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Abstract

We interact everyday with tiny objects such as the door

handle of a car or the light switch in a room. These little

landmarks are barely visible and hard to localize in images.

We describe a method to find such landmarks by finding a

sequence of latent landmarks, each with a prediction model.

Each latent landmark predicts the next in sequence, and the

last localizes the target landmark. For example, to find the

door handle of a car, our method learns to start with a latent

landmark near the wheel, as it is globally distinctive; subse-

quent latent landmarks use the context from the earlier ones

to get closer to the target. Our method is supervised solely

by the location of the little landmark and displays strong

performance on more difficult variants of established tasks

and on two new tasks.

1. Introduction

The world is full of tiny but useful objects such as the

door handle of a car or the light switch in a room. We call

these little landmarks. We interact with many little land-

marks everyday, often not actively thinking about them or

even looking at them. Consider the door handle of a car

(Figure 1), it is often the first thing we manipulate when

interacting with the car. However, in an image it is barely

visible; yet we know where it is. Automatically localizing

such little landmarks in images is hard, as they don’t have

a distinctive appearance of their own. These landmarks are

largely defined by their context. We describe a method to

localize little landmarks by discovering informative context

supervised solely by the location of the little landmark. We

demonstrate the effectiveness of our approach on several

datasets, including both new and established problems.

The target landmark may have a local appearance that is

similar to many other locations in the image. However, it

may occur in a consistent spatial configuration with some

pattern, such as an object or part, that is easier to find and

would resolve the ambiguity. We refer to such a pattern as

a latent landmark. The latent landmark may itself be hard

Step 1 

Step 2 Step 3 

Figure 1. Several objects of interest are so tiny that they barely

occupy few pixels (top-left), yet we interact with them daily. Lo-

calizing such objects in images is difficult as they do not have

a distinctive local appearance. We propose a method that learns

to localize such landmarks by learning a sequence of latent land-

marks. Each landmark in this sequence predicts where the next

landmark could be found. This information is then used to predict

the next landmark and so on, until the target is found.

to localize, although easier than the target. Another latent

landmark may then help localize the earlier one, which in

turn localizes the target. Our method discovers a sequence

of such landmarks, where every latent landmark helps find

the next one, with the sequence ending at the location of the

target.

The first latent landmark in the sequence must be local-

izable on its own. Each subsequent landmark must be lo-

calizable given the previous landmark and predictive of the

next latent landmark or the target. Our approach has to dis-

cover globally distinctive patterns to start the sequence and

conditionally distinctive ones to continue it, while only be-

ing supervised by the location of the target. A detection of a

latent landmark includes a set of positions, typically highly

concentrated, and a prediction of where to look next. The
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training loss function specifies that each of the first latent

landmarks must predict the next latent landmark, and the

last latent landmark must predict the target location. We

train a deep convolutional network to learn all latent land-

marks and predictions jointly. Our experiments on exist-

ing CUBS200 [43] and LSP [17] datasets and newly cre-

ated car door handle and light switch datasets demonstrate

the effectiveness of our approach. Code and datasets are

available on the project webpage at http://vision.

cs.illinois.edu/projects/litland/.

Contributions: We describe: 1) A novel and intuitive

approach to localize little landmarks automatically. Our

method learns to find useful latent landmarks and corre-

sponding prediction models that can be used to localize

the target; 2) A recurrent architecture using Fully Convo-

lutional Networks that implements our approach; 3) A rep-

resentation of spatial information particularly useful for ro-

bust prediction of locations by neural networks; 4) Two new

datasets emphasizing practically important little landmarks

that are hard to find.

2. Related Work

Landmark localization has been well-studied in the do-

main of human pose estimation [45, 42, 40, 12, 33, 2, 9, 39]

as well as bird part localization [24, 25, 43, 34]. Localiza-

tion of larger objects has similarly been well-studied [14,

15]. However, practically no work exists for localizing little

landmarks.

Little landmarks are largely defined by their context.

Thus, a successful method for localizing them will have to

use this context. Use of context to improve performance

has been studied (e.g. [27, 22]). In many problems, ex-

plicit contextual supervision is available. Felzenszwalb et

al. [14] use contextual rescoring to improve object detec-

tion performance. Singh et al. [36] use context of easy

landmarks to find the harder ones, Su et al. [37] use con-

text from attributes in image classification. In contrast, our

method has no access to explicit contextual supervision.

