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Abstract

We present a multi-stream bi-directional recurrent neu-

ral network for fine-grained action detection. Recently, two-

stream convolutional neural networks (CNNs) trained on

stacked optical flow and image frames have been successful

for action recognition in videos. Our system uses a track-

ing algorithm to locate a bounding box around the person,

which provides a frame of reference for appearance and

motion and also suppresses background noise that is not

within the bounding box. We train two additional streams

on motion and appearance cropped to the tracked bounding

box, along with full-frame streams. Our motion streams use

pixel trajectories of a frame as raw features, in which the

displacement values corresponding to a moving scene point

are at the same spatial position across several frames. To

model long-term temporal dynamics within and between ac-

tions, the multi-stream CNN is followed by a bi-directional

Long Short-Term Memory (LSTM) layer. We show that our

bi-directional LSTM network utilizes about 8 seconds of

the video sequence to predict an action label. We test on

two action detection datasets: the MPII Cooking 2 Dataset,

and a new MERL Shopping Dataset that we introduce and

make available to the community with this paper. The re-

sults demonstrate that our method significantly outperforms

state-of-the-art action detection methods on both datasets.

1. Introduction

In this paper, we present an approach for detecting ac-

tions in videos. Action detection refers to the problem of

localizing temporally and spatially every occurrence of each

action from a known set of action classes in a long video se-

quence. This is in contrast to most of the previous work in

video activity analysis, which has focused on the problem

of action recognition (also called action classification). In

action recognition, a temporally segmented clip of a video

is given as input, and the task is to classify it as one of N

known actions. For action recognition, temporal localiza-

tion is not required, as each video clip is trimmed to con-

tain precisely the full duration (from start to finish) of one

action. Furthermore, action recognition algorithms do not

need to consider the case that a presented clip might not

contain any of the known actions. In general, action detec-

tion is more difficult than action recognition. However, it is

worth overcoming that difficulty because action detection is

also much more relevant to real-world applications.

In this work, we focus on fine-grained action detection.

We use the term fine-grained in the same sense as [20] to

indicate that the differences among the classes of actions

to be detected are small. For example, in a cooking sce-

nario, detecting similar actions such as chopping, grating,

and peeling constitutes fine-grained action detection.

We propose a method for fine-grained action detection

in long video sequences, based on a Multi-Stream Bi-

Directional Recurrent Neural Network (MSB-RNN). We

call our neural network multi-stream because it begins

with a convolutional neural network (CNN) that has four

streams: two different streams of information (motion and

appearance) for each of two different spatial frames (full-

frame and person-centric). The video that is input to the net-

work is split into a sequence of brief (6-frame-long) chunks.

The multi-stream network output is a sequence of high-

level representations of these chunks. These are input to

bi-directional long short-term memory (LSTM) [8, 6] units

to analyze long-term temporal dynamics.

Previous deep learning approaches use features that are

computed over the full spatial extent of the video frame.

We show the importance of using a tracked bounding box

around the person to compute features relative to the loca-

tion of the person, in addition to full-frame features, to pro-

vide both location-independent and location-dependent in-

formation. Unlike some previous work that represents mo-

tion information using a sequence of flow fields [22], we in-

stead use a sequence of corresponding pixel displacements

that we call pixel trajectories, as illustrated in Figure 3. The

advantage of pixel trajectories is that the displacements for a

moving point in the scene are represented at the same pixel

location across several frames. We analyze the relative im-
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Figure 1. Framework for our approach. Short chunks of a video

are given to a multi-stream network (MSN) to create a representa-

tion for each chunk. The sequence of these representations is then

given to a bi-directional LSTM, which is used to predict the action

label, Ai. Details of the multi-stream network are shown in Fig. 2.

portance of each of these components using two different

datasets. The first is the MPII Cooking 2 Dataset [21], and

the second is a new dataset we introduce containing over-

head videos of people shopping from grocery-store shelves.

Our results on the MPII Cooking 2 Dataset represent a sig-

nificant improvement over the previous state of the art.

Our work includes the following novel contributions:

• We demonstrate the effectiveness of a bi-directional

LSTM for the action detection task. It should be noted

that although LSTMs have been used before for action

recognition and sentence generation, we are the first

to analyze the importance of LSTMs for action detec-

tion. Furthermore, since our LSTM layer is trained on

full-length videos containing multiple actions (not just

trimmed clips of individual actions), it can learn inter-

actions among temporally neighboring actions.

