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Abstract

We propose DeepHand to estimate the 3D pose of a hand

using depth data from commercial 3D sensors. We discrimi-

natively train convolutional neural networks to output a low

dimensional activation feature given a depth map. This ac-

tivation feature vector is representative of the global or lo-

cal joint angle parameters of a hand pose. We efficiently

identify ’spatial’ nearest neighbors to the activation fea-

ture, from a database of features corresponding to synthetic

depth maps, and store some ’temporal’ neighbors from pre-

vious frames. Our matrix completion algorithm uses these

’spatio-temporal’ activation features and the corresponding

known pose parameter values to estimate the unknown pose

parameters of the input feature vector. Our database of ac-

tivation features supplements large viewpoint coverage and

our hierarchical estimation of pose parameters is robust to

occlusions. We show that our approach compares favor-

ably to state-of-the-art methods while achieving real time

performance (≈ 32 FPS) on a standard computer.

1. Introduction

Robust hand tracking is central to human-computer in-

teraction interfaces and augmented reality applications. Al-

though, there exists robust and accurate methods for full

body tracking, hand tracking is far more challenging [10,

11, 26, 23, 29, 16, 14, 17, 18]. This is due to several reasons:

(i) the hand pose exists in a high dimensional space because

each finger and the palm is associated with several degrees

of freedom, (ii) the fingers exhibit self similarity, are flexi-

ble and often occlude each other, (iii) noise in acquired data

coupled with fast finger articulations confounds continuous

hand tracking. Multi camera setups or GPU acceleration

eases some of these challenges, but limits deployment to

the general public.

We present a robust method for hand tracking with a

∗These authors made an equal contribution.

single depth camera which achieves real time performance

without a GPU. Specifically, we propose a novel matrix

completion method to estimate the joint angle parameters

on a per frame basis. Our method is flexible to operate with

or without temporal information. This alleviates the need

for explicit pose initialization if the method loses track or

the hand disappears from the camera’s view frustum. Fur-

thermore, our pre-compiled database supports large view-

point coverage and our hierarchical pose estimation from

global to local parameters is robust to severe finger occlu-

sions.

At the core of our approach lies a convolutional neu-

ral net (ConvNet) architecture to discriminatively reduce

the dimensionality of the depth map. ConvNets have

achieved ground-breaking performance in image classifica-

tion [2, 24] and video recognition [8, 9]. A naive strategy

to replace the classification layer in a deep neural net with a

regression layer leads to errors, as the objective function of-

ten gets stuck in a local minima. Previous approaches have

shown that this error decreases by incorporating a prior [15]

or a intermediate heat map features [29] into the ConvNet

architecture. Different from these approaches, we train sev-

eral ConvNets to output a discriminative low dimensional

activation feature in the penultimate fully connected layer.

This activation vector represents either the global hand ori-

entation or the local articulations of the five fingers, given

a depth map. Our main insight is that a pool of (spatially

or temporally) nearby activation features to an activation

feature can better represent the hand pose. For generat-

ing a population of activation features from which such a

pool is extracted, we render realistic depth maps covering a

large range of hand articulations and feed them into a deep

ConvNet. The ConvNets automatically learn the scope of

training (local or global), the finger type (thumb, ring, in-

dex, middle or little), and prevalent occlusions by simply

inputting the discretized class of the pose parameter val-

ues, and do not require any additional information. We

then store the activation features from the ConvNets for

each depth map in the training data to create a population
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database of activation features. We demonstrate these ac-

tivation features can be re-purposed on generic databases

in our experiments. Additionally, the low dimensionality

of the activation feature, coupled with product quantization

enables efficient retrieval of approximate nearest neighbors

from the population at runtime.

A pose estimation matrix is imputed with the deep ac-

tivation vectors of the nearest neighbor, their correspond-

ing joint angles and the activation vector of the input depth

map. This is similar in spirit of the collaborative filtering ap-

proach proposed in [1]. However, neither do we use low fi-

delity BRIEF descriptors for nearest neighbor retrieval, nor

do we use inefficient iterations to factorize and complete the

matrix. Instead, we estimate the unknown values in the in-

complete matrix (i.e. pose parameters of input depth map)

by assuming a low-rank matrix structure with missing en-

tries. We also add some temporal neighbors from previous

frames in the pose estimation matrix which act as a regular-

izer and reduce jitter of the estimated pose.