Some methods do incorporate context implicitly e.g. Auto-

Context [41], which iteratively includes information from

an increasing spatial support to localize body parts. In con-

trast, our method learns to find a sequence of latent land-

marks that are useful for finding the target little landmark

without other supervised auxiliary tasks.

The work of Karlinsky et al. [19] is conceptually most

related to our method. They evaluate keypoint proposals to

choose an intermediate set of locations that can be used to

form chains from a known landmark to a target. The target

is predicted by marginalizing over evidence from all chains.

In contrast, our approach does not use keypoint proposals

and learns to find the first point in the chain as well.

Other closely related approaches are that of Alexe et

al. [1] and Carreira et al. [6]. Alexe et al. learn a con-

text driven search for objects. In each step, their method

predicts a window that is most likely to contain the ob-

ject given the previous windows and the features observed

at those windows. This is done by a non-parametric vot-

ing scheme where the current window is matched to sev-

eral windows in training images and votes are cast based

on observed offsets to target object. Carreira et al. make

a spatial prediction in each step and encode it by placing a

gaussian at the predicted location. This is then used as a fea-

ture by the next step. Similar to Alexe et al., they supervise

each step to predict the target. In addition, they constrain it

to get closer to the target in comparison to previous step’s

prediction. In contrast, our method does not perform any

matching with training images and does not supervise the

intermediate steps with the target. Only the final step is di-

rectly supervised. The latent landmarks can be anywhere in

the image as long as they are predictive of the next one in

the sequence. Further, our method is trained end-to-end.

Reinforcement learning based methods bear some sim-

ilarity to our method where they also operate in steps.

Caicedo et al. [5] cast object detection in a reinforcement

learning framework and learn a policy to iteratively refine a

bounding box for object detection, Zhang et al. [46] learn

to predict a better bounding box given an initial estimate. In

comparison, our method does not have explicitly defined ac-

tions or a value function. Instead, it performs a fixed-length

sequence of intermediate steps to find the target location.

Also related are methods that discover mid-level visual

elements [35, 11, 18, 38] and use them as a representation

for some task. The criterion for discovery of these elements

is often not related to the final task they are used for. Some

approaches have tried to address this by alternating between

updating the representation and learning for the task [29].

In contrast, our method learns to find latent landmarks that

are directly useful for localizing the target and is trainable

end-to-end.

Our method has similarities with attention based meth-

ods that learn to look at a sequence of useful parts of the

image [3, 44, 23, 4, 26]. An important difference is that an

intermediate part is constrained to be spatially predictive of

the next one.

3. Approach

The simplest scheme for finding a landmark looks at ev-

ery location and decides whether it is the target landmark or

not. We refer to this scheme as Detection. Training such a

system is easy: we provide direct supervision for the target

location. However this doesn’t work well for little land-

marks because they are not strongly distinctive. Now imag-

ine using a single latent landmark to predict the location of

the target, which could be far way. We refer to this scheme

as Prediction. This is hard, because we don’t have direct su-

pervision for the latent landmark. Instead, the system must
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Figure 2. Model and Inference Overview. Our approach oper-

ates in steps, where, in each step, a latent landmark (red blobs

at the top, best viewed with zoom) predicts the location of the

latent landmark for the next step. This is encoded as a feature

map with radial basis kernel (blue blob) and passed as a feature

to the next step. This process repeats until the last step when

the target is localized (door handle in above). Green boxes show

layers and parameters that are shared across steps, while orange,

purple and blue show step specific layers. Format for a layer is

layer name(height, width, stride, num output channels).

infer where these landmarks are. Furthermore, it must learn

to find these landmarks and to use them to predict where the

target is. While this is clearly harder to learn than detection,

we describe a method that is successful and outperforms

Detection (§ 4.1). Note that Prediction reduces to Detection

if the latent landmark is forced to lie on the target.

Prediction is hard when the best latent landmark for a

target is itself hard to find. Here, we can generalize to a

sequential prediction scheme (referred to as SeqPrediction).