• We train a multi-stream convolutional network that

consists of two 2-stream networks, demonstrating the

importance of using both full-frame and person-centric

cropped video. We use pixel trajectories rather than

stacked optical flow as input to the motion streams,

leading to a significant improvement in results.

• We introduce a new action detection dataset, which we

release to the community with this publication.

2. Related Work

Early work that can be considered action detection in-

cludes methods that detect walking people by analyzing

Figure 2. Figure depicting our multi-stream network (MSN). The

multi-stream network uses two different streams of information

(motion and appearance) for each of two different spatial crop-

pings (full-frame and person-centric) to analyze short chunks of

video. One network (CNN-T) computes features on pixel trajecto-

ries (motion), while the other (CNN) computes features on RGB

channels (appearance).

simple appearance and motion patterns [26, 2]. Several al-

gorithms have been proposed since then for detecting ac-

tions using space time interest points [33], multiple instance

learning [9], or part-based models [25, 10]. By adding an-

other dimension (time) to object proposals, action proposals

have also been used for detection [11, 32].

Until recently, the standard pipeline for most video anal-

ysis tasks such as action recognition, event detection, and

video retrieval was to compute hand-crafted features such as

Histogram of Oriented Gradients (HOG), Motion Boundary

Histogram (MBH), and Histogram of Optical Flow (HOF)

along improved dense trajectories [28], create a Fisher vec-

tor for each video clip, then perform classification using

support vector machines. In fact, shallow architectures us-

ing Fisher vectors still give state-of-the-art results for ac-

tion/activity recognition [17, 29, 21]. Wang et al. [29]

showed that results improved when hand-crafted features

were replaced by deep features that were computed by con-

volutional neural networks whose inputs were images and

stacked optical flow along trajectories. In [22], a two-stream

network was proposed in which video frames and stacked

optical flow fields (computed over a few frames) were fed

to a deep neural network for action recognition. A similar

architecture was used for spatial localization of actions [5]

in short video clips. However, these networks did not learn

long-term sequence information from videos.

Since recurrent neural networks can learn long-term se-

quence information in a data-driven fashion, they have re-

cently gained traction in the action recognition community
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[1, 3, 15]. In [1], a 3D convolutional neural network fol-

lowed by an LSTM classifier was successful at classify-

ing simple actions. LSTMs have shown improved perfor-

mance over a two-stream network for action recognition

[3, 15]. Recently, bi-directional LSTMs were also success-

ful in skeletal action recognition [4]. However, even after

using LSTMs, deep learning methods perform only slightly

better than fisher vectors built on hand-crafted features for

many action recognition tasks [15].

Although substantial progress has been made in action

recognition [17, 22, 29, 21], not as much work has been

done in action detection (spatio-temporal localization of ac-

tions in longer videos). The major focus in action detection

has been on using high level semantic information to im-

prove performance, rather than making use of bottom up

cues. Using annotations for the objects being interacted

with [16, 21] or enforcing the grammar of the high level ac-

tivity being performed [13, 18] is generally helpful, though

these approaches may require learning extra detectors for

objects and having prior knowledge about high-level activ-

ities. Sun et al. [24] used LSTMs for action detection al-

though their focus was on leveraging web images to help

with video action detection. Their paper did not analyze the

importance of LSTMs as we do here.

For fine-grained action detection, extracting trajectories

from spatio-temporal regions of interest or using hand-

trajectories has shown significantly improved performance

[16, 21]. In recent work in generating sentences from im-

ages, LSTM networks with attention models [31, 14] learn

to focus on salient regions in an image to generate captions

for the image. Since motion and actor location are impor-

tant clues for knowing where an action is happening, we

were inspired by these methods to add our network’s two

person-centric streams, which capture information from re-

gions of video that are salient due to actor motion.

3. Approach

Our framework is shown in Figs. 1 and 2. First, we train

four independent convolutional neural networks, each based

on the VGG architecture [23], to perform the task of ac-

tion classification when given as input a single small chunk

(6 consecutive frames) of video. As shown in Fig. 2, two of

the networks (one each for images and motion) are trained

on chunks of full-frame video, so that the spatial context

of the action being performed is preserved. The other two

networks (one each for images and motion) are trained

on frames that have been cropped to a tracked bounding

box. These cropped frames provide actions with a refer-

ence frame, which helps in classifying them. After these

four networks have been trained, we learn a fully-connected

projection layer on top of all four fc7 layer outputs, to create

a joint representation for these independent streams. This

multi-stream network (MSN) is shown in Fig. 2. As il-

lustrated in Fig. 1, the multi-stream network is provided

with full-length video (arranged as a temporal sequence of

6-frame chunks), and the corresponding temporal sequence

of outputs of the projection layer is then fed into an LSTM

network running in two directions. We use a fully connected

layer on top of each directional LSTM’s hidden states, fol-

lowed by a softmax layer, to obtain an intermediate score

corresponding to each action. Finally, the scores for the two

LSTMs are averaged to get action-specific scores.

