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Abstract

The status quo approach to training object detectors re-

quires expensive bounding box annotations. Our framework

takes a markedly different direction: we transfer tracked ob-

ject boxes from weakly-labeled videos to weakly-labeled im-

ages to automatically generate pseudo ground-truth boxes,

which replace manually annotated bounding boxes. We

first mine discriminative regions in the weakly-labeled im-

age collection that frequently/rarely appear in the posi-

tive/negative images. We then match those regions to videos

and retrieve the corresponding tracked object boxes. Fi-

nally, we design a hough transform algorithm to vote for

the best box to serve as the pseudo GT for each image, and

use them to train an object detector. Together, these lead to

state-of-the-art weakly-supervised detection results on the

PASCAL 2007 and 2010 datasets.

1. Introduction

Object detection is a fundamental problem in computer

vision. While tremendous advances have been made in re-

cent years, existing state-of-the-art methods [9, 30, 12, 11]

are trained in a strongly-supervised fashion, in which the

system learns an object category’s appearance properties

and precise localization information from images annotated

with bounding boxes. However, such carefully labeled ex-

emplars are expensive to obtain in the large numbers that

are needed to fully represent a category’s variability, and

methods trained in this manner can suffer from uninten-

tional biases or errors imparted by annotators that hinder

the system’s ability to generalize to new, unseen data [35].

To address these issues, researchers have proposed to

train object detectors with relatively inexpensive weak su-

pervision, in which each training image is only weakly-

labeled with an image-level tag (e.g., “car”, “no car”)

that states an object’s presence/absence but not its loca-

tion [39, 10, 26, 32, 33, 3]. These methods typically mine

discriminative visual patterns in the training data that fre-

quently occur in the images that contain the object and

rarely in the images that do not. However, due to scene

clutter, intra-class appearance variation, and occlusion, the

discriminative patterns often do not tightly fit the object-of-

Tracked objects in weakly-labeled videos tagged with “car”

Weakly-labeled training images tagged with “car”

match retrieve match retrieve

…

Figure 1. Main idea. (top) Automatically tracked objects (yellow

and blue boxes) in weakly-labeled videos without any human ini-

tialization. (bottom) Discriminative visual regions (green boxes)

mined in weakly-labeled training images. For each discriminative

region, we find its best matching region across all videos, and re-

trieve its overlapping tracked object box (yellow dotted box) back

to the image. The retrieved boxes are used as pseudo ground-truth

to train an object detector. Our approach improves object localiza-

tion by expanding the initial visual region beyond a small object

part (bottom-left) or removing the surrounding context (bottom-

right). In practice, we combine the retrieved boxes from multiple

visual regions in an image to produce its best box.

interest; they either correspond to a small part of the object

such as a car’s wheel instead of the entire car, or include the

surrounding context such as a car with portions of the sur-

rounding road (Fig. 1 bottom, green boxes). Consequently,

the detector that is trained using these patterns performs

substantially worse than strongly-supervised algorithms.

Main idea. So, how can we create accurate object de-

tectors that do not require expensive bounding box anno-

tations? Our key idea is to use motion cues from videos as a

substitute for strong human supervision. Given a weakly-

labeled image collection and videos retrieved using the

same weak-label (e.g., “car”), we first automatically track

and localize candidate objects in the videos, and then trans-

fer their relevant tracked object boxes to the images. We

transfer the object boxes by mining discriminative visual

regions in the image collection, and then matching them to

regions in the videos. See Fig. 1.

Since temporal contiguity and motion signals are lever-
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aged to localize and track the objects in video, their trans-

ferred boxes can provide precise object localizations in the

weakly-labeled images. Specifically, they can expand the

initial discovered region to provide a fuller coverage of the

object, or decrease the spatial extent of the initial discovered

region to remove the surrounding context (Fig. 1 bottom,

yellow boxes). We then use the transferred boxes to gen-

erate pseudo ground-truth bounding boxes on the weakly-

labeled images to train an object detector, replacing stan-

dard human-annotated bounding boxes. To account for

noise in the discovered discriminative visual regions, video

tracking, and image-to-video matches, we retrieve a large

set of object boxes and combine them with a hough trans-

form algorithm to produce the best boxes.