The system uses a latent landmark to predict the location of

another latent landmark; uses that to predict the location of

yet another latent landmark; and so on, until the final step

predicts the location of the target. Our method successfully

achieves this and outperforms Prediction (§ 4.1).

Note that another generalization that is natural but not

useful is an alternating scheme. One might estimate some

mid-level pattern detectors, learn a prediction model, and

then re-estimate the detectors conditioned on the current

target estimates, etc. This scheme is unhelpful when the

landmark is itself hard to find. First, re-estimates tend to be

poor. Second, it is tricky to learn a sequential prediction as

one would have to find conditionally distinctive patterns.

Our approach discovers latent landmarks that are directly

useful for the localization of a target, as it is supervised only

by this objective and can be trained end-to-end. Our method

thus learns to find a sequence of latent landmarks each with

a prediction model to find the next in sequence. In the fol-

lowing, we first provide an overview of the model, followed

by the prediction scheme, and finally the training details.

3.1. Model and Inference

Figure 2 provides an overview of the model and how it is

used for the inference. Our method operates in steps where

each step s ∈ {1, . . . , S} corresponds to a Prediction. Each

step predicts the location of the next latent landmark using

the image features and the prediction from the previous step.

The final step predicts the location of the target landmark.

To make the prediction, each step finds a latent landmark

(Figure 2, red blob) and makes an offset prediction to the

next latent landmark. This prediction is encoded as a feature

map (blue blob) and passed on to the next step. Note that

the spatial prediction scheme is of key importance for the

system to work. We describe it in Section 3.2.

Our system uses a fully convolutional network architec-

ture, sliding a network over the image to make the predic-

tion at each location. In Figure 2, the green boxes indi-

cate the layers with parameters shared across various steps.

Other colored boxes (orange, purple and blue) show lay-

ers that have step specific parameters. Note that this con-

figuration of not sharing parameters for the layer that op-

erates directly on features from previous step worked bet-

ter than sharing all parameters and a few other alternatives

(§ 5). The step specific parameters allow the features of a

step to quickly adapt as estimates of underlying landmarks

improve. Our model is trained using stochastic gradient de-

scent on a robust loss function. Our loss function encour-

ages earlier steps to be informative for the later steps by

penalizing disagreement between the predicted and later de-

tected latent landmark locations.

3.2. Prediction Scheme for a Step

Since our model is fully convolutional, images of differ-

ent sizes produce feature maps of different sizes. To make

a single prediction for the whole image we view the image

as a grid of locations li, i ∈ {1, . . . , L}. Each location can

make a prediction using the sliding neural network and the

combined prediction is a weighted average of these.

Each step s produces a summary estimate of the position

of the next latent landmark P (s). Each location li separately

estimates this position as p
(s)
i with a confidence c

(s)
i . Each

p
(s)
i is estimated using a novel representation scheme with

several nice properties (§ 3.3). The individual predictions

are then combined as

P (s) =

L
∑

i=1

c
(s)
i p

(s)
i (1)
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Figure 3. Prediction Scheme for a Step: On the left, we visualize how the offset prediction is made at each location. The model predicts

confidences for the points on a local grid around a location of interest. The offset is then computed as a weighted average of the local grid

points using the confidences. On the right, we visualize the prediction scheme for the whole image given the individual predictions. Model

predicts a confidence in each offset prediction (red blob in the top image, best viewed with zoom). Individual offset predictions are then

averaged using the confidences as weights to produce the final prediction. The prediction is then encoded as a radial basis kernel centered

at the prediction (blue blob).

The local scheme for producing each p
(s)
i looks at both

the image features and the predicted location by the previ-

ous step, P (s−1). The confidence c
(s)
i is a softmax over

all locations, computed as c
(s)
i = ez

(s)
i /

∑

i e
z
(s)
i , where

z
(s)
i ∈ R is the output from the network for confidence at li

in step s. The right half of Figure 3 visualizes the prediction

scheme. Locations with high confidences can be seen as a

red blob for each of the steps in figure 2 and 3 (best viewed

with zoom).

P (s) is then encoded as a feature map that is passed on to

the subsequent step together with the image feature maps.

