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Abstract

We introduce the concept of dynamically growing a neu-

ral network during training. In particular, an untrainable

deep network starts as a trainable shallow network and

newly added layers are slowly, organically added during

training, thereby increasing the network’s depth. This is

accomplished by a new layer, which we call DropIn. The

DropIn layer starts by passing the output from a previous

layer (effectively skipping over the newly added layers),

then increasingly including units from the new layers for

both feedforward and backpropagation. We show that deep

networks, which are untrainable with conventional meth-

ods, will converge with DropIn layers interspersed in the

architecture. In addition, we demonstrate that DropIn pro-

vides regularization during training in an analogous way

as dropout. Experiments are described with the MNIST

dataset and various expanded LeNet architectures, CIFAR-

10 dataset with its architecture expanded from 3 to 11 lay-

ers, and on the ImageNet dataset with the AlexNet architec-

ture expanded to 13 layers and the VGG 16-layer architec-

ture.

1. Introduction

Over the past few years, state-of-the-art results for image

recognition [13, 19, 26], object detection [5], face recogni-

tion [27], speech recognition [7], machine translation [25],

image caption generation [28], driverless car technology

[11], and other applications [14] have required increasingly

deeper neural networks.

Network depth refers to the number of layers in the ar-

chitecture. It is well known that adding layers to neural net-

works makes them more expressive [15]. Each year, the Im-

agenet Challenge [18] is held in which teams are expected,

given an image, to detect, localize, or recognize an object

in the image. Deep convolutional neural networks (CNNs)

have dominated the competition since Krizhevsky et al. won

in 2012 [13], and each year since, the winner of the compe-
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tition used a deeper network than the previous year’s winner

[18, 19, 26].

However, training a very deep network is a difficult and

open research problem [4, 6, 22]. It is difficult to train very

deep networks because the error norm during backpropa-

gation can grow or vanish exponentially. In addition, very

large training datasets are necessary when the network has

millions or billions of weights.

Here we suggest a dynamic architecture that grows dur-

ing the training process and allows for the training of very

deep networks. We illustrate this with our DropIn layer,

where new layers are skipped at the start of the training, as

though they were not present. This allows the weights of

the included layers to start converging. Over a number of

iterations the DropIn layer increasingly includes activations

from the inserted layers, which gradually trains the weights

in theses added layers.

DropIn follows the philosophy embedded within curricu-

lum learning [2]. With curriculum learning one starts with

an easier problem and incrementally increases the difficulty.

Here too, one starts training a shallow architecture and af-

ter convergence begins, DropIn incrementally modifies the

architecture to slowly include units from the new layers.

In addition, DropIn can be used in a mode analogous

to dropout [20] for the regularization of a deep neural net-

work during training. Instead of setting random activations

to zero, as is done in dropout, DropIn sets these activations

to the activations from a previous layer. We demonstrate

that the “noise” from mixing the activations from previous

layers provides regularization during training. In addition,

both DropIn and dropout can be viewed as training a large

collection of networks with varied architectures and exten-

sive weight sharing.

The contributions of this paper are:

1. A dynamic architecture that can grow during training.

2. The details of a DropIn layer for enabling the train-

ing of very deep networks and for regularization dur-

ing training.

3. Examples of successfully training deep architectures

that cannot be trained with conventional methods on

MNIST, CIFAR-10, and ImageNet.
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2. Related work

Methods for training very deep networks have centered

on initialization of the network weights or developing new

architectures and DropIn is in the latter category.

2.1. Initialization of network weights

Sutskever et al. [24] investigate the difficulty in training

deep networks and conclude that both proper initialization

and momentum are necessary. Glorot and Bengio [6] rec-

ommend an initialization method called normalized initial-

ization to allow the training of deep networks. He et al.

[8] recently improved upon the “normalized initialization”

method by changing the distribution to take into account

ReLU layers.

Hinton et al. [9] proposed first training layer by layer

in an unsupervised fashion so that a transformed version of

the input could be realized. Erhan [4] later characterized the

mathematics of the unsupervised pre-training and offered an

explanation for its success.

Sussillo and Abbott [23] suggest an initialization scheme

called Random Walk Initialization based on scaling the ini-

tial random matrices correctly. By multiplying the error gra-

dient by a correctly scaled random matrix at each layer, an

unbiased random walk is formed. This is one of only a few

papers that show the results of experiments with networks

consisting of hundreds of layers.