What is the advantage of transferring object boxes to im-

ages instead of directly learning from videos? In general,

images provide more diverse intra-category appearance in-

formation than videos, especially given the same amount of

data (e.g., a 1000-frame video with a single object instance

vs. 1000 images with ∼1000 different object instances), and

are often of higher quality since frames from real-world

(e.g., YouTube) videos typically suffer from motion blur

and compression artifacts. Importantly, in this way, our

framework opens up the possibility to leverage the huge

static imagery available online, much of which is already

weakly-labeled.

Contributions. In contrast to existing strongly-

supervised object detection systems that require expensive

bounding box annotations, or weakly-supervised systems

that rely solely on appearance-based grouping cues within

the image dataset, we instead transfer tracked object boxes

from videos to images to serve as pseudo ground-truth

to train an object detector. This eliminates the need for

expensive bounding box annotations, and compared to

existing weakly-supervised algorithms, our approach

provides more complete and tight localizations of the

discovered objects in the training data. Using videos from

the YouTube-Objects dataset [28], we demonstrate that this

leads to state-of-the-art weakly-supervised object detection

results on the PASCAL VOC 2007 and 2010 datasets.

2. Related Work

Weakly-supervised object detection. While recent state-

of-the-art strongly-supervised methods [12, 30, 15, 11] us-

ing deep convolutional neural networks (CNN) [18, 17]

have shown great object detection accuracy, they require

thousands of expensive bounding-box annotated images.

To alleviate expensive annotation costs, weakly-

supervised methods [39, 10, 26, 32, 33, 3] train models

on images labeled only with object presence/absence la-

bels, without any location information of the object. Early

efforts [39, 10] focused on simple datasets with a single

prominent object in each image (e.g., Caltech-101). Since

then, a number of methods [7, 26, 32, 33, 34, 4, 25] learn

detectors on more realistic and challenging datasets (e.g.,

PASCAL VOC [27]). The main idea is to identify discrim-

inative regions that frequently appear in positive images

and rarely in negative ones. However, their central weak-

ness is that due to large intra-category appearance varia-

tions, occlusion, and background clutter, they often mis-

localize the objects in the training images, which results

in sub-optimal detectors. We address this challenge by

matching the discriminative regions to videos to retrieve

automatically-tracked object boxes back to the images. This

results in better localization on the weakly-labeled training

set, which leads to more accurate object detectors.

Learning with videos. Video offers something that static

images cannot: it provides motion information, a strong

cue for grouping objects (the “law of common fate” in

Gestalt psychology). Existing methods learn part-based an-

imal models [29], learn detectors from images while using

video patches for regularization [20], or augment training

data from videos for single-image action recognition [2].

While some work consider learning object category mod-

els directly from (noisy) internet videos [28, 14, 23], we are

exploring a rather different problem: we use video data to

simulate human annotations, but ultimately use image data

to train our models. Critically, this allows our framework

to potentially take advantage of the huge static image data

available on the Web, which existing video-only learning

methods cannot.

Finally, recent work uses videos for semi-supervised ob-

ject detection with bounding box annotations as initializa-

tion [21], or trains a CNN for feature learning using track-

ing as supervision and fine-tuning the learned representa-

tion with bounding box annotations for detection [38]. In

contrast, we do not require any bounding box annotations.

3. Approach

We are given a weakly-labeled image collection

SI={I1, . . . , IN}, in which images that contain the object-

of-interest (e.g., “car”) are labeled as positive and the re-

maining images are labeled as negative. We are also given a

weakly-labeled video collection SV ={V1, . . . , VM} whose

videos contain the positive object-of-interest, but where and

when in each video it appears is unknown.

There are three main steps to our approach: (1) identi-

fying discriminative visual regions in SI that are likely to

contain the object-of-interest; (2) matching the discrimina-

tive regions to tracked objects in videos in SV and retrieving

the tracked objects’ boxes back to the images in SI ; and (3)

training a detector using the images in SI with the retrieved

object boxes as supervision.