There are multiple components in an action detection

pipeline that are critical for achieving good performance.

In this task, we need a model that captures both spatial and

long-term temporal information that are present in a video.

Person tracks (bounding boxes) provide a reference frame

that make many actions easier to learn by removing location

variation from the input representation. Some actions, how-

ever, are location dependent. For scenes shot using a static

camera, as in our test datasets, these actions always occur

at the same image location. For example, washing/rinsing

are almost always done near the sink, and opening a door

would most likely be performed near a refrigerator or a

cupboard. For these reasons, we train two separate deep

networks each on pixel trajectories and image appearance.

The first network is trained on the entire frame to preserve

the global spatial context. The second network is trained

on cropped boxes from the tracker to reduce background

noise and to provide a person-centric reference frame for

trajectories and image regions. To capture short-term tem-

poral information, we use pixel trajectories, in which each

moving scene point is in positional correspondence with it-

self across several frames. This alignment enables pixel tra-

jectories to capture richer motion information than stacked

optical flow fields. Since actions can be of any duration,

our method uses LSTMs to learn the duration and long-

term temporal context of actions in a data-driven fashion.

Our results demonstrate that LSTMs are quite effective in

learning long-term temporal context for fine-grained action

detection.

3.1. Tracking for Fine­Grained Action Detection

To provide a bounding box around the person for the

location-independent appearance and motion streams, any

good person-tracking algorithm could be used. In this pa-

per, we use a simple state-based tracker to spatially local-

ize actions in a video with a single actor. Keeping the size

(chosen manually) of the tracked bounding box fixed, we

update its position so that the magnitude of flow inside the

box is maximized. If the magnitude is below a threshold,

the location is not updated (when the person is not mov-

ing, the bounding box is stationary). Initially, if no actor

is present, the bounding box is arbitrarily placed. The lo-

cation of the bounding box is updated only after a video

chunk (6 frames) is processed and flow/appearance features

1963



Figure 3. The middle row of squares represent a sequence of

frames, and the arrows indicate the pairs of frames between which

optical flow is computed for both pixel trajectories (arrows above

the frames) and stacked optical flow (arrows below the frames).

The top and bottom rows show the y-component of optical flow

computed for pixel trajectories (top row) and stacked flow (bottom

row). In pixel trajectories, note that only the intensity changes,

while the spatial layout of the image stays the same. Thus, only

a single convolution layer in time is sufficient for learning motion

features for a pixel. In stacked optical flow, however, the spatial

correspondence between pixels is lost. For example, the back of

the head (lowest point of the silhouette) moves up and to the left

in subsequent images of stacked optical flow.

are computed relative to it, to ensure that the bounding box

is stationary over the 6 frames of a chunk. Our simple track-

ing method can be effectively applied when the camera is

stationary and we have a reasonable estimate about the size

of the actor. This is a practical assumption for many videos

taken at retail stores, individual homes, or in a surveillance

setting where fine-grained action detection is likely to be

used. For more difficult tracking situations, a more sophis-

ticated tracker would be needed.

3.2. Training of Flow Networks

Stacking optical flow as an input to the deep network has

been a standard practice in the literature to train motion-

based networks [22, 29, 30]. However, in stacked optical

flow, the motion vectors corresponding to a particular mov-

ing point in the scene (e.g., the tip of a finger) change their

pixel location from one frame to the next. Thus, the convo-

lutional neural network needs to learn the spatial movement

of optical flow for classifying an action. The complete mo-

tion information could be learned by the network at a higher

layer, but that would require more parameters and data to

learn. An alternate representation for motion in a sequence

of frames is to compute flow from a central frame, t, to

each of the K previous and K subsequent frames (we use

K = 3). This representation, which we call pixel trajecto-

ries, is illustrated and compared with stacked optical flow

in Figure 3. In all 2K frames of a pixel trajectory, the flow

values from each point to the corresponding point in frame t

are all located at the point’s location in frame t. As shown

Figure 4. Connections depicting architecture of a bi-directional

LSTM [7]. The circular nodes represent LSTM cells.

in Figure 3, in pixel trajectories, only the intensity of the

optical flow image changes (its location is fixed). Thus, the

network can learn a temporal filter for each pixel more eas-

ily than from stacked flow fields.

