – and feed-

ing it into the deep convolutional neural network boosts the

recognition performance considerably. This additional in-

formation includes: 3D vehicle bounding box used for “un-

packing” the vehicle image, its rasterized low-resolution

shape, and information about the 3D vehicle orientation.

Experiments show that adding such information decreases

classification error by 26 % (the accuracy is improved from

0.772 to 0.832) and boosts verification average precision

by 208 % (0.378 to 0.785) compared to baseline pure CNN

without any input modifications. Also, the pure baseline

CNN outperforms the recent state of the art solution by

0.081. We provide an annotated set “BoxCars” of surveil-

lance vehicle images augmented by various automatically

extracted auxiliary information. Our approach and the

dataset can considerably improve the performance of traffic

surveillance systems.

1. Introduction

We are developing a system for traffic surveillance from

roadside cameras. It is meant to be fully automatic (not

requiring manual per-camera configuration) and tolerant to

sub-optimal camera placement (the cameras will not be

placed above the lanes, but on the road side, wherever it

is naturally possible).

One important component of such a system is recog-

nition of vehicle make & model – as accurate as possible.

This fine-grained recognition serves multiple purposes. Be-

sides obvious collection of statistics and demographic infor-

mation and verification of license plate authenticity, recog-
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Figure 1. We take advantage of the surveillance camera being

fixed, use its automatically obtained calibration to unpack the in-

put image so that it is better aligned, and we add additional inputs

to the CNN. These modified inputs boost the performance of vehi-

cle recognition and especially vehicle make & model verification.

nition of dominant and characteristic types can establish

a highly accurate scale calibration of the camera, much

more precise than a statistic of undifferentiated cars [8].

The system should also be able to adapt to new models

of cars on its own. It should therefore not only recognize

the pre-trained set of models, but also verify whether two

given vehicle samples are of the same make & model or not

– without previously seeing these particular vehicle types.

Fine-grained vehicle recognition has been receiving in-

creased research attention recently. Many works and data-

sets focus on recognition of “web images” shot from a lim-

ited set of viewpoints, typically from eye-level views [43,

16, 19, 13, 25, 36]. Some works also deal with data of

surveillance nature [43, 22, 14].

Our work goes beyond a recent work by Yang et al. [43].

They collected presumably the first dataset of sufficient

proportion for training convolutional neural networks (the
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surveillance-nature portion of their dataset contains around

50k samples). They also propose a CNN architecture for

fine-grained vehicle recognition and publish benchmarking

results.

Since we aim at a fixed-camera surveillance system, we

take advantage of fully automatic camera calibration includ-

ing scale [8] and we use the automatically extracted infor-

mation for improving the recognition system (Fig. 1). The

automatically calibrated camera allows us to extract a 3D

bounding box of the passing vehicle. The system then “un-

packs” the bounding box to get a better aligned image rep-

resentation. The shape and location of the bounding box is

also input to the CNN and helps it to reference the relevant

information. Lastly, the view direction extracted for each

vehicle sample is also encoded and input to the fully con-

nected CNN layers, further boosting the performance. The

whole algorithm is designed to work with low-resolution

vehicle images taken from arbitrary viewpoints of surveil-

lance nature (frontal, sideways, varying elevation, etc.).

We collected a dataset BoxCars from a network of

surveillance cameras and we make it publicly available for

training and benchmarking. The cameras are automatically

calibrated and the vehicle samples are automatically aug-

mented by the 3D bounding box information. This infor-

mation is easily obtainable in real time and it can be a part

of any surveillance system.

The experiments show that the proposed enhanced infor-

mation boosts the average precision of vehicle recognition

considerably (0.772 to 0.832 for medium difficulty, 0.733

to 0.804 for hard cases). The same modification helps even

much more for the vehicle type verification task: given ob-

servations of two vehicles, tell if they are of the same type

(in the fine-grained sense, i.e. including make, model, year).