3.1. Mining discriminative positive visual regions

We first mine discriminative visual regions in the image

collection SI that frequently appear in the positive images
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cluster 1 cluster 2 cluster 3 cluster 4 cluster 1 cluster 2 cluster 3 cluster 4

Figure 2. Example positive regions in the top-4 automatically mined discriminative clusters for aeroplane, bird, boat, car, cat, cow, dog,

horse, motorbike, and train. While the discovered regions are relevant to the positively-labeled object category, most of them do not localize

the object well, capturing only an object-part (e.g., cat, cluster 1) or including the surrounding context (e.g., aeroplane, cluster 2).

and rarely in the negative ones; these regions will likely cor-

respond to the object-of-interest or a part of it. For this, we

follow a similar approach to [31, 8, 33, 34].

For each image in SI , we generate ∼2000 object pro-

posals (rectangular regions) using selective search [36], and

describe each proposal with a pool5 activation feature using

AlexNet [17] pre-trained for ImageNet classification. For

each region, we find its best matching (nearest neighbor)

region in each image in SI (regardless of image label) us-

ing cosine similarity. Each region and its k closest nearest

neighbors form a cluster. We then rank the clusters in de-

scending order of the number of cluster instances that are

from the positive images. Since we create clusters for ev-

ery region in every image, many will be redundant. We

therefore greedily remove near-duplicate clusters that con-

tain many near-identical regions to any higher-ranked clus-

ter, as measured by spatial overlap of more than 25% IOU

between 10% of their cluster members. Finally, for each

remaining cluster, we discard any negative regions.

Let P be the set of all positive regions in the top-C
ranked clusters. While P contains many diverse and dis-

criminative regions of the object-of-interest (see Fig. 2),

most of the regions will not tightly localize the object for

three main reasons: (1) the most discriminative regions usu-

ally correspond to object-parts, which tend to have less ap-

pearance variation than the full-object (e.g., face vs. full-

body of a cat), (2) co-occurring “background” objects are

often included in the region (e.g., airplane with sky), and

(3) most of the initial object proposals are noisy and do not

tightly fit any object to begin with. Thus, the regions in

P will be sub-optimal for training an object detector, since

they are not well-localized; this is the central weakness of

all existing weakly-supervised methods. We next explain

how to use videos labeled with the same weak-label (e.g.,

“car”) to improve the localization.

3.2. Transferring tracked object boxes

For now, assume that we have a (noisy) object track in

each video in SV , which fits a bounding box around the

positive object in each frame that it appears. In Sec. 3.4, we

explain how to obtain these tracks.

For each positive image region in P , we search for its

n best matching video regions across all videos in SV and

return their corresponding tracked object boxes to improve

the localization of the object in its image. There is an impor-

tant detail we must address to make this practical: match-

ing with fc7 features (of AlexNet [17]) can be prohibitively

expensive, since each candidate video region (e.g., selec-

tive search proposal) would need to be warped to 227x227

and propagated through the deep network, and there can

be ∼2000 such candidate regions in every frame, and mil-

lions of frames. Instead, we perform matching with conv5

features, which allows us to forward-propagate an entire

video frame just once through the network since convolu-

tional layers do not require fixed-size inputs. To compute

the conv5 feature maps, we use deep pyramid [13], which

creates an image pyramid with 7 levels (where the scale fac-

tor between levels is 2−1/2) and computes a conv5 feature

map for each level (for the 1st level, the input frame is re-

sized such that its largest dimension is 1713 pixels). We

then match each positive image region to each frame in

each video densely across location and scale in a sliding-

window fashion in conv5 feature space, using cosine sim-

ilarity. Note that this restricts matching between regions

with similar aspect ratios, which can also help reduce false

positive matches.

Given a positive image region’s n best matching video

regions, we return each of their frame’s tracked object

bounding box (if it has any spatial overlap with the matched

video region) back to the positive region’s image, while pre-

serving relative translation and scale differences. Specifi-
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 3. (a) Weakly-labeled positive image for aeroplane, bird, boat, car, cat, cow, dog, horse, motorbike, and train. (b) Heatmap showing

the distribution of the initial discriminative positive regions found in the image. (c) Heatmap showing the distribution of the transferred

video object boxes in the image. (d) Our automatically discovered pseudo ground-truth box. Notice how the initial discriminative regions

focus more on object-parts, whereas the transferred boxes focus more on the full object. This leads to better localization of the object in

the weakly-labeled positive image. Best viewed on pdf. Results for all images can be found in the supplementary material.