2.2. Developing new architecture

Raiko, et al. [16] introduce the concept of skip connec-

tions by adding a linear transformation to the usual non-

linear transformation of the input to a unit. Skip connec-

tions separate the linear and non-linear portions of the acti-

vations and allow the linear part to “skip” to higher layers.

This is similar to DropIn in some ways, but the purpose of

DropIn differs from that of skip connections, and DropIn

does not need to learn any parameters.

Romero et al. [17] suggest training a thin, deep student

network (called a fitnet) from a larger but shallower teacher

network. The authors accomplish this by utilizing the out-

put of the teacher’s hidden layers as a hint for the student’s

hidden layers.

Srivastava et al. [21, 22] propose a new architecture,

which they named Highway Networks, where the output of

a layer’s neuron contains a combination of the input and

the output. Highway networks use carry gates inspired by

long short-term memory (LSTM) recurrent neural networks

(RNNs) to regulate how much of the input is carried to the

next layer. The authors demonstrate that their structure per-

mits training networks of hundreds of layers (up to 900

layers) [21, 22]. These new parameters are learned along

with the other parameters of the network. Zhang et al. [32]

applied highway networks to LSTM recurrent neural net-

Figure 1: Diagram of traditional vs DropIn training method.

The DropIn method sends activations from Layer ℓ− 1 to

Layer ℓ+ 1 (thus skipping Layer ℓ) with a ratio q = 1 − p
and from Layer ℓ to Layer ℓ+ 1 with a ratio p.

works. DropIn is a simpler approach than highway net-

works as it does not contain gate parameters that need to

be learned.

Breuel [3] discusses a dynamic network that he describes

as a biologically plausible “reconfigurable” network. In this

network different units are weighted dynamically to pro-

duce different configurations. This allows a single network

to perform multiple tasks. DropIn represents a different

type of dynamic network that grows during training rather

than reconfigures for each task.

2.3. Regularization during training

The well-known dropout [10, 20] method is an effec-

tive means to improve the training of deep neural networks.

During training dropout randomly zeros a neuron’s output

activation with a probability p, called the dropout ratio, so

that the network cannot rely on a particular configuration.

This reduces overfitting to the training data and the result-

ing network is more robust and better generalizes to unseen

data. While dropout “samples from an exponential number

of different ‘thinned’ networks” [20], DropIn samples from

an exponential number of different thinner and shallower

sub-networks. Like dropout, DropIn randomly changes the

configuration so that the network cannot rely on a particular

configuration.

Baldi and Sadowski [1] provide a theoretical basis for

understanding dropout, demonstrating that dropout regu-

lates the training and prevents overfitting by approximat-

ing an average of a large ensemble of networks. A similar

theoretical understanding (and benefits) can also apply to

DropIn.
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3. DropIn method

In this section we provide a mathematical basis for

DropIn as well as some implementation details.

3.1. Model description

There are two modes of running DropIn: first to grad-

ually include skipped layers, which we refer to as gradual

DropIn, and second as a regularizer, which we named regu-

larizing DropIn. Figure 1 provides a visual reference as to

how the DropIn unit works.

Gradual DropIn initially passes on only the activations

from the previous layer, effectively skipping the new lay-

ers. For each iteration number, τ , the probability ratio p
is computed as p = τ/d for DropIn length d, which is the

number of iterations over which q = 1−p reduces from 1 to

0. Then the number of activations copied from layer ℓ− 1
drops as q×n = (1−p)×n, where n is the total number of

activations in the layer ℓ− 1. The remaining activations are

accepted from the new layer ℓ and backpropagation trains

the weights of these newly added units.

For regularizing DropIn, the DropIn probability ratio p
is set to a static value in [0, 1]. In this case, DropIn works

analogously with dropout but instead of setting values to

zero, they are set to the activations of a previous layer (e.g.,

ℓ− 1). The choice of which activations come from which

layer is done in an evolving random fashion each iteration.

We follow the notation in the dropout paper [20] to

show this more formally. Namely, we start with a neu-

ral network composed of some number of layers, L, where

ℓ ∈ [1, 2, ...L] is the layer index. Also, y(ℓ) represents the

vector of outputs from layer ℓ and is the input to the next

layer ℓ+ 1. Let x be the data input to the first layer. In ad-

dition, W(ℓ) and b(ℓ) are the weights and biases at layer ℓ.
To allow us to track the evolving nature of the network, we

include the training iteration number, τ , and the layer’s unit

index number, λ(ℓ).