The particular vehicle types have not been necessarily seen

by the classifier during training. The improvement in this

task was from 0.378 to 0.785 for medium difficulty samples

and 0.353 to 0.710 for difficult cases. This verification task

is important for growing the set of vehicles recognizable by

the system in an unsupervised manner – without collecting

and annotating the samples in advance.

The contributions of this paper are the following: i) We

show that additional information easily obtainable in real

time for static surveillance cameras can boost the CNN ve-

rification performance greatly (by 208 %), ii) The vehicle

fine-grained classification error was decreased by 26 %, iii)

We collected a dataset of vehicle samples accompanied with

the 3D bounding boxes (BoxCars, 21,250 samples, 63,750

images, 27 different makes, 148 make & model + submodel

+ model year classes).

2. Related Work

When it comes to fine-grained vehicle classification,

many approaches are limited to frontal or rear viewpoint

and they are based on detection of the license plate for ROI

extraction [32, 7, 31, 27, 44, 2]. Authors of these papers are

using different schemes for extracting the feature vectors

and for the classification itself. Stark et al. [36] use fine-

grained categorization of cars by DPM in order to obtain

metric information and get a rough estimate of depth infor-

mation for single images (containing cars in usable poses).

Another approach proposed by Prokaj and Medioni [33] is

based on pose estimation and it is able to handle any view-

point. The authors suggest to use 3D models of vehicles,

fit them to the recognized pose, project them to 2D and

use SIFT-like features for the comparison of the vehicles.

Krause et al. [19] used 3D CAD models to train geome-

try classifiers and improve results of 3D versions of Spatial

Pyramid and BubbleBank [6] by 3D patch sampling and

rectification. Lin et al. [25] proposed to use 3D Active

Shape Model fitting to obtain positions of landmarks and

achieved much better results than other methods on their

own dataset FG3DCar. Authors of [17] propose to learn dis-

criminative parts of vehicles with CNN and use the parts for

fine-grained classification. Gu et al. [13] used pose estima-

tion and active shape matching to deal with pose variation

and normalization. Hsiao et al. [15] use 3D chamfer match-

ing of backprojected curves on an automatically generated

visual hull of the vehicle. However, the authors assume to

have shots of vehicles against clean background and that the

shots are taken under regular intervals.

Very recent work by He et al. [14] focuses on surveil-

lance images; however, the authors assume to have high-

resolution frontal image of the vehicle to correctly detect li-

cense plate and other artificial anchors. Liao et al. [22] used

Strongly Supervised DPM (SSDPM) to categorize frontal

images of vehicles and classification based on discrimina-

tive power of different parts of SSDPM. Hsieh et al. [16]

proposed a new symmetrical SURF keypoint detector to de-

tect and segment frontal vehicle images into several grids

for fine-grained classification. Very recent work by Yang

et al. [43] proposed to use Convolutional Neural Networks

for fine-grained classification, regression of parameters etc.

Krause et al. [18] proposed to use co-segmentation and

automatic part localization in combination with R-CNN to

overcome missing parts annotations.

Recently, Deep Convolutional Neural Networks (CNN)

consistently succeed in hard image recognition tasks such as

the ImageNet [34] contest. After the network by Krizhevsky

et al. [20], deeper and more complex CNNs such as the

GoogLeNet by Szegedy et al. [38] seem to be consistently

winning the contest. Authors also used input normalization

to improve performance of CNN [39] and adding additional

training data to CNN [20]. Parts of the CNN can be viewed

as feature extractors and independently reused. These

trained feature extractors outperform the hand-crafted fea-

tures [3, 39]. Recently, a relatively large number of authors
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Figure 2. Examples of vehicles (top), their 3D bounding boxes

(middle) and unpacked version of the vehicles (bottom).

proposed to use Deep Neural Networks for fine-grained

classification in general [39, 41, 43, 23, 42, 9, 24].

To sum up, in most cases, the existing approaches either

use 2D frontal images, or 3D CAD models to allow view-

point invariance. We propose to extract and use 3D infor-

mation based on video data from the surveillance camera

at general viewpoints. This information is fed to a CNN

as additional input, leading to better car classification and

especially type verification.