(b) Best matching video region 

and tracked object box

(c) Retrieved box conditioned 

on matching region

(a) Positive image region

Figure 4. We match a positive image region (a) to all video frames

in a sliding-window fashion, and for the best matching vido re-

gion (green box) (b), we retrieve its overlapping tracked object

box (yellow dotted box) back to the image (c).

cally, we can parameterize any region with its top-left and

bottom-right coordinate values: [xmin, ymin, xmax, ymax].
Denote a positive image region as r, its matched video re-

gion as v, and the corresponding overlapping tracked re-

gion as t. Then, the returned bounding box r
′ is: r

′ =
r+(t− v). See Fig. 4. We repeat this for all n best match-

ing video regions, and for each positive region in P .

Each positively-labeled image in SI (that has at least one

positive region) now has a set of retrieved bounding boxes,

up to n from each positive region in the image. Some will

tightly fit the object-of-interest, while others will be noisy

due to incorrect matches/tracks. We thus use the hough

transform to vote for the best box in each image. Specifi-

cally, we create a 4-dimensional hough space in which each

box casts a vote for its [xmin, ymin, xmax, ymax] coordi-

nates. We select high density regions in the continuous

hough space with mean-shift clustering [5], which helps the

voting be robust to noise and quantization errors [19]. The

total vote for box coordinate l is a weighted sum of the votes

in its spatial vicinity:

vote(l) =
∑

i

vote(r′i) ·K
(

l− r
′

i

b

)

, (1)

where the kernel K is a radially symmetric, non-negative

function centered at zero and integrating to one, b is the

mean-shift kernel bandwidth, i indexes over the positive re-

gions in the image, and vote(r′i)=1, ∀i. We select l with

the highest vote as the final box for the image. If the highest

vote is less than a threshold θ = 20, then there is not enough

evidence to trust the box so we discard it. See Fig. 3 (c-d)

for example distributions of the transferred bounding boxes

and final selected bounding box. We repeat this hough vot-

ing process for each positively-labeled image in SI .

3.3. Training an object detector

We can now treat the final selected boxes as pseudo

ground-truth (GT)—as a substitute for manually annotated

boxes—to train an object detector, with any algorithm de-

veloped for the strongly-supervised setting. We use the

state-of-the-art Regions with CNN (R-CNN) system [12].

Briefly, R-CNN computes CNN features over selective

search [36] proposals, trains a one-vs-all linear SVM (with

GT boxes as positives and proposals that have less than 0.3

intersection-over-union overlap (IOU) with any GT box as

negatives) to classify each region, and then performs bound-

ing box regression to refine the object’s detected location.

There are three considerations to make when adapting

R-CNN to our work: (1) each positively-labeled image has

at most one pseudo GT box, which means that negative re-

gions from the same image must be carefully selected since

the image could have multiple positive instances (e.g., mul-

tiple cars in a street scene) but our pseudo GT may only be
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covering one of them; (2) some positively-labeled images

may have no pseudo GT box (i.e., if there were not enough

votes), which means that we would not be making full use of

all the positive images; and (3) some pseudo GT boxes may

be inaccurate even after hough voting due to noise in the

matching or tracking. These can all lead to a sub-optimal

detector if not handled carefully.

To address the first issue, we train an R-CNN model with

the pseudo GT boxes as positives, and any selective search

proposal that has an IOU less than 0.3 and greater than 0.1

with a pseudo GT box as negatives. In this way, we mini-

mize the chance of mistakenly labeling a different positive

instance in the image as negative, but at the same time, se-

lect mis-localized regions (that have some overlap with a

pseudo GT) as hard-negatives. We treat all selective search

proposals in any negatively-labeled image in SI as negative.

To address the second and third issues, we perform a

latent SVM (LSVM) update [9] given the initial R-CNN

model from above to update the pseudo GT boxes. For im-

ages that do not have a pseudo GT box, we fire the R-CNN

model and take its highest-scoring detection in the image as

the pseudo GT box. For images that already have a pseudo

GT box, we take the highest-scoring detection that has at

least 0.5 IOU with it, which prevents the updated box from

changing too much from the initial box. We then re-train

the R-CNN model with the updated pseudo GT boxes.

Finally, we also fine-tune the R-CNN model to update

not only the classifier but also the features using our pseudo

GT boxes, which results in an even greater boost in detec-

tion accuracy (as shown in Sec. 4.3). Fine-tuning CNN fea-

tures has not previously been demonstrated in the weakly-

supervised detection setting, likely due to existing methods

producing too many false detections in the training data.