Following the success of cascaded approaches to hand

pose estimation [23, 18], we hierarchically regress the hand

pose from global to local joint angle parameters. The ar-

ticulation complexity of the palm is lower than of the fin-

gers, and hence, robust estimation of the global orientation

is an easier task relative to that of the fingers. The ConvNet

finetuned to the conditioned search space outputs more dis-

criminative activation features for finger articulations. This

in turn leads to better accuracy for finger parameter estima-

tion. We demonstrate that the ConvNet architecture signifi-

cantly outperforms PCA [23] and random forests (RF) [18]

for global pose initialization. Our overall pipeline runs as

32 frame per second (FPS) on a standard computer. Our

main contributions are summarized as follows:

1. Initialization of the pose matrix using a low dimen-

sional and discriminative representation of the global

orientation or finger articulations as an activation fea-

ture using deep ConvNets, which aids efficient re-

trieval of nearest neighbors from a large population of

pre-computed activation features using product quan-

tization.

2. An efficient matrix completion method for estimating

joint angle parameters using the initialized pose ma-

trix.

3. A hierarchical pipeline for hand pose estimation that

combines the global pose orientation and finger articu-

lations in a principled way while maintaining real-time

frame rates on a standard computer.

The rest of this paper is organized as follows. In sec-

tion 2, we review relevant literature on 3D hand pose esti-

mation from depth sensors. Section 3 briefly describes our

synthetic 3D hand model. The activation feature extraction

using ConvNets is discussed in section 4. Section 5 intro-

duces matrix completion for pose parameter estimation. Ex-

perimental results and evaluations are described in section

6. Finally, conclusions are presented in section 7.

2. Related Work

Approaches for hand-pose estimation can be broadly

classified as either generative (model-based) or discrimina-

tive (appearance based) methods. We briefly discuss the

generative and discriminative methods relevant to our work.

We refer the readers to [5] for a comprehensive review on

wearable, marker based and RGB input based techniques

from single or multiple cameras and [31] for review on

depth-based body pose estimation.

Generative methods An explicit hand model guides the

optimization of an objective function in model-based meth-

ods to recover the hand pose. [16] use particle swarm opti-

mization (PSO) and [14] use a Gauss-Seidel solver to re-

cover the hand configuration. The objective function is

based on the similarity of the depth map and an approxi-

mate depth map corresponding to the hand model. The ac-

curacy of the these methods are highly reliant on the hand

crafted similarity function. Moreover, these methods are

susceptible to error accumulation when the previous esti-

mates are inaccurate. To alleviate model drift prevalent in

generative methods, recent approaches adopt the paradigm

of optimization + reinitialization. These methods first cre-

ate a population of hand poses and then select the hand pose

that best fits the observed depth data. The heavy compu-

tational burden of this optimization means that the system

either achieves low frame rates (12 FPS in [30]) or needs to

be accelerated using a GPU (as in [18]).

Discriminative approaches Appearance based methods

are proposed for hand pose estimation in [10, 11, 27] simi-

lar in spirit to human pose estimation in [19]. The low res-

olution of hand depth map, self-occlusion and rapid move-

ments lead to large errors in these methods. Subsequently,

local regression [3] based approaches were presented to

improve the robustness to occlusions, but these methods

[23, 26, 28] may suffer from jittering between frames. In

[29], convolutional neural networks are used to infer 2D

heat-maps corresponding to joint positions. However, their

inverse kinematic approach for 3D pose recovery from a 2D

image is inefficient in the presence of occlusion. Although

our method is similar in spirit to regression, our deep activa-

tion features together with enforced temporal consistency in

the matrix completion method suppress jitter. Also, the low

rank assumption used for matrix completion implicitly al-

lays outliers and aggravates inliers. Our method also shares

relationship with the collaborative filtering model proposed

in [1]. However, the small size of their database makes the

method prone to errors when introduced to unknown poses.
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(a) Input depth map and RGB image

(b) Depth image

(f) Estimated Hand
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Figure 1: An overview of the proposed approach. In a real-setting, we extract region of interest using depth map and RGB-

based wrist band detector (a)-(b). The obtained depth image is fed into a ConvNet which outputs an activation feature.