The encoding is done by placing a radial basis kernel of

fixed bandwidth, β = 15, centered at the predicted location

(blue blob, Figure 2). Note that encoding the prediction as a

feature map instead of as a rigid constraint for the next step

allows it to easily ignore the prediction from the previous

step if necessary. This flexibility is specially helpful in early

stages of the training when we do not have reliable estimates

of the latent landmarks or their prediction models.

Furthermore, the scheme of P (s) as a weighted average

of several individual predictions is robust to individual vari-

ances because it averages over redundant information from

several locations. With proper initialization at the beginning

of the training, we can ensure that all the locations have

non-zero weights and thus are explored as potential latent

landmarks.

3.3. The Estimate at a Location

We need a prediction p
(s)
i from location li at step s. Pure

regression works poorly because it is sensitive to learning

rate and weight scales, and it is difficult to confine predic-

tions to a range.

Instead, we place a local grid of G points over each li
(Figure 3, left). Each grid point has coordinates gj relative

to li. We train the network to produce G confidence values

o
(s)
j,i for j ∈ {1, . . . , G} and at each location. These o

(s)
j,i are

a softmax of network outputs which themselves depend on

the image as well as the feature map representing P (s−1).

Each li then produces the estimate

p
(s)
i = li +

G
∑

j=1

o
(s)
j,i gj (2)

Our scheme has several strengths. The network is re-

quired to predict confidences, rather than locations, and so

deals with well-scaled values. By construction, each predic-

tion is within the range specified by the local grid. Finally,

redundancy helps control the variance of the prediction.

In our experiments we use a local 5 × 5 grid with

gj(x), gj(y) ∈ {−50,−25, 0, 25, 50} pixels.

3.4. Training

For regression using neural networks, the usual choice

of L2 loss requires careful tuning of learning rate. Setting

it too high results in an explosion of gradients at the begin-

ning and too low slows down the learning in later epochs.
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Instead, we use Huber loss (eq. 3) for robustness.

H(x) =

{

x2

2δ , if |x| < δ.

|x| − δ
2 , otherwise.

(3)

For a vector x ∈ R
D we define Huber loss as H(x) =

∑D
i=1 H(xi). Robustness arises from the fact that the gradi-

ents are exactly one for large loss values (|x| > δ), and less

than one for smaller values ensuring stable gradient magni-

tudes. We use δ = 1.

Assume that we know the regression target y
(s)
∗ for step

s. Then, given the prediction P (s), we define the loss for

step s as following

L(s) = H(P (s) − y
(s)
∗ ) + γ

L
∑

i=1

c
(s)
i H(p

(s)
i − y

(s)
∗ ) (4)

The first term enforces that the prediction p(s) coincides

with the target y
(s)
∗ . The second term enforces that the in-

dividual predictions for each location also fall on the target,

but the individual losses are weighted by their contribution

to the final prediction. We found that the use of this term

with a small value of γ = 0.1 consistently leads to solu-

tions that generalize better.

The regression target for the final step S is the known

ground truth location y∗. But we do not have supervision

for the intermediate steps. We would like our step s to pre-

dict the location of the latent landmark of the next step s+1.

Note that the latent landmark for the next step is considered

to be the set of locations in the image that the model consid-

ers to be predictive and therefore assigns high confidences

c
(s+1)
i . We set y

(s)
∗ =

∑L
i=1 c

(s+1)
i li, i.e. as the centroid

of locations with confidence weights c
(s+1)
i in the next step.

This setting encourages the prediction from step s to coin-

cide with the locations that are predictive in next step.

We define the full loss for a given sample as a weighted

sum of the losses from individual steps as following

L =
S
∑

s=1

λsL
(s) +R(θ) (5)

We use λs = 0.1, except for the final step S where λS = 1,

assigning more weight to the target prediction. R(θ) is

a regularizer for the parameters of the network. We use

L2 regularization of network weights with a multiplier of

0.005.

Training Details: We train our model through back-

propagation using stochastic gradient descent with mo-

mentum. The errors are back-propagated across the steps

through the radial basis kernel based feature encoding of the

latent landmark prediction in each step. Since our model is

recurrent, we found that the use of gradient scaling makes
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Figure 4. Our method localizes car door handles very accurately.