3. Fine-Grained Vehicle Classification and Ve-

rification Methodology

In agreement with the recent progress in the Convolu-

tional Neural Networks [39, 20, 5], we propose to use CNN

for both classification and verification. The classification

task will be done directly by the net and for the verifica-

tion task, we use features (activations) extracted from the

last-but-one layer and cosine distance. We enhance the in-

put of the net by several techniques using automatically ex-

tracted 3D bounding boxes [8]. We focus on vehicle im-

ages obtained from surveillance cameras where the auto-

matic extraction of 3D bounding boxes is possible cheaply

in real time. We used BVLC Reference CaffeNet [20] pre-

trained on ImageNet [34] and then fine-tuned on our dataset

as a baseline from which we improve.

3.1. Unpacking the Vehicles’ Images

We based our work on 3D bounding boxes [8] (Fig. 2)

which can be automatically obtained for each vehicle seen

by a surveillance camera (see our original paper [8] for fur-

ther details). These boxes allow us to identify side, roof,

and front/rear side of vehicles in addition to other informa-
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Figure 3. Unpacking the input vehicle image based on its bouding

box. Points bi are vertices of the 3D bounding box [8].

Figure 4. Examples of vectors encoding the viewpoint.

tion about the vehicles. We use these localized segments to

normalize the image of observed vehicles.

The normalization is done by unpacking the image into

a plane. The plane contains rectified versions of the

front/rear (F), side (S), and roof (R). These parts are ad-

jacent to each other (Fig. 3) and they are organized into the

final matrix U:

U =

(

0 R

F S

)

(1)

The unpacking itself is done by obtaining homography

between points bi (Fig. 3) and perspective warping parts

of the original image. The left top submatrix is filled with

zeros. This unpacked version of the vehicle can be used

instead of the original image to feed the net. The unpacking

is beneficial as it localizes parts of the vehicles, normalizes

their position in the image and all that without the necessity

to use DPM or other algorithms for part localization.

3.2. Viewpoint Encoding

We also found out that it improves the results when the

net is aware of the viewpoint of the vehicles. The viewpoint

is extracted from the orientation of the 3D bounding box

– Fig. 4. We encode the viewpoint as three 2D vectors vi,

where i ∈ {f, s, r} (front/rear, side, roof ) and pass them to

the net. Vectors vi are connecting the center of the bounding

box with the centers of the box’s faces. Therefore, it can

be computed as vi =
−−−→
CbCi. Point Cb is the center of the

bounding box and it can be obtained as the intersection of
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Figure 5. Examples of rasterized bounding boxes for CNN (col-

ors are R,G,B in the actual computation, but are changed here for

aesthetic reasons).

diagonals
←→
b2b4 and

←→
b5b3. Points Ci for i ∈ {f, s, r} denote

the centers of each face, again computed as intersections

of face diagonals. The vectors are normalized to have unit

size; storing them with a different normalization (e.g. the

front one normalized, the other in the proper ratio) did not

improve the results.

3.3. Rasterized Bounding Boxes

Another way of encoding the viewpoint and also the rel-

ative dimensions of vehicles is to rasterize the 3D bounding

box and use it as an additional input to the net. The ras-

terization is done separately for all sides, each filled by one

color. The final rasterized bounding box is then a three-

channel image containing each visible face rasterized in a

different channel. Formally, point (x, y) of the rasterized

bounding box T is obtained as

Tx,y =











(1, 0, 0) (x, y) ∈ b0b1b4b5
(0, 1, 0) (x, y) ∈ b1b2b5b6
(0, 0, 1) (x, y) ∈ b0b1b2b3
(0, 0, 0) otherwise

(2)

where b0b1b4b5 denotes the quadrilateral defined by

points b0, b1, b4 and b5 in Figure 3.

Finally, the 3D rasterized bounding box is cropped by

the 2D bounding box of the vehicle. For an example, see

Figure 5, showing rasterized bounding boxes for different

vehicles taken from different viewpoints.

3.4. Final CNN Using Images + Auxiliary Input

All this information is finally passed to the CNN (Fig. 1).