This activation feature synchronizes with other features in a population database using our matrix completion method and

the global pose parameters are estimated(c). Based on this global pose initialization, we estimate the rest of the local joint

parameters in the same recursive manner (d). The final hand pose is displayed on a multimedia screen (f).

3. Preliminaries

In this section, we briefly describe our 3D hand model

and discuss our method to extract the region of interest cor-

responding to the hand which serves as input to our hand

pose estimation method.

Hand model We use a kinematic hand model with 21 de-

grees of freedom (DOF), represented as H(θ, φ), as stan-

dard in hand pose estimation literature (see Figure 1e). θ

denotes the set of 18 joint angle parameters and φ is the set

of 3 global translation parameters (x, y and z) of the hand.

Region of interest extraction Unlike the body, the hand

occupies a relatively small region in the overall depth image

obtained from the 3D depth camera. Hence, we preprocess

the depth image to only include values that lie in the range

of [50, 500] mm under the premise that the hand lies within

this range. We then do a largest blob detection as an in-

dicator of the hand segment, followed by median filtering

for noise removal, depth normalization so that values lie in

the range [0, 255], and finally resize the image while main-

taining the aspect ratio to obtain a 64×64 depth image.The

centroid of the blob in the original image marks the global

position, φ. In more extreme settings (for ranges upto 2000

mm), we use a colored wristband as a simple indicator of

the hand region as done in [17, 25]. Even in a close range

scenario, the wristband helps removing extraneous pixels

like those below the wrist, leading to better performance.

4. Dimensionality Reduction using Deep

Learning

It is well known that the activation features from the in-

termediate hidden layers of a ConvNet can be re-purposed

across domains [4, 6]. This suggests that the activation fea-

ture of a depth image itself contains discriminative cues

about its overall shape and form of the hand, in the con-

text of hand pose estimation. The thrust of our approach

relies on the contention that a pool of nearby activation fea-

tures is better able to reach consensus about the hand’s ori-

entation and shape. This introduces two challenges (1) The

activation features in the population should conform to the

activation features obtained from different individuals in di-

verse real settings. Additionally, they should be accurately

annotated with their ground truth labels (joint angles or po-

sitions) (2) The population of activation features must be

large enough to provide robust nearest neighbors to any in-

put activation feature, however should be efficiently retriev-

able and consume limited memory. A straightforward ap-

proach is to directly use the depth data gathered from 3D

sensors to train a ConvNet and store the corresponding acti-

vation features. However, creating a such database of hand

poses to cover full range of hand articulations with accu-

rate ground truth labels is a tedious task. In this section, we

describe how we generate such a population of activation

features from synthetic dataset, reflective of real data.
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Gaussian noise Classification accuracy

Yes 77.00%

No 44.88%

Table 1: The classification accuracy for the global rotation.

4.1. Synthetic population of realistic hand poses

We generate synthetic depth maps by first imposing

static (e.g., range of motion, joint length, location) and dy-

namic (e.g., among joints and fingers) constraints listed in

[13]1. We then uniformly sample each of the 18 joint pa-

rameters in this restricted configuration space. This en-

sures that the depth maps are reflective of real poses cov-

ering a wide range of hand articulations. However, data

from 3D sensors are prone to noise, distortion and addi-

tional artifacts. Hence, we add gaussian noise N(0, σ2)
to the synthetic depth maps wherein the standard deviation

σ is chosen from a range of [0, 2] by uniform sampling.

We empirically validated the inclusion of Gaussian noise

by testing the classification accuracy of the global rotation

angles in the correct bin (total 144) for a real hand depth

sequence captured using SoftKinect DS325 (2500 frames).

The drastic improvement of classification accuracy in Ta-

ble 1 highlights that our noise model if fairly reflective of

real sensor noise. Our training dataset covers an entire cam-

era viewpoint (coverage due to the 3 wrist rotation angles

θW = {θWr , θWp , θWy }, where θWr ∈ [−45, 135], θWp ∈

[−45, 180], θWy ∈ [−45, 180]). Our large coverage ensures

the robustness our method to camera viewpoint changes and

not restricted to near frontal poses. We discuss the size of

the synthetic population in context to ConvNets in the next

subsection.