The first equation for gradual DropIn is a vector of zeros

then ones, which is designated as:

r(ℓ)(τ, λ(ℓ)) =

{

0 λ(ℓ) < q × n

1 otherwise.
(1)

For regularizing DropIn, the equation for r(ℓ)(τ, λ(ℓ)) with

a probability ratio p is:

r(l)(τ, ·) ∼ Bernoulli(p), (2)

i.e., a 0-1 vector where each value is distributed as a

Bernoulli random variable with probability p.

Once r is set, the remaining equations (dropping τ and

λ(ℓ) for simplicity) are the same for both modes – namely

for layer ℓ+ 1:

ỹ(ℓ) = r(ℓ) × y(ℓ) (3)

z
(ℓ+1)
i

= w
(ℓ+1)
i

ỹ(ℓ) + b
(ℓ+1)
i

(4)

y(ℓ+1) = f(z
(ℓ)
i

) + (1− r(ℓ))y(ℓ̂), (5)

where ℓ̂ is any layer less than layer ℓ+ 1. These equations

are similar to those for dropout, except instead of some of

the outputs being zero, they are set to the values from a

previous layer, y(ℓ̂).

3.2. Implementation

We implemented our method in Caffe [12] by creating

a new layer called DropIn. The parameters for the DropIn

layer include a dropin ratio, which is the ratio q = 1 − p
in Figure 1, and a dropin length, which is d as described

in Section 3.1.

DropIn requires that the size of both the new layer and

the previous layer be the same. Hence, we also imple-

mented a Resize layer to allow reshaping a layer’s output

to a user-specified size. The Resize layer modifies its input,

which is y(ℓ̂), into a user-specified height, width, and num-

ber of channels/filters. The Resize layer allows DropIn to

work with any two layers, even when the sizes of y(ℓ) and

y(ℓ̂) are different.

4. Experiments

The purpose of this section is to demonstrate the effec-

tiveness of DropIn on several standard datasets but with

deeper architectures. We trained DropIn networks on a

variety of problems, in particular ones where the deep ar-

chitecture was not trainable with standard methods. No

attempt was made to optimize the architecture or hyper-

parameters for higher accuracy because our main objective

was to show that a deep architecture that will not converge

without DropIn, will converge with it. However, the results

in Sections 4.3 and 4.4 also demonstrate an increase in ac-

curacy by using a deeper network for Imagenet.

In the subsections below, DropIn is used for training

CNN architectures with MNIST, CIFAR-10, and ImageNet

datasets. All of the following experiments were run with

Caffe (downloaded August 31, 2015) using CUDA 7.0 and

Nvidia’s CuDNN. For training larger networks, we utilized

the multi-gpu implementation of Caffe. These experiments

were run on a 64 node cluster with 8 Nvidia Titan Black

GPUs, 128 GB memory, and dual Intel Xenon E5-2620 v2

CPUs per node.

The following subsections depict, in table form, the

structure of several networks. We use the naming conven-

tion {layer type}{layer number}-{number of outputs}(filter

size). For example, conv1 2-32(5×5) represents a convolu-

tional layer numbered 1 2 with 32 outputs and filters sized

5× 5. DropIn layers are denoted as dropin (ℓ+ (ℓ+1)), as

depicted in Figure 1.
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LeNet LeNet(2N) + DropIn

data (28× 28)
conv1 1-20(5× 5) conv1 1-20(5× 5)

conv1 2-20(3× 3)
dropin (1 1 + 1 2)

conv1 3-20(3× 3)
dropin (1 2 + 1 3)

...

conv1 N-20(3× 3)
dropin (1 (N-1) + 1 N)

maxpool(2× 2)
conv2 1-50(5× 5) conv2 1-50(5× 5)

conv2 2-50(3× 3)
dropin (2 1 + 2 2)

conv2 3-50(3× 3)
dropin (2 2 + 2 3)

...

conv2 N-50(3× 3)
dropin (2 (N-1) + 2 N)

maxpool(2× 2)
fc3-500

fc4-10

soft-max

Table 1: Network architecture for LeNet and LeNet(2N)+

DropIn.