The unpacked version of vehicles is used directly as the

image input instead of the original image. The rasterized

bounding box and encoded viewpoints are added to the

net after the convolutional layers. We experimented with

changing the layer where the information is added but dif-

ferent positions did not improve the results further and the

mentioned setting is easiest with regard to pre-training the

network.
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Figure 6. Distribution of samples in our BoxCars dataset across

vehicle types. The distribution corresponds to real-life occurence

of the models.

As the auxiliary input is added after the convolutional

layers, it needs to be passed in 6×6 matrices. The rasterized

bounding box is rescaled (Lanczos interpolation) to 6 × 6
and added to the net. The encoded viewpoints are added to

the net in 6 × 6 one-channel matrix with zeros everywhere

except for the first row which contains normalized vectors

encoding the viewpoint. The first row t of this matrix con-

tains all three 2D vectors: t = (vxf , v
y
f , v

x
r , v

y
r , v

x
s , v

y
s ).

For better understanding of the text, we define labels

for the nets with different input modifications. The orig-

inal CNN processing cropped images of vehicles without

any modifications is referenced as baseline. Network de-

noted as Rast contains the rasterized bounding boxes, View

net is augmented by the encoded viewpoints, and in Unp

version of the net, the original image is replaced by the

unpacked image of vehicles. All these input modifica-

tions can be combined, yielding RastView, RastUnp and

RastViewUnp nets.

4. BoxCars: New Dataset for Surveillance Ve-

hicle Verification

There is a large number of datasets of vehicles [34, 1,

30, 10, 40, 4, 28, 21, 12, 35, 11, 29, 26] which are us-

able mainly for vehicle detection, pose estimation, and other

tasks. However, these datasets do not contain annotation of

the precise vehicles’ make & model.

When it comes to the fine-grained datasets, a few of them

exist and all are quite recent. Lin et al. [25] published

FG3DCar dataset (300 images, 30 classes), Stark et al. [36]

made another dataset containing 1,904 vehicles from 14

classes. Krause et al. [19] published two datasets; one of

them, called Car Types, contains 16k of images and 196

classes. The other one, BMW 10, is made of 10 models of

BMW vehicles and 500 images. Finally, Liao et al. [22]

created a dataset of 1,482 vehicles from 8 classes. All these

datasets are relatively small for training the CNN for real-

world surveillance tasks.

Yang et al. [43] published a large dataset CompCars this

year (2015). The dataset consists of a web-nature part, made

of 136k of vehicles from 1,600 classes taken from different

viewpoints. Then, it also contains a surveillance-nature part
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Figure 7. A sample of the novel BoxCars dataset. In total, it captures 21,250 vehicles in 63,750 images, from 27 different makes (148

fine-grained classes).

with 50k frontal images of vehicles taken from surveillance

cameras.

We collected and annotated a new dataset BoxCars. The

dataset is focused on images taken from surveillance cam-

eras as it is meant to be useful for traffic surveillance ap-

plications. We do not restrict that the vehicles are taken

from the frontal side (Fig. 7). We used surveillance cam-

eras mounted near streets and tracked the passing vehicles.

Each correctly detected vehicle is captured in 3 images, as it

is passing by the camera; therefore, we have more visual in-

formation about each vehicle. The dataset contains 21,250

vehicles (63,750 images) of 27 different makes. The vehi-

cles are divided into classes: there are 102 make & model

classes, 126 make & model + submodel classes, and 148

make & model + submodel + model year classes. The dis-

tribution of types in the dataset is shown in Figure 6 and

samples from the dataset are in Figure 7. The data include

information about the 3D bounding box [8] for each vehicle

and an image with a foreground mask extracted by back-

ground subtraction [37, 45]. The dataset is made publicly

available1 for future reference and evaluation.

Our proposed dataset is difficult in comparison with

other existing datasets in size of the images (thousands of

pixels, min/mean/max): CompCars – 107/503/1114, Cars-

196 – 4/479/42120, BoxCars – 8/39/253. Also, the sam-

ples in our dataset are compressed by realistic h264 codec

settings, and unlike most existing surveillance datasets, our

viewpoints are diverse and not just frontal/rear.