4.2. Activation features using ConvNet

ConvNet and its variants are the current state of the art

architecture for numerous classification tasks such as ob-

ject detection, scene recognition, texture recognition and

fine grained classification. However, hand tracking is effec-

tively a regression task. Our preliminary experiments with

deep learning indicated that ConvNets do not adapt to re-

gression as well as they do for classification as shown in

Figure 2d. Consequently, our activation features are com-

puted using ConvNet for classification instead of regres-

sion. These activation features feed into our matrix com-

pletion method which implicitly regresses and outputs the

estimated joint angle parameters. The classification of joint

angles into quantized bins, and hence, calculation of the ac-

tivation feature in the penultimate layer, is performed by the

ConvNet architecture displayed in Table 2. Observe that the

penultimate layer corresponding to the activation feature is

1The availability of rigourous constraints in terms of joint angles is the

main reason we choose angles over joint position in our hand pose method.

Layers # Kernels Filter size Stride Pad

1 Conv 16 5×5×1 1 2

2 Pmax 2 0

3 ReLU

4 Conv 32 5×5×16 1 2

5 ReLU

6 Pmax 2 0

7 Conv 32 5×5×32 1 2

8 ReLU

9 Pmax 2 0

10 Conv 64 5×5×32 1 2

11 ReLU

12 Pmax 2 0

13 Conv 128 4×4×64 1 0

14 ReLU

15 Conv 32 1×1×128 1 0

16 ReLU

17 Conv 144 1×1×32 1 0

18 Smax

Table 2: Overall architecture of our convolutional networks.

(Conv: convolutional layer, Pmax: max pooling layer,

ReLU: rectified linear units layer, Smax: softmax layer)

a 32 dimensional vector of the sixth convolutional layer so

as to reduce memory usage in storing the population of acti-

vation features. We use these activation features in a collab-

orative spatio-temporal fashion to estimate pose parameters

using efficient nearest neighbor search and out novel matrix

completion model.

There are two extremal strategies for quantization. The

first strategy is to quantize each joint angle separately for a

total of 21 ConvNets. However, this is inefficient both in

terms of speed and memory. The second is to use an all-

in-one strategy to train all joint angle parameters simultane-

ously. However, it would be impossible to learn an accurate

classifier in such a high dimensional space even with a nom-

inal number of bins. Hence, we use a 2-stage hierarchical

strategy which satisfactorily balances computational time,

memory requirement and classification accuracy.

In Stage 1 the activation feature associated with the 3

global rotation angles, θW = {θWr , θWp , θWy } is calculated

and input into the matrix completion method along with a

pool of nearest neighbors. The output of the matrix com-

pletion method is used to infer the correct rotation bin. For

each rotation bin, five ConvNets are trained to output the

activation feature associated with each of the five fingers.

The ConvNets in Stage 2 are trained on images within the

bin to simplify learning and also on images in adjacent bins

to prevent boundary errors. We used 200K images for Stage

1 global regression (see Figure 1c) wherein the roll, pitch,

yaw angles were quantized into 144 bins. Subsequently, 5

Convnets for each of the 144 bins were trained on 10K im-
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Model Accuracy Memory Settings

RF 57.45 % 1.30 GB 22 Depth, 70 Trees

59.04 % 1.87 GB 22 Depth, 100 Trees

ConvNet 71.01 % 2.12 MB 20 Epochs

72.30 % 2.12 MB 25 Epochs

PCA 5.72 % None

Table 3: Accuracy and memory comparison of global pose

initialization.

ages within the bin and 10K randomly chosen images in

adjacent bins. Training converged after 20 Epochs for the

global bin and approximately 10 Epochs for the local rota-

tion bins. The discrete quantization over the joint angle val-

ues for each finger is as follows: thumb (144), index (144),

middle (36), ring (144), and little (144).