Our discovered pseudo GT boxes are often quite accurate,

making our approach amenable for fine-tuning.

3.4. Unsupervised video object tracking

Our framework requires an accurate unsupervised video

object tracker, since its tracked object boxes will be used

to generate the pseudo GT boxes on the weakly-labeled im-

ages. For this, we use the unsupervised tracking method

of [40], which creates a diverse and representative set of

spatial-temporal object proposals in an unannotated video.

Each spatial-temporal proposal is a sequence of boxes fit-

ting an object over multiple frames in time.1

Briefly, the method begins by leveraging appearance and

motion objectness to score a set of static object propos-

als in each frame, and then groups high-scoring proposals

across frames that are similar in appearance and frequently

appear throughout the video. Each group is then ranked

according to the average objectness score of its instances.

1We also tried the video segmentation method of [24]. However, it fails

to produce good segmentations when an object is not moving. Ultimately,

transferring its object boxes resulted in a slightly worse detector.

Figure 5. Examples showing the spatio-temporal boxes generated

with [40] (blue), and our automatically selected box (yellow).

For each group, the method trains a discriminative tracking

model with the group’s instances as positives and all non-

overlapping regions in their frames as negatives, and tracks

the object in each instance’s adjacent frames. The model

is then retrained with the newly tracked instances as posi-

tives, and the process iterates until all frames are covered.

The output is a set of ranked spatio-temporal tracks that fit a

box around the objects in each frame that they appear. The

method also has a pixel-segmentation refinement step, but

we skip it for speed. See [40] for details.

For each video in SV , we take the 9 highest-ranked

tracks generated by [40]. Not all of these tracks will corre-

spond to the object-of-interest. We therefore use our mined

positive regions in P to try to select the relevant one in each

frame. Specifically, given frame f , we match each posi-

tive region ri to it in a sliding-window fashion in conv5

feature space (as in Sec. 3.2), and record its best match-

ing box v
f
i in the frame. We score a tracked box t

f
j in

frame f as: score(tfj ) =
∑

i IOU(vf
i , t

f
j ) × sim(ri,v

f
i ),

where i indexes the positive regions in P , j is the index of a

tracked video box, and sim is cosine similarity. We choose

the tracked box with the highest score, and discard the rest.

Our selection criterion favors choosing a box in each video

frame that has high-overlap with many good matches from

discriminative positive regions. See Fig. 5 for examples.

The selected video boxes are provided as input to the video-

matching module described in Sec. 3.2.

4. Experiments

We analyze: (1) localization accuracy of our discovered

pseudo GT boxes on the weakly-labeled training images,

(2) detection performance of our trained models on the test

images, (3) ablation studies analyzing the different compo-

nents of our approach, and (4) our selection criterion for

choosing the relevant object track in each video frame.

Datasets. We use videos from YouTube-Objects [28] and

images from PASCAL VOC 2007 and 2010. We evaluate on

their 10 shared classes (treating each as a positive in turn):

aeroplane, bird, boat, car, cat, cow, dog, horse, motorbike,

train. YouTube-Objects contains 9-24 videos per class; each

video is 30-180 sec; 570K total frames. We only use each

video’s weak category-label (i.e., we do not know in which

frames or regions the object appears). Each video is divided

into shots with similar color [28]; we generate object tracks

for each shot using [40]. VOC 2007 is used by all exist-

ing state-of-the-art weakly-supervised detection algorithms;

VOC 2010 is used by [4]. For VOC 2007 and 2010, we use
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VOC 2007 train+val aero bird boat car cat cow dog horse mbike train mean CorLoc

Initial pseudo GT (with all images) 48.8 33.9 13.3 57.3 46.5 32.2 44.4 40.8 48.2 43.7 40.9

Initial pseudo GT (excluding missed images) 58.8 49.6 17.7 64.7 60.4 44.8 52.8 55.3 54.3 53.0 51.1

Updated pseudo GT (with all images) 58.8 49.6 15.4 64.9 59.0 43.2 51.2 57.5 63.1 54.4 51.7

Table 1. Localization accuracy in terms of CorLoc on the VOC 2007 train+val set. We evaluate our initial and updated pseduo GT boxes.