5. Experimental Results

The evaluation of the improvement caused by our modi-

fications of the CNN input can be only done on our BoxCars

1https://medusa.fit.vutbr.cz/traffic

Top-1 Top-5

[43] 0.767 0.917
Ours 0.848 0.954

Table 1. Comparison of classification results on the Comp-

Cars [43] dataset (accuracy).

Easy Medium Hard

[43] 0.833 0.824 0.761
Ours 0.850 0.827 0.768

Table 2. Comparison of verification results on the CompCars

dataset (accuracy).

dataset as other fine-grained datasets listed in Section 4

do not include the information about the bounding boxes.

However, to put the performance of the system into context

with other published methods, we evaluated the BVLC Ref-

erence net [20] on the most recent dataset CompCars and

the improvement will be measured relatively to this base-

line.

5.1. Evaluation on the CompCars Dataset

We trained the baseline net on the CompCars dataset [43]

and evaluated its accuracy. As Table 1 shows, this net sig-

nificantly outperforms the CNN used by Yang et al. [43]

in their paper in both Top-1 and Top-5 categories. We used

the All-view split as the authors achieved the best results

if they did not take the viewpoint into account, but instead,

they trained a common net on all the viewpoints at once.

We also evaluated the make & model verification accu-

racy using the activations extracted from the baseline net

and cosine distance. The results are shown in Table 2 and

our system outperforms the original paper in verification
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# types # training samples # test samples

medium 77 40,152 19,590
hard 87 37,689 18,939

Table 3. Training and testing set sizes for the classifications task.

Numbers of samples represent the amount of all images used. The

number of unique vehicles is one third of these counts.

View Rast Unp RastUnp ViewUnp RastViewUnp
0.65
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three samples

View Rast Unp RastUnp ViewUnp RastViewUnp
0.65

0.70
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0.85

a
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u
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one sample

medium 

medium baseline

hard

hard baseline

Figure 8. Top-1 accuracies for different input modifications. The

dashed line represent the baseline accuracy achieved by the CNN

without any input modification. The method identifiers are ex-

plained in Sec. 3.4.

as well. It should be noted that the CompCars verification

dataset has a high random baseline (0.5).

Since the baseline net outperforms the method published

by Yang et al. [43], we measure the improvement achieved

by our modifications of the CNN input relatively to the per-

formance of this baseline net on our BoxCars dataset.

5.2. Classification Results

We defined two ways of splitting the BoxCars dataset

into the training and testing parts. In both of them, medium

and hard, vehicles taken from 70 % of cameras are included

in the training part and the vehicles taken by the rest of the

cameras are in the test set. The difference of viewpoints

between the training and the test sets is not too large, as it

would be if for example the rear views would be in the train-

ing set and frontal views in the test set. This kind of splitting

is suitable for benchmarking surveillance algorithms be-

cause real-life applications would also use cameras placed

in roughly predictable viewpoints. The difference between

the medium and hard splittings is that we consider vehicles

of the same make+model+submodel but differing in their

model year as the same types in the medium dataset. In the

hard dataset, we differentiate also the model year. For sta-

bility of the classification, types with too few samples were

omitted and the training/testing set sizes can be found in

Figure 9. Most misclassified vehicle types for the RastViewUnp

version of the net. left: Volkswagen Up and Skoda Citigo, middle:

Volkswagen Caddy and Citroen Berlingo, right: Kia Ceed and

Renault Megane.

kia ceed

skoda octavia sedan mk2

skoda octavia sedan mk1

skoda octavia combi mk1

skoda octavia combi mk2

skoda octavia combi mk2

skoda octavia sedan

hyundai i10

skoda fabia hatchback

citroen c1

peugeot 107

peugeot 107

kia rio

hyundai i30 combi

volkswagen passat sedan

chevrolet cruze hatchback

hyundai i30 hatchback

chevrolet cruze hatchback

Figure 10. Examples of types probabilities for different vehicles

for the RastViewUnp version of the net. Only one sample was

used for the classification and the model year was differentied in

the first example.