The activation feature associated with the global rotation

is critical to the overall accuracy of our approach because

this step influences all subsequent ones. To demonstrate the

efficacy of ConvNet relative to other approaches, we detail

the classification accuracy of ConvNet for global rotation

relative to PCA [23] and random forest (RF) [18]. We used

100K depth images because of RF’s memory constraints.

Table 3 shows that ConvNet achieves a very high accuracy

with minimal memory requirement.

5. Matrix Completion for Regression

The matrix completion algorithm runs 6 times: once for

the 3 global rotation angles and 5 times for estimating the

15 joint angle parameters associated with the fingers. An

iterative approach as the one in [1] is inefficient. Instead we

evaluate the unknown parameters in a single shot by assum-

ing a low rank matrix. We discuss the details of our nearest

neighbor retrieval to create a pool of activation features fol-

lowed by the matrix completion method below.

5.1. Extracting pool of activation features

Our matrix completion method takes spatio-temporal

nearest neighbors as input. Acquiring temporal nearest

neighbors are trivial as they are simply the activation fea-

tures from the previous frames. However, brute force near-

est neighbor evaluation from say the 200K global activa-

tion vectors introduces a computational bottleneck unsuit-

able for realtime application. Our solution to alleviate this

problem is to use the top classes predicted by the softmax

function in ConvNet to first reduce the search space. We

then use highly efficient product quantization based nearest

neighbor approximation [7] with 8 subquantizers to retrieve

the desired number of nearest neighbors. Details of product

quantization are skipped for brevity. In practice, we found

retrieving a higher fraction of approximate nearest neigh-

bors by product quantization and then selecting the desired

number of nearest neighbors using brute force search from

this reduced subset to be more robust than direct retrieval.

5.2. Matrix Completion

Let n be number of spatial nearest neighbors, D1 ∈
R

n×r be the r dimensional activation vectors and P1 ∈
R

n×m be the m desired joint angle parameters being esti-

mated of the n neighbors. In addition, let vector d2 ∈ R
1×r

be the r dimensional activation feature output from Con-

vNet. Let vector p2 ∈ R
1×m be the unknown parameters.

M =

[

D1 P1

d2 p2

]

(1)

Our task is to estimate p2 given the other 3 block matrices.

Assuming a low rank structure of matrix M this reduces ro

solving:

p2 = d2(D1)
−1P1, (2)

The proof of the above result is detailed in the supplemen-

tary material.

In practice, we observed that kernelizing the feature ma-

trix and regularizing it by adding a small constant, c to the

diagonal, in the spirit of ridge regression makes the output

more robust. This parameter c is set to 0.001 in all our ex-

periments. We use the RBF kernel with sigma equal to the

variance of the dataset (σ = 200).

A straightforward extension beyond including just the

spatial neighbors is to also include t temporal neighbors

from previous frames. This reduces jitter and improves the

final quality of our solution. We use 60 nearest neighbors

and 16 temporal neighbors for the global parameter estima-

tion. For the 15 local angles, we use 24 nearest neighbors

and 4 temporal neighbors. The choice of these parameters

is empirically validated in the supplementary material.

6. Experiments

We conduct a comprehensive evaluation with state-of-

the-art approaches as well as self-generated baselines on the

synthetic and real datasets to demonstrate the efficacy of our

solution. We first describe the datasets and baselines.

6.1. Datasets

We split our evaluation into two stages. First, we use

synthetic data to compare our method to baselines. This

comparison validates the rationale of our specific approach

against other choices. This data is generated using the same

approach as described in Section 3 to generate our database,

albeit continuity constraints are enforced. Two synthetic se-

quences are generated which are 2.5K frames long at stan-

dard rates (approximately 80 seconds each). The advantage
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of these synthetic sequences are that they are already la-

beled, avoiding tedious ground-truth assignment.

Next, for fair comparison to other methods, we evalu-

ate the performance of our method on two publicly avail-

able datasets: Dexter1 [21] and NYU [29]. The Dexter1

dataset consists of seven gestures (i.e., adbadd, flexex1,

pinch, fingercount, tigergrasp, fingerwave, and random)

with high inter-gesture verifiability, however, mostly from

frontal viewpoints. Hence we use the NYU dataset for

a more thorough evaluation of the method. As we shall

shortly show, our method remarkably achieves state-of-art

performance without fine-tuning on their training dataset.