The final boxes (third row) provide very good localizations in the training data, which leads to accurate training of object detectors.

the train+val (5011 imgs) and train set (4998 imgs), respec-

tively, to discover the pseudo GT boxes. For both datasets,

we report detection results on the test set using average pre-

cision. In contrast to existing weakly-supervised methods

(except [33, 34]), we do not discard instances labeled as

pose, difficult, truncated, and restrict the supervision to the

image-level object presence/absence labels to mimic a more

realistic (difficult) weakly-supervised scenario.

Implementation details. For mining discriminative re-

gions, we take k=(# positive images)/2 nearest neighbors,

and top C=200 clusters. When matching a positive region

to video, we adjust its box to have roughly 48 conv5 cells

using a sizing heuristic [22], and compute matches in every

8th frame for speed. For the mean-shift bandwidth b, we

train separate detection models for b=[100, 250, 500, 1000]
and validate detection accuracy over our automatically se-

lected object tracks on YouTube-Objects (i.e., we treat

them as noisy GT); even though the discovered tracks can

be noisy, we find they produce sufficiently good results

for cross-validation. To compute deep features, we use

AlexNet pre-trained on ILSVRC 2012 classification, using

Caffe [17, 16]. We do not use the R-CNN network fine-

tuned on PASCAL data [12].

To fine-tune our detector, we take our discovered pseudo

GT boxes over all 10 categories to fine-tune the CNN

(AlexNet pre-trained on ILSVRC2012 classification) by re-

placing its 1000-way classification layer with a randomly-

initialized 11-way classification layer (10 categories plus

background). We treat all selective search proposals with

0.6≥IOU with a pseudo GT box as positives for that

box’s category, and all proposals with 0.1≤IOU≤0.3 with

a pseudo GT box as negatives. All proposals from images

not belonging to any of the 10 categories are also treated

as negatives. We start SGD at a learning rate of 0.001 and

decrease by × 1

10
after 20,000 iterations. In each SGD it-

eration, 32 positives (over all classes) and 96 negatives are

uniformly sampled to construct a mini-batch. We perform

40,000 SGD iterations.

4.1. Pseudo ground-truth localization accuracy

We first analyze the localization accuracy of our dis-

covered pseudo GT boxes on the VOC 2007 train+val

dataset. We use the correct localization (CorLoc) mea-

sure [7], which is the fraction of positive training images

in which the predicted object box has an intersection-over-

union overlap (IOU) greater than 50% with any ground-

truth box. As mentioned in [4], CorLoc is not consistently

measured across previous studies, due to changes in the

training sets (for example, we do not exclude the images

annotated as pose, difficult, truncated). Thus, we only use

it to analyze our own pseudo GT boxes, and use detection

accuracy to compare against the state-of-the-art.

Table 1 shows the results. Our initial pseudo GT boxes

produce an average CorLoc score of 40.9% across all cat-

egories (first row). However, we initially miss discovering

a pseudo GT box in 12% of the images, which pulls down

the average. (Recall we only keep the most confident box in

each image that has at least θ = 20 votes.) If we only con-

sider the images in which a pseudo GT is initially found,

then our average increases to 51.1% (second row). By de-

tecting the missed pseudo GT boxes and updating the ex-

isting ones using the R-CNN model trained with the initial

pseudo GT boxes (via an LSVM update), our final CorLoc

average improves to 51.7% (third row). For the boat cate-

gory, our low performance is due to boats often occurring

with water; since water seldom appears in other categories,

many water regions are mistakenly found to be discrimi-

native, which leads to inaccurate localizations of the boat.

(See supp. material for a further detailed breakdown of the

error cases per class.) For the remaining categories, our

pseudo GT boxes localize the objects well, and we will see

in Sec. 4.3 that they lead to robust object detectors.

4.2. Pseudo ground-truth visualization

We next visualize our discovered pseudo GT on the VOC

2007 train+val set. In each image pair in Fig. 6, we display

a heatmap of the transferred video object boxes and the final

selected pseudo GT box. Our method accurately localizes

the object-of-interest in many images, even in difficult cases

where the object is in an atypical pose (1st dog), partially-

occluded (2nd car), or in a highly-cluttered scene (2nd cat).