Table 3 (this approach is consistent with [43]).

All the CNNs were pre-trained on ImageNet [34] and

then fine-tuned on one of the medium or hard datasets.

When the rasterized bounding boxes or encoded viewpoints

are introduced to the nets, the weights of fully connected

layers are randomly re-initialized and in that case we do not

use the pre-trained weights on ImageNet in those layers.

We evaluated all the net’s input modifications and also

their combinations. The results are shown in Table 4 and

Figure 8. As we have multiple samples for each vehicle, we

can use mean probability for each vehicle type and achieve

better results, see Table 5. The improvement between one

sample and three samples is 0.073 (0.731 to 0.804 in Top-

1 accuracy). Also, Table 5 shows that the improvement

achieved by the modified CNN in the medium dataset is

0.060 (0.772 to 0.832) and 0.071 (0.733 to 0.804) in the

hard case.

We consider the improvement in classification accuracy

as interesting because the task itself is complex and diffi-

cult even for a human. Also, the classification error was

reduced by 26 % for both splittings. Consider the exam-

ples of the most confused types shown in Figure 9, where
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baseline Unp Rast View RastUnp ViewUnp RastViewUnp
med hard med hard med hard med hard med hard med hard med hard

Top-1 0.720 0.669 0.764 0.730 0.748 0.694 0.712 0.676 0.750 0.722 0.739 0.725 0.754 0.731
Top-5 0.910 0.883 0.915 0.897 0.903 0.872 0.885 0.865 0.891 0.882 0.894 0.883 0.901 0.890

Table 4. Comparison of classification accuracy results for one sample per vehicle. The method identifiers are explained in Sec. 3.4.

baseline Unp Rast View RastUnp ViewUnp RastViewUnp
med hard med hard med hard med hard med hard med hard med hard

Top-1 0.772 0.733 0.832 0.794 0.812 0.764 0.778 0.759 0.813 0.787 0.810 0.801 0.821 0.804
Top-5 0.924 0.903 0.945 0.926 0.927 0.906 0.913 0.901 0.928 0.923 0.930 0.919 0.937 0.929

Table 5. Comparison of classification accuracy results for three samples per vehicle, the final probability for a class is obtained as mean

probability over the samples.

Volkswagen Up and Skoda Citigo are manufactured in the

same production plant and they differ only in subtle brand-

ing parts in the region of the frontal mask. Also, Figure 10

shows examples of probabilities obtained for different ve-

hicles. These graphs indicate that the net is aware of the

sample being similar to multiple types and that it can safely

distinguish from completely disparate models.

The experimental results indicate that the most important

improvement is unpacking the image (Section 3.1), presum-

ably because it leads to better alignment of the vehicle fea-

tures on the input CNN level. The further input modifica-

tions help only in the hard splitting, where subtler details

make a difference.

5.3. Verification Results

Verification of pairs of vehicle types (for two vehicle

samples decide: same types / different types) is as impor-

tant as classification, especially when it comes to reasoning

about unseen and untrained vehicle types. We selected even

more difficult splitting for evaluation of the verification per-

formance. Only some cameras are present in the training set

(the same ones as in the classification task) and only some

vehicle types are present in the training set. The testing is

done on pairs of randomly selected 3,000 vehicles mainly

taken from cameras which were not present during train-

ing (over 80 % of vehicles is from unseen cameras) and the

testing set of vehicles also contains types which were not

seen during training (over 10 % of samples, approximately

25 % of pairs contain at least one vehicle of an unseen type).

Thus, the algorithm is required to verify unseen types of ve-

hicles taken from unseen viewpoints and it has to generalize

well.

We have three splittings for the verification task. Easy

contains pairs of vehicles from the same unseen camera,

medium contains pairs from different unseen cameras and

finally, hard contains pairs of vehicles from different un-

seen cameras and the model year is also taken into account.