Figure 2: Classification accuracy while training LeNet(10)

+ DropIn architecture with MNIST data. Curves represent

different DropIn lengths, d. (Best viewed in color)

4.1. MNIST

This dataset consists of 70,000 grey-scale images with a

resolution of 28x281. Of these, 60,000 are for training and

10,000 are for testing. There are ten classes, each a different

handwritten digit from zero to nine, with 7,000 images per

class. The standard network architecture for the classifica-

tion of MNIST, provided in the Caffe package, is the 4-layer

1http://yann.lecun.com/exdb/mnist/

(a) DropIn length of 2,500

(b) DropIn length of 7,500

Figure 3: Classification accuracy while training LeNet(2N)

+ DropIn , for N = 5, 15, 25, 35 with MNIST data. Curves

represent different network depths. (Best viewed in color)

LeNet consisting of 2 convolutional/max-pooling layers fol-

lowed by 2 fully-connected layers (see the first column of

Table 1 for details). Inspired by the work in [22], we in-

creased the number of convolutional layers from two to 2N,

which we denote as LeNet(2N). These added layers (as seen

in the second column of Table 1, minus the DropIn layers

shown in red) learned a 3 × 3 convolution filter but did not

change the size of the outputs. We then added DropIn layers

between each of the convolutional layers (as seen in the sec-

ond column of Table 1) and called this network LeNet(2N)

+ DropIn.

We first looked at N = 5 and created LeNet(10) and

LeNet(10) + DropIn architectures. LeNet(10) did not con-

verge in the standard training time of 10,000 iterations given

multiple realizations of the training process. However, uti-

lizing DropIn units we were able to have LeNet(2N) +

DropIn converge 10,000 iterations with the same hyper-

parameters. In Figure 2 we show results for several differ-

ent DropIn lengths for this network. These different lengths

indicate the robustness of the DropIn length for simpler net-

works and that, in general, shorter DropIn lengths provide

marginally better results. We note for this case that the

added layers do not increase the overall accuracy of the net-

work, as the MNIST data is quite simple compared with
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other classification tasks; the added layers do not provide

any extra differentiation power.

We now look at how the number of layers affects the

training with DropIn. In Figure 3 there are two different

plots, one with DropIn length of 2,500 iterations and the

other with DropIn length of 7,500 iterations. For each plot

we present 4 different networks with 10, 30, 50, and 70

convolutional layers (equating to N=5, 15, 25, 35). For

both DropIn lengths and all four network depths, the grad-

ual DropIn method allowed the networks to converge. The

deeper networks require a greater number of iterations to

reach the same level of accuracy as the shallower networks,

which is to be expected as they have a greater number

of weights to train. We also see that networks converge

more quickly with the shorter DropIn length, indicating that

shorter DropIn lengths are desirable.

CIFAR-10 CIFAR-10(11 layers) + DropIn

data (32× 32× 3)
conv1-32(5× 5) conv1 1-32(5× 5) + LRN

maxpool(2× 2) conv1 2-32(5× 5) + LRN

LRN dropin (1 1 + 1 2)

conv2-32(5× 5) conv2 1-32(5× 5) + LRN

maxpool(2× 2) conv2 2-32(5× 5) + LRN

LRN dropin (2 1 + 2 2)

conv3 1-32(5× 5) + LRN

conv3 2-32(5× 5) + LRN

dropin (3 1 + 3 2)

conv4 1-32(5× 5) + LRN

conv4 2-32(5× 5) + LRN

dropin (4 1 + 4 2)

conv5 1-32(5× 5) + LRN

conv5 2-32(5× 5) + LRN

dropin (5 1 + 5 2)

conv3-64(3× 3) conv6 1-64(3× 3)
maxpool(2× 2)

fc-10

soft-max

accuracy

Table 2: CIFAR-10 11-layer architecture, including DropIn

units.

4.2. CIFAR-10

This dataset consists of 60,000 color images with a res-

olution of 32x32. Of these, 50,000 are for training and

10,000 are for testing. There are ten classes with 6,000 im-

ages per class.

The Caffe [12] website provides the architecture and

hyper-parameter settings as part of the CIFAR-10 tutorial2.