The last column shows some failure cases. The most promi-

nent failure case is when there are multiple instances of the

same object category that are spatially close to each other.

This is due to a sub-optimal mean-shift bandwidth param-

eter b, which is used in the voting of the pseudo GT box.

Although we automatically select b via cross-validation on

the video tracks (see implementation details), it is fixed per-

category. Using an adaptive bandwidth [6] to automatically

find an optimal value per-image may help to alleviate such

errors. Importantly, these errors occur in only a few images.

See the supp. material for results on all images.

Overall, the qualitative results demonstrate that by trans-

ferring object boxes from automatically tracked objects in

video, we can accurately discover the objects’ full spatial

extent in the weakly-labeled image collection.
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Figure 6. Qualitative results on the VOC 2007 train+val set. In each image pair, the first image shows a heatmap of the transferred video

object boxes and the second image shows the final selected pseudo ground-truth box. Our approach accurately discovers the spatial extent

of the object-of-interest in most of the images. The last column shows mis-localized examples. Our approach can fail when there are

multiple instances of the same object category in the image (e.g., aeroplane, dog, horse, train) or when the object’s appearance is very

different from that found in videos (e.g., car). Best viewed on pdf.

4.3. Weakly-supervised detection accuracy

We next compute detection accuracy using the R-CNN

model trained using our pseudo GT boxes. We compare

with state-of-the-art weakly-supervised detection meth-

ods [33, 34, 1, 37, 4] that use the same AlexNet CNN fea-

tures pre-trained on ILSVRC 2012. Note that our approach

and the previous methods all use the same PASCAL VOC

training images to train the detectors. Our use of videos is

only to get better pseudo GT boxes on the training images.

Tables 2 and 3 show results on the VOC 2007 and 2010

test sets, respectively. Our approach produces the best re-

sults with a mAP of 41.9% and 40.1%, respectively. The

baselines all share the same high-level idea of mining dis-

criminative patterns that frequently/rarely appear in the pos-

itive/negative images. In particular, the detection results

produced by [33] is similar to what we would get if we

were to train a detector directly on our initially-mined dis-

criminative positive regions. Since those regions often cor-

respond to an object-part (e.g., car wheel) or include sur-

rounding context (e.g., car with road) (recall Fig. 2), these

methods have difficulty producing good localizations on the

training data, which in turn degrades detection performance.

While [34] tries to combine pairs of discriminative regions

to provide better spatial coverage of the object, it is still lim-

ited by the mis-localization error of each individual region.

We instead transfer automatically tracked object boxes from

weakly-labeled videos to images, which produces more ac-

curate localizations on the training data and leads to higher

detection performance. Our low detection accuracy on cow
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Table 2. Detection average

precision on the VOC

2007 test set. We compare

our approach to state-of-

the-art weakly-supervised

methods.

VOC 2007 test aero bird boat car cat cow dog horse mbike train mAP

Song et al., 2014 [33] 27.6 19.7 9.1 39.1 33.6 20.9 27.7 29.4 39.2 35.6 28.2

Song et al., 2014 [34] 36.3 23.3 12.3 46.6 25.4 23.5 23.5 27.9 40.9 37.7 29.7

Bilen et al., 2014 [1] 42.2 23.1 9.2 45.1 24.9 24.0 18.6 31.6 43.6 35.9 29.8

Wang et al., 2014 [37] 48.9 26.1 11.3 40.9 34.7 34.7 34.4 35.4 52.7 34.8 35.4

Cinbis et al., 2015 [4] 39.3 28.8 20.4 47.9 22.1 33.5 29.2 38.5 47.9 41.0 34.9

Ours w/o fine-tune 50.7 36.6 13.4 53.1 50.8 21.6 37.6 44.0 46.1 43.4 39.7

Ours 53.9 37.7 13.7 56.6 51.3 24.0 38.5 47.9 47.0 48.4 41.9

Table 3. Detection average

precision on the VOC 2010

test set.