The training/testing set sizes can be found in Table 6.

training testing
# types # samples # types # pairs

easy 113 34 929 100 1 394 008
medium 113 34 929 99 1 435 532

hard 126 32 658 113 1 501 156

Table 6. Training and test sets sizes for the verification task. The

number of training samples represent the number of images used

in training. The number of unique training vehicles is one third of

this number.

Again, we used nets pre-trained on ImageNet [34], fine-

tuned them during the training and then used the features

from the last fully connected layer (fc7) and compared them

by cosine distance. Two different training passes were done,

one for the easy and medium splitting (both splittings do not

take model year into account) and one for the hard one.

We evaluated the algorithm on the three dataset splittings

using only one sample for each vehicle and the results are in

Figure 11. When the three samples are taken into account

by working with the median cosine distance, the results im-

prove as shown in Figure 12. Using the median cosine dis-

tance improved the average precision on average by 0.094.

The plots show that our CNN input modifications have

a huge impact on the average precision in the verification

task. For example, considering the medium set and the me-

dian cosine distance over the three samples, RastViewUnp

improved AP of the baseline CNN by 208 %. Figure 13

shows what improved the average precision in verification.

The numbers gradually increase as we add more and more

modifications of the CNN input. It is rather interesting that

both rasterized bounding boxes and orientation encoding

help the net, even in combination; we expected that these

two would be alternative ways of encoding the same infor-

mation, but apparently, they encode it slightly differently

and both turn out to be helpful.

We also obtained vehicle type verification precision and

recall of human subjects for the BoxCars dataset. We ran-

domly selected 1,000 pairs of vehicles; one third of the
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Figure 11. Precision-Recall curves for different verification dataset splittings. Only one sample was used for the verification. Numbers
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positive pairs. Numbers in legend denote Average Precision.

0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

easy

RastViewUnp 0.796

RastUnp 0.778

ViewUnp 0.752

View 0.741

Rast 0.685

Unp 0.671

baseline 0.594

rnd baseline 0.051

0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

medium

RastViewUnp 0.785

RastUnp 0.771

ViewUnp 0.735

View 0.660

Rast 0.625

Unp 0.576

baseline 0.378

rnd baseline 0.042

0.0 0.2 0.4 0.6 0.8 1.0

recall

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

hard

RastViewUnp 0.710

RastUnp 0.691

Rast 0.613

View 0.587

ViewUnp 0.586

Unp 0.470

baseline 0.353

rnd baseline 0.031

Figure 12. Precision-Recall curves for different verification dataset splittings. Median cosine distance over three vehicle samples was used
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Figure 13. Schematic image of improvements in the verification

AP for different CNN input modifications. The image is based on

the medium splitting with median distance over the samples.

pairs included vehicles of different types, one third of pairs

had the same make & model + submodel, but differed in the

model year, and the last third contained pairs of vehicles of

the same type including model year. Participants were re-

quested to manually indicate one of these three situations

for each given pair of vehicles. All three captured images

of the vehicles, taken by different cameras, were shown to

the participants (that is why the human data is present in

medium and hard cases in Fig. 12 but not in Fig. 11). We

received a total of 8,011 inputs (8 per pair) with mean pre-

cision 0.946 and mean recall 0.844 for the medium case. On

the other hand, the results show that the human annotators

have problems with correctly distinguishing different model

years (the hard case), with mean precision 0.685 and mean

recall 0.646. These results are shown in Figure 12 as black

dots; note that in the hard case, the system outperforms the

human annotators.

6. Conclusions

Surveillance systems can and should benefit from the

camera being fixed. The camera can be fully automatically

calibrated and more information can be extracted for the

passing vehicles. We show that this information conside-

rably improves the fine-grained recognition by CNN, and

tremendously boosts the verification task average precision.

Our dataset BoxCars is meant to help experiments in this

direction by providing sufficient amount of data enriched

by information which can be automatically extracted in real

time in actual surveillance systems. We keep collecting

samples from new surveillance cameras, so that the size of

the dataset will gradually increase in near future.
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