Although the authors are aware of other datasets like

ICVL [26], MSRA14 [17], or MSRA15 [23] in the litera-

ture, we do not use them for one or more of the following

reasons: (1) the depth pixels of the body are included with

the hand depth map. Recall we use a heuristic method for

segregating the hand from the rest of the body and a wrist

band under more extreme conditions. We did not find a

straightforward way to segregate the data without incurring

loss. (2) The hand poses are enforced using muscular labor,

i.e., hand configurations wherein one or more finger applies

pressure on another. These configurations are not accounted

for in our joint angle modeling framework to render syn-

thetic depth maps, however, modeling additional constraints

to account for such hand poses is plan of future work. Also

note that we use the SoftKinetic’s DethSense DS325 for all

our real demonstrations.

6.2. Baselines for method validation

There are three salient features of our approach which

we rigorously validate. First, a hierarchical approach is jus-

tified in spite of the computational overload it introduces.

Second, a pool of activation features is better at estimating

the hand pose than a single activation feature or a direct re-

gression based approach using ConvNets. Third, our choice

of imputing the matrix with spatio-temporal neighbors and

kernelizing the features provides superior performance. We

naturally perform this validation by comparing to the fol-

lowing three baselines: (a) Holistic which evaluates all pa-

rameters in an all-in-one approach using a single activation

feature. We also compare it to JMFC which also performs

a matrix update using a single feature vector, although us-

ing computationally expensive iterations in [1] (b) Conv-PQ

which directly estimates the pose parameters to be the near-

est neighbor and Regression which directly regresses pose

parameters using ConvNets with L2 loss are used to val-

idate our choice of pool of activation feature, and finally

(c) No-temporal which contains only spatial neighbors for

matrix completion, Non-kernel which uses feature matrix

without kernelization, and Weighted which finds pose pa-

rameters using Gaussian similarity between activation fea-

tures as weights are used to validate our matrix completion

approach. The validation is done in terms of one or more

of the following standard error metrics popular for pose es-

timation problems: (a) the average joint angle error in de-

grees, (b) the average joint distance error in millimeters, (c)

the maximum allowed joint angle error in terms of a thresh-

old εA, and (d) the maximum allowed joint distance error

in terms of a threshold εD. Broadly speaking, the first two

metrics evaluate performance at a local joint level whereas

the the other measure global robustness of an approach.

We employ the appropriate metric based on the context of

the evaluation. Although our angle based method is par-

ticularly effective in minimizing joint angle errors, yet we

choose joint distances as our error metric on public datasets

to demonstrate the overall robustness of our approach.

6.3. Comparison to Baselines

In this section, we quantitatively evaluate our method

with respect to the baselines on the synthetic datasets. Fig-

ure 2 shows that our method significantly outperforms the

proposed baselines both in terms of local as well global er-

ror metrics. The performance markup over the Conv-PQ

approach as seen in Figure 2c indicates that a ConvNet by

itself would do a poor job of inferring a complex articulated

structure such as the hand. The performance improvement

over Holistic in the zone of small angles is also intuitive. It

indicates that the global activation feature contains some la-

tent information about the local joint angles, but this infor-

mation is better revealed by a hierarchical estimation pro-

cedure. This is also validated in Figure 2a and 2b where

we see a significant performance improvement in terms of

joint angles for finger portions that are frequently occluded

such as the middle finger. It is also noteworthy to note that

the similarity of these plots in terms of error ranges to plots

on real hand sequences implicitly validate our data creation

process. Regression 2 for joint angle prediction resulted

in worse performance than even Conv-PQ baseline (nearest

activation feature) as shown in Figure 2d. We adopted dif-

ferent approaches, e.g., fine-tuning our ConvNets, L1 loss,

etc.to ensure that direct regression is indeed suboptimal. We

contend that as joint angles are a function of relative joint

points,learning joint angles is harder compared to joint posi-

tions, and hence, resulted in inferior performance. Figure 2e

shows the performance of matrix-completion baselines rel-

ative to our proposed approach. The figure validates that

constructing a kernel, incorporating temporal information

and using matrix completion instead of simple weighted re-

gression are all critical to good performance.