Pred 3, the three step SeqPrediction scheme, outperforms the other

schemes. Det, Pred and Pred 2 are Detection, Prediction and two

step SeqPrediction schemes respectively. Img Reg is a baseline

that replaces classification layer by a regression layer in the VGG-

M model. Table 1 reports detection rates at a fixed normalized

distance of 0.02.

Seq. Prediction

Method Img Reg Det Pred Pred 2 Pred 3

Det. Rate 6.1 19.2 54.3 63.3 74.4

Table 1. Detection rates for the Car Door Handle Dataset at the

fixed normalized distance of 0.02. The three step scheme (Pred

3) performs significantly better than the alternatives. Refer to Fig-

ure 4 for more details.

the optimization better behaved [30]. We do this by scaling

the gradients with combined L2 norm more than 1000, back

down to 1000 for all filters of each layer individually. We

initialize the weights using the method suggested by Glo-

rot et al. [16].

We augment the datasets by including left-right flips as

well as random crops near the border. The images are scaled

to make the longest side 500 pixels.

4. Experiments

We present two new datasets: The Light Switch Dataset

(LSD) and the Car Door Handle Dataset (CDHD) that em-

phasize practically important and hard to find little land-

marks. Further, we evaluate our method on more difficult

variants of two established tasks: 1) beak localization on

the Caltech UCSD Birds Dataset (CUBS); 2) wrist localiza-

tion on the Leeds Sports Dataset (LSP). Note that we refer

to the three step SeqPrediction as Ours in the following un-

less specified otherwise .

Evaluation Metric: We adopt the generally accepted met-

264



Normalized Distance →

0 0.2 0.4 0.6 0.8 1

D
e
te
c
ti
o
n
R
a
te

→

0

0.1

0.2

0.3

0.4

0.5

0.6

Img Reg

Det

Pred

Pred 2

Pred 3

Figure 5. Our method localizes light switches relatively well in

comparison to the baselines. The baselines are the same as the

ones for Car Door Handle dataset. Table 2 reports detection rates

at a fixed normalized distance of 0.5.

ric of plotting detection rate against normalized distance

from ground truth for all datasets except CUBS, where PCP

is used. Normalization is based on torso height for LSP, car

bounding box height for CDHD, and switch board height

for LSD. For CUBS we report PCP as used in [24]. It is

computed as detection rate for an error radius defined as

1.5 × σhuman, where σhuman is the standard deviation of

the human annotations.

4.1. Car Door Handle Dataset

Our method finds car door handles very accurately (Fig-

ure 4 and 7 and Table 1), with superior performance to

various baselines. Det is the Detection method, Pred is

the Prediction method and Pred 2 and Pred 3 are two and

three step SeqPrediction methods respectively (§ 3). Use

of Prediction instead of Detection gives considerable per-

formance improvement, while SeqPrediction provides ad-

ditional improvement. Img Reg is a baseline implemented

by taking the VGG-M model [7] that was pre-trained on

ImageNet [10], removing the top classification layer and

replacing it by a 2D regression layer. The learning rate

for all the layers was set to 0.1 times the learning rate λr

for the regression layer. The model performed best with

a learning rate λr = 0.01, chosen by trying values in

{0.1, 0.01, 0.001}. We noticed that the baseline general-

ized poorly in all the experiments. This is likely due to

a combination of VGG-M model being relatively large in

comparison to the dataset size, task being regression instead

of classification and hyper-parameter range explored being

suboptimal.

Dataset details: To collect a dataset with car door handles,

4150 images of the Stanford Cars dataset for fine grained

Seq. Prediction

Method Img Reg Det Pred Pred 2 Pred 3

Det. Rate 1.5 41.0 44.5 47.5 51.0

Table 2. Detection rates for the Light Switch Dataset at the fixed

normalized distance of 0.5. Again, the three step scheme performs

better than alternatives.

Method PCP

Liu et al. [24] 49.0

Liu et al. [25] 61.2

Shih et al. [34] 51.8

Ours 64.1

Table 3. Our method outperforms several state of the art methods

for localizing beaks on the Caltech UCSD Birds Dataset. Note that

this comparison is biased against our method; others are trained

with all landmarks while ours is supervised only by beak.

categorization [21] were annotated. Annotators were asked

to annotate the front door handle of the visible side. The

handle was marked as hidden for frontal views of the car

when it was not visible. We use the training and test split of

the original dataset.