The three convolutional layer architecture trains quickly

2http://caffe.berkeleyvision.org/gathered/

examples/cifar10.html

Figure 4: Test data classification accuracy while training the

11-layer CIFAR-10 architecture with DropIn. The curves

show classification accuracies for different dropin lengths,

d. (Best viewed in color)

Architecture dropin length Accuracy (%)

3-layer net 81.4

11-layer net 8,000 81.7

11-layer net 16,000 82.3

11-layer net 24,000 82.3

Table 3: Final accuracy (average of last three values) re-

sults for the CIFAR-10 dataset on test data at the end of the

training. Comparison of DropIn and dropin lengths.

and attains good accuracies. The convolutional layers were

replicated to obtain an 11-layer model, which corresponds

to the depth of one of the CIFAR-10 models in the exper-

iments for highway networks [22]. The detailed architec-

tures are compared in Table 2. As shown in the table, the

sizes of each of the layers entering the DropIn layer were

kept the same for simplicity. For every convolutional layer,

the weight initialization was Gaussian with standard devia-

tion of 0.01 and the bias initialization was constant, set to

0. Each convolutional layer was followed by a rectified lin-

ear unit and local normalization. The length of the training,

the learning rates, and schedule were modified to run over

32,000 iterations. This modification trained satisfactorily

and provided a reasonable comparison.

Numerous attempts at training this 11-layer network

without the DropIn layers failed to converge. Similar at-

tempts to train this network with the DropIn layers did suc-

cessfully converge, which is a primary result of this study.

Experiments were performed varying the DropIn length.

Figure 4 shows the accuracy curves for dropin length =
8, 000, 16, 000, 24, 000, and Table 3 compares the final ac-

curacies. The final accuracies show a marginal improve-

ment for longer lengths but for CIFAR-10 the results are

relatively independent of the length value. Furthermore, the

final accuracies from the 11-layer architecture are less than
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1% better than the original 3-layer architecture, which im-

plies that for the CIFAR-10 dataset, the deeper networker

provides only marginal improvement.

AlexNet AlexNet (13 layers) + DropIn

data (227× 227× 3)
conv1 1-96(11× 11) conv1 1-96(11× 11)

conv1 2-96(11× 11)
dropin (1 1 + 1 2)

maxpool(2× 2) + LocalNorm

conv2 1-256(5× 5) conv2 1-256(5× 5)
conv2 2-256(5× 5)
dropin (2 1 + 2 2)

maxpool(2× 2) + LocalNorm

conv3 1-384(3× 3) conv3 1-384(3× 3)
conv3 2-384(3× 3)
dropin (3 1 + 3 2)

conv4 1-384(3× 3) conv4 1-384(3× 3)
conv4 2-384(3× 3)
dropin (4 1 + 4 2)

conv5 1-256(3× 3) conv5 1-256(3× 3)
conv5 2-256(3× 3)
dropin (5 1 + 5 2)

maxpool(2× 2)
fc6-4096

fc7-4096

fc8-1000

soft-max

Table 4: Network architecture for AlexNet and modified

version of AlexNet, AlexNet (13 layers) + DropIn .

4.3. ImageNet / AlexNet

ImageNet3 [18] is a large image database based on the

nouns in the WordNet hierarchy. This image database used

for the ImageNet Large Scale Visual Recognition Challenge

and is commonly used as a basis of comparison in the deep

learning literature. The database contains 1.2 million train-

3www.image-net.org/

Architecture dropin length Accuracy (%)

AlexNet 58.0

13 layers + DropIn 25,000 62.2

13 layers + DropIn 75,000 62.1

13 layers + DropIn 150,000 60.8

13 layers + DropIn 300,000 59.3

Table 5: Comparison of DropIn and dropin lengths, d. The

table shows final accuracy (average of last three values) re-

sults for the ImageNet dataset on validation data at the end

of the training.

Figure 5: Comparison of various DropIn lengths, d. Valida-

tion data classification accuracy while training the AlexNet

(13 layers) + DropIn architecture with ImageNet data. (Best

viewed in color)

ing and 50,000 testing images covering 1,000 categories.

Fortunately, the Caffe website provides the architecture

and hyper-parameter files for a slightly modified AlexNet4.