6.4. Comparison with the state-of-the-arts

Having validated the rationale of our approach, we now

compare our method to other state-of-the-art approaches

2the penultimate layer is of dimension 2048 as we do not need nearest

neighbor retrieval
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(a) (b)

(c) (d) (e)

Figure 2: The results of quantitative evaluation on the synthetic dataset.

(a) (b)

Figure 3: The results of quantitative evaluation on the public dataset. Note that the accuracies are directly estimated from

corresponding figures (i.e., figure 4 in [20] and figure 3a in [15]).

[29, 21, 26, 22, 20, 15, 1] on the Dexter1 and NYU datasets.

Quantitative Analysis We measured the average dis-

tance error of five fingertips (in mm) on the Dexter1 dataset

to evaluate the overall robustness of our approach. Figure 3a

shows the comparison of our approach to other methods

which include both discriminative [26, 1] as well as gener-

ative [21, 22] methods. Not only does our method achieve

the lowest overall error rate (see Table 4), we also achieve

the lowest individual error rates for all but one gesture i.e.

adbadd. This is because the particular gesture is especially

hard to model in terms of joint angle constraints.

We evaluated our approach directly on the 8.2K of test

depth maps from the NYU dataset. Figure 3b illustrates

the maximum allowed error with respect to the distance
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Input depth

Our 
estimation

Dexter1 NYU Failure cases

Figure 4: Qualitative evaluations are conducted on two public datasets, Dexter1 and NYU. The first row shows the input

depth image, and corresponding estimation is presented in the second row.

Methods [26] [21] [22] [20] [1] Ours

Error 42.4 31.8 24.1 19.6 25.27 16.35

Table 4: The overall average error (mm) of the five finger-

tip positions on Dexter1. Ours shows the lowest error rate

compared to the state-of-the-art methods.

threshold. The fact that our method performs better than

[15] over a long range indicates the activation features we

get from ConvNet can be used across domains and sensor

types 3, and hence the activation features can potentially be

made general purpose. This is encouraging in the context of

progressively fine-tuning ConvNets with more information

such as when new joint angle constraints or dynamic con-

straints become available. Furthermore, simulating princi-

pled noise models such as [12] corresponding to true sensor

noise can further enhance the generality of these features in

the context of hand pose estimation.

Qualitative Analysis We do a qualitative evaluation of

our algorithm with the state-of-the-art methods on some

public datasets. The top row of Figure 4 shows cropped

64x64 depth images which are used as input to our system,

and the second row shows corresponding estimates with our

matrix completion method (without temporal neighbors).

All estimated poses are kinematically valid and follow a

natural sequence. For the sake of completion, we also show

some failure cases in the last two columns of Figure 4. In

our system this happens when some unnatural pose (driven

by muscular force ) appears in front of the camera or when

the image is severely affected by noise or has missing parts.

7. Conclusion

We present a novel framework for hand pose estimation

using a deep convolutional neural network. Instead of us-

ing a single activation feature, we use a pool of activation

features to synchronize and collectively estimate the hand

3NYU dataset use PrimeSense to capture their data

configuration, all in real time. This pool is derived by train-

ing a deep ConvNet with a large database of synthetic hand

poses and efficiently storing the activation feature corre-

sponding to the penultimate fully connected layer. Care-

ful thought was placed so that this database is reflective of

real data. At runtime the pool of activation features in the

spatial domain and temporal domain combine together in a

hierarchical way to robustly estimate the hand pose. The

derived activation features can be applied across domains

and sensor types as demonstrated in our experiments. Fur-

thermore, our method achieves state of the art performance.

Although our approach is general, one limitation of our ac-

tivation features is that the estimations are only valid in the

joint angle domain. Future work will focus on ways such

that people working in the joint angle or joint position do-

main can seamlessly fuse their models together to create

even deeper and more robust models. Another line of future

work is to investigate our matrix completion approach in a

more general setting. The simplicity combined with its effi-

ciency makes a promising alternative to standard regression

techniques for a wide array of machine learning tasks.
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