4.2. Light Switch Dataset

Our method finds light switches with reasonable accu-

racy (Figure 5 and 7 and Table 2). Again, the three step

scheme performs better than the alternatives. The baselines

are the same as the ones for the Car Door Handle dataset.

Img Reg baseline again generalizes poorly with LSD being

significantly smaller than CDHD.

Dataset details: With the aim of building a challenging sin-

gle landmark localization problem, we collected the Light

Switch Dataset (LSD) with 822 annotated images (622

train, 200 test). Annotators were asked to mark the middle

points of the top and bottom edge of the switch board. The

location of the light switch is approximated as the mean of

these. These two points also provide approximate scale in-

formation used for normalization in evaluation. This dataset

is significantly harder than the Car Door Handles dataset as

context around light switches exhibits significant variation

in appearance and scale.

4.3. Caltech UCSD Birds Dataset - Beaks

Caltech-UCSD Birds 200 (2011) dataset (CUBS

200) [43] contains 5994 training and 5794 testing images

with 15 landmarks for birds. We evaluate our approach on

the task of localizing beak as the target landmark. We chose

beak because it is one of the hardest landmarks and several

state of the art approaches do not perform well on this. We

used the provided train and test splits for the dataset.

Our method, while having access only to the beak lo-
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Figure 6. Our method, while supervised only by the location of

left wrist, performs competitively against several state of the art

methods for localizing the left wrist landmark on the Leeds Sports

Dataset.

cation during training (all other methods are trained using

other landmarks as well), outperforms several state of the

art methods (Table 3).

4.4. Leeds Sports Dataset - Left Wrist

Leeds Sports Dataset (LSP) [17] contains 1000 training

and 1000 testing images of humans in difficult poses with

14 landmarks. We choose left wrist as the target landmark

as wrists are known to be difficult to localize. We use the

Observer Centric (OC) annotations [13] and work with pro-

vided training/test splits.

Our method (Figure 6) performs competitively with sev-

eral recent works all of which train their method using other

landmarks.

5. Discussion

Figure 7 shows some qualitative results for various

datasets. First thing to note is the pattern in the locations

of the latent landmarks for each of the datasets. For cars,

the system tends to find the wheel as the first latent land-

mark and then moves towards the door handle in subsequent

steps. For light switches it relies on finding the edge of the

door first. For birds, the first landmark tends to be on the

neck, followed by one near the eye and the last tends to

be outside at the curve of neck and beak. It is remarkable

that these patterns emerge solely from the supervision of

the target landmark. Also, note that these patterns are not

rigid; they adapt to the image evidence. This is primarily

due to the fact that our method does not impose any hard

constraints. Later steps can choose to ignore the evidence

from the earlier steps. This property allows our model to

be trained effectively, especially in the beginning when the

latent landmarks and their prediction models are not known.

Our method highlights the trade-off inherent in parts vs.

larger template. Parts assume structure, reducing parame-

ters and variance in their estimation. While larger templates

support richer models, but with more parameters resulting

in larger variance.

We explored two other architectures for propagating in-

formation from one step to the next and found that the cur-

rent scheme performs the best in terms of the final perfor-

mance. In the first scheme, step-specific weights were at the

top instead of at the bottom of the recurrent portion of our

model (Figure 2, middle block). In the second scheme, in-

stead of passing the encoded prediction as a feature, it was

used as a prior to modulate the location confidences of the

next step.

6. Conclusion

We described a method to localize little landmarks by

finding a sequence of latent landmarks and their predic-

tion models. We demonstrated strong performance of our

method on harder variants of several existing and new tasks.

The success of our approach arises from the spatial predic-

tion scheme and the encoding of information from one step

to be used by the next. A novel and well behaved local

estimation model coupled with a robust loss aids training.

Promising future directions include localizing multiple tar-

gets, generalizing sequence of latent landmarks to directed

acyclic graphs of latent landmarks, and accumulating all the

information from previous steps to be used as features for

the next step.
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