We downloaded the architecture and hyper-parameter files

from the website and we expanded the architecture from 8

layers to 13 layers by duplicating each of the convolutional

layers, which is shown (minus the DropIn layers shown

in red) in columns 1 and 2, respectively, of Table 4. The

AlexNet (13 layers) + DropIn includes a DropIn layer be-

tween every duplicated layer used to create AlexNet (13

layers). Multiple attempts at training the AlexNet (13 lay-

ers) architecture in the conventional manner did not con-

verge. In the tests with the expanded architecture, the hyper-

parameters were kept the same as provided by the Caffe

website (even though our experiments with DropIn indicate

that tuning them could improve the results, we left this for

future work).

Experiments were run varying the DropIn hyper-

parameter dropin length. Table 5 shows final accuracy re-

sults after training for 450,000 iterations with a range of

lengths. Figure 5 compares the accuracy during training of

these experiments. In contrast to the results with CIFAR-10,

the DropIn length makes a difference with ImageNet. We

believe that this is because the deeper architecture increases

the classification accuracy for larger datasets, hence the im-

provement with smaller DropIn lengths is more prominent.

From Figure 5 and Table 5, we can conclude that shorter

lengths are better than the longer ones. If the length is less

than the first scheduled drop in the learning rate at iteration

100,000, then the network is better trained. However, the

difference between dropin length = 75, 000 and 25,000 is

negligible implying that lengths less than the first scheduled

learning rate drop are equivalent.

4caffe.berkeleyvision.org/gathered/examples/

imagenet.html
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4.4. ImageNet / VGG

VGGn, a set of networks created by the Visual Geome-

try Group [19], won second place in the image classification

category of the 2014 ImageNet contest. These networks,

trained on the same database as the Alexnet architecture dis-

cussed in Section 4.3, contained n = 11, 13, 16, or 19 lay-

ers. In Table 6 we see the VGG16 (minus the DropIn layers

shown in red) architecture alongside what we will refer to

as VGG8 (not contained in the original paper). All convolu-

tional layers have a stride and padding of 1 and maxpooling

layers have a stride of 2. In their paper, the authors describe

the difficulty of training these deep networks and utilized a

weight transfer method to enable the network to converge

during training.

While it is possible to train a deep neural network by

first training a shallow network and using those weights to

initialize the deeper network, we believe that in addition to

being easier, training the full network with all the layers in

place leads to a better trained network. This is supported by

research on feature visualization, such as in Zeiler and Fer-

gus [31], where they demonstrate that higher layers have

more abstract representations. Training in place means that

the learned representations will conform well to the repre-

sentation at a given layer, while training a shallow network

and initializing the weights of a deeper network might not.

Instead of training smaller networks, we propose to use

our gradual DropIn method. For our studies, we utilized the

VGG16 prototxt file referenced on the Caffe website5 and

set up the solver file with the appropriate parameters from

the authors’ paper. Using traditional training methods, we

were only able to train the VGG8 architecture; the VGG16

failed to begin converging for multiple realizations. Using

VGG8 as a template, we augment VGG16 with DropIn lay-

ers to create VGG16 + DropIn (see Table 6).

Based on the evidence presented in Section 4.3, we

choose to test VGG16 with a DropIn length of 60,000. We

found that other lengths (100,000, 150,000, and 200,000)

began to converge as well but with limited time and re-

sources, we chose to report only this length for this pa-

per. The results of training VGG16 + DropIn are shown

in Figure 6. We see that with gradual DropIn the difficult

to train VGG16 network does converge. Here we see the

real power of the gradual DropIn method; without training

an additional shallower network we are able to directly train

VGG16, thus saving effort for the practitioner.

4.5. Using DropIn for regularization

The original AlexNet architecture uses dropout for regu-

larization during training in both fully connected layers and

it provides a substantial increase in the network’s accuracy.

5https://gist.github.com/ksimonyan/

211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_

deploy-prototxt

VGG8 VGG16 + DropIn

data (224× 224× 3)
conv1 1-64(3× 3) conv1 1-64(3× 3)

conv1 2-64(3× 3)
dropin (1 1 + 1 2)

maxpool(2× 2)
conv2 1-128(3× 3) conv2 1-128(3× 3)

conv2 2-128(3× 3)
dropin (2 1 + 2 2)

maxpool(2× 2)
conv3 1-256(3× 3) conv3 1-256(3× 3)

conv3 2-256(3× 3)
dropin (3 1 + 3 2)

conv3 3-256(3× 3)
dropin (3 2 + 3 3)

maxpool(2× 2)
conv4 1-512(3× 3) conv4 1-512(3× 3)

conv4 2-512(3× 3)
dropin (4 1 + 4 2)

conv4 3-512(3× 3)
dropin (4 2 + 4 3)

maxpool(2× 2)
conv5 1-512(3× 3) conv5 1-512(3× 3)

conv5 2-512(3× 3)
dropin (5 1 + 5 2)

conv5 3-512(3× 3)
dropin (5 2 + 5 3)

maxpool(2× 2)
fc6-4096

fc7-4096

fc8-1000

soft-max

Table 6: Network architectures for VGG8 and VGG16 +

DropIn . See the text for additional settings.