VOC 2010 test aero bird boat car cat cow dog horse mbike train mAP

Cinbis et al., 2015 [4] 44.6 25.5 14.1 36.3 23.2 26.1 29.2 36.0 54.3 31.2 32.1

Ours w/o fine-tune 50.9 35.8 8.1 40.5 45.9 26.0 36.4 39.0 45.7 39.4 36.8

Ours 53.5 37.5 8.0 44.2 49.4 33.7 43.8 42.5 47.6 40.6 40.1

VOC 2007 test aero bird boat car cat cow dog horse mbike train mAP

Inital pseudo GT 43.4 30.5 11.9 50.2 39.6 16.7 31.6 36.7 42.2 40.7 34.4

Updated pseudo GT 48.0 34.2 12.2 51.3 43 21.9 33.4 39.1 43.8 42.2 36.9

Updated pseudo GT + bbox-reg 50.7 36.6 13.4 53.1 50.8 21.6 37.6 44.0 46.1 43.4 39.7

Updated pseudo GT + fine-tune + bbox-reg 53.9 37.7 13.7 56.6 51.3 24.0 38.5 47.9 47.0 48.4 41.9

Table 4. Detection average precision on the VOC 2007 test set to evaluate the different components of our approach. See text for details.

can be explained by the poor video tracks produced by [40]

(see supp. material), which confirms the need for good ob-

ject tracks.

Overall, our results suggest a scalable application for ob-

ject detection, since we can greatly reduce human annota-

tion costs and still obtain reliable detection models.

4.4. Ablation studies

In this section, we conduct ablation studies to tease apart

the contribution of each component of our algorithm. Ta-

ble 4 shows the results. The first and second rows show

mAP detection accuracy produced by the R-CNN models

trained using the initial and updated (via LSVM update)

pseudo GT boxes, respectively. The initial R-CNN model

produces 34.4% mAP. Retraining the model with the up-

dated pseudo GT boxes leads to 36.9% mAP, which shows

that the extra positive instances and corrected instances are

helpful. The third row shows bounding box regression re-

sults, which further boosts performance to 39.7% mAP.

This confirms that our pseudo GT boxes are well-localized,

since the trained bounding box regressor [9, 12] is able to

adjust the initial detections to better localize the object.

The last row shows fine-tuning results. Training an R-

CNN model with our fine-tuned features improves results

on all 10 categories to 41.9% mAP for VOC 2007. The

improvement is not as significant as in the fully-supervised

case, which resulted in a ∼9% point increase for VOC 2007

(see Table 2 in [12]). Since our pseudo GT boxes are not

perfect, any noise seems to have a more prominent effect

than in the fully-supervised case, which has perfect GT

boxes. Still, this result confirms our discovered pseudo GT

boxes are quite accurate, making our approach amenable for

fine-tuning.

4.5. Video track selection accuracy

Finally, we evaluate our selection criterion in choosing

the relevant object box among the 9 tracks produced by the

unsupervised video tracking algorithm [40]. For this, we

compute the IOU between the tracked object boxes and the

ground-truth boxes on the YouTube-Objects dataset [28].

Our automatically selected tracks produce a mean IOU of

45.1 over all 10 categories (see the supp. material for per-

category results). While this is lower than the upper-bound

mean IOU of 61.9 (i.e., the max IOU among the 9 propos-

als in each frame) they are sufficiently accurate to produce

high-quality pseudo GT boxes. Furthermore, since we se-

lectively retrieve a video object box only if it is overlapping

with one of the top n = 20 matching video regions of a dis-

criminative positive region, and then further aggregate those

transferred boxes through hough voting, we can effectively

filter out most of the noisy transferred tracks (as was shown

in Fig. 6). Overall, we find that [40] produces sufficiently

good boxes, and our selection criterion is in many cases able

to choose the relevant one. These lead to accurate pseudo

GT boxes on the weakly-labeled images.

Conclusions. We introduced a novel weakly-supervised

object detection framework that tracks and transfers object

boxes from weakly-labeled videos to images to simulate

strong human supervision. We demonstrated state-of-the-

art-results on PASCAL 2007 and 2010 datasets for the 10

categories of the YouTube-Objects dataset [28].

Our framework assumes that we have a way to track the

object-of-interest in videos, so that we can delineate its box

and transfer it to images. This is easier if the object is able

to move on its own, but could also work for static objects,

as long as the camera is moving. We plan to investigate

this in the future. Finally, we intentionally trained our de-

tectors using only the weakly-labeled images, in order to

make our results comparable to previous weakly-supervised

methods. It would be interesting to explore combining the

video tracks with our pseudo GT image boxes for training

the object detectors.
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