Figure 6: Validation data classification accuracy while

training the VGG16 + DropIn architecture with ImageNet

data.

4769

https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt
https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-vgg_ilsvrc_16_layers_deploy-prototxt


Figure 7: Test of DropIn regularization with AlexNet. Val-

idation data classification accuracy while training AlexNet

with ImageNet data. (Best viewed in color)

AlexNet (with 8 layers) provides a means to test DropIn

regularization. For this experiment, three cases were run as

shown in Table 7. Case 1 is the original AlexNet.

Case fc6 fc7

1 dropout dropout

2 dropout

3 dropout DropIn

Table 7: The three regularization experiments shows layers

with dropout or DropIn . The fully connected layers 6 and

7, are called fc6 and fc7, respectively.

The results from this experiment are shown in Figure 7,

where both DropIn and dropout probability ratios were 0.5
for all of these tests and all the other hyper-parameters were

the same. This figure shows that removing dropout from fc7

causes visible degrading of the accuracy between iterations

150,000 and 200,000 (green curve). This kind of degrada-

tion does not happen with DropIn. Instead, the accuracy

curve is similar to the curve with dropout (red versus blue

curve) but with a small degradation in overall performance.

We believe this degradation is because a DropIn network is

more difficult to train than a dropout network. However, the

final accuracy for the DropIn network is higher than from an

architecture without dropout (red versus green curve). This

experiment demonstrates that DropIn provides some regu-

larization since the degradation found in the case without

dropout is absent.

5. How to determine a good architecture

One of the challenges for deep learning practitioners is to

determine good choices for the hyper-parameter values and

the architecture for a given application and dataset. DropIn

and dropout provide an easier way to test choices for the

architecture than running a set of experiments with many

different architectures.

DropIn and dropout can allow one to test a range of ar-

chitecture depths and widths, respectively. Since adding

layers does not necessarily increase accuracy, one can run

with the gradual DropIn mode to see if there is little effect,

such as in Figures 2 and 4, or visible effect, such as in Fig-

ure 5. Substantial improvement implies that there will be

benefit from the additional depth.

Similarly, making a run where the dropout probability

ratio varies from perhaps 0.9 to 0.1 (using a slightly mod-

ified dropout) provides guidance on the minimum number

of neurons per layer. When decreasing the probability that

neurons are retained (as shown in Figure 9 of Srivastava

et al. [20]), the error typically has a range of the proba-

bility ratios where the error plateaus but at some threshold

probability the error increases. By multiplying the number

of neurons in a layer by this threshold probability, one can

approximately determine the minimum number of neurons

one must retain where there is negligible harm to the accu-

racy.

6. Conclusion

The major result of this paper is that deeper architec-

tures that cannot converge using standard training meth-

ods, become trainable by slowly adding in the new layers

during the training. In addition, there are indications that

DropIn layers help regularize the training of a network. We

found in general that if the shallow network is trainable,

then the deeper network, where additional layers are added

by a DropIn layer, is also trainable. With a large dataset like

ImageNet, adding additional layers increases accuracy.

We have not yet explored training with different

dropin length values for different DropIn layers in one net-

work. In addition, comparing DropIn to training by ini-

tializing the weights from training a separate shallow net-

work has not yet been tested; these are planned for future

work and will be reported elsewhere. Also we plan to test

DropIn within other architectures such as recurrent neural

networks. Future work also includes training networks with

hundreds of layers using asynchronous DropIn, where lay-

ers are added starting at different iterations. In addition,

we wish to test training where the entire very deep network

is initially very thin (few parameters to train) and units are

added to all the layers during the training. Furthermore, we

plan to study if a methodology can be developed to learn

from the data how to automatically optimize the architec-

ture during training and thus learn to adapt to an application

based on its data.
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