Now, for each pixel in frame t, we have the complete

motion information in a short window of time. To learn mo-

tion patterns for each pixel, a 1×2K convolutional kernel

can produce a feature map for the movement of each pixel.

In contrast, a network layer that inputs stacked optical flow

(using, e.g., a 3×3×2K kernel on stacked optical flow)

will not be able to learn motion patterns using the first con-

volutional layer for pixels that have a displacement of more

than 3 pixels over 2K frames. A similar method to pixel tra-

jectories was mentioned in [22], but there it yielded slightly

worse performance than stacked optical flow, likely because

it was applied on moving camera videos where trajectories

are less reliable. For fine-grained action detection with a

stationary camera, however, we demonstrate that pixel tra-

jectories perform better than stacked flow for both datasets

(see Table 2).

3.3. Training on Long Sequences using a
Bi­Directional LSTM Network

We now provide a brief background of Recurrent Neural

Networks (RNNs) and Long Short-Term Memory (LSTM)

cells [8]. Given an input sequence, x = (x1, . . . , xT ) , an

RNN uses a hidden state representation h = (h1, . . . , hT )
so that it can map the input x to the output sequence

y = (y1, . . . , yT ). To compute this representation, it iter-

ates through the following recurrence equations:

ht = g(Wxhxt +Whhht−1 + bh), yt = g(Whyht + bz),

where g is an activation function, Wxh is the weight ma-

trix which maps the input to the hidden state, Whh is the

transition matrix between hidden states at two adjacent time

steps, Why is a matrix which maps the hidden state h to the

output y, and bh and bz are bias terms.

The weight update equations for an LSTM cell are as
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Figure 5. The bottom row shows the output of a method that pro-

duces contiguous segments. The top row shows another method,

which generates the same proportion of non-contiguous segments.

follows:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ot = σ(Wxoxt +Whoht−1 + bo)

gt = tanh(Wxcxt +Whcht−1 + bc)

ct = ftct−1 + it gt

ht = ot tanh(ct)

where σ is a sigmoid function, tanh is the hyperbolic tan-

gent function, and it, ft, ot, and ct are the input gate, for-

get gate, output gate, and memory cell activation vectors,

respectively. The forget gate ft decides when (and which)

information should be cleared from the memory cell ct. The

input gate it decides when (and which) new information

should be incorporated into the memory. The tanh layer

gt generates a candidate set of values which will be added

to the memory cell if the input gate allows it. Based on

the output of the forget gate ft, input gate it, and the new

candidate values gt, the memory cell ct is updated. The out-

put gate ot controls which information in the memory cell

should be used as a representation for the hidden state. Fi-

nally, the hidden state is represented as a product between a

function of the memory cell state and the output gate.

In action recognition datatsets (e.g., UCF 101), video

clips are temporally trimmed to start and end at the start and

end times of each action, and are generally short in length

(e.g., from 2–20 seconds). Hence, in the action recognition

task, there is not enough long-term context to be learned in

a data-driven fashion. This long-term context could include

properties such as the expected duration of an action, which

action follows or precedes an action, or long-term motion

patterns that extend beyond action boundaries. In an action

recognition setting, an LSTM network has little access to

the longer-term temporal context. However, in fine-grained

action detection, videos are typically on the order of min-

utes or hours. Thus, LSTM networks are more suited to

this task as they are designed to model long-term temporal

dynamics in a sequence.

Action recognition involves assigning a single label to a

video sequence, while in action detection we need to assign

a label per frame. Consider a video sequence consisting of

100 frames where each frame has the same label. Even if a

2-stream network predicts correct labels only for 50 frames,

it is likely that it would assign the correct label to the

complete video sequence in the task of action recognition.

For action detection, however, if the 50 correctly predicted

frames are not contiguous, it would generate many action

segments, and all but one of them would be assigned as false

positives. A bi-directional LSTM (B-LSTM) on top of a 2-

stream network would be more likely to produce contiguous

action segments, and would thus have fewer false positives

for action detection when compared to a 2-stream network

(see Figure 5). However, in such cases, B-LSTM would

not show any improvement over a 2-stream network for ac-

tion recognition, because recognition performance does not

change even if the predicted labels are fragmented.

Bi-directional LSTM networks [6], illustrated in Fig-

ure 4, integrate information from the future as well as the

past to make a prediction for each chunk in the video se-

quence. Therefore, they are expected to be better at predict-

ing the temporal boundaries of an action as compared to a

unidirectional LSTM. In this work, the forward and back-

ward LSTM networks each give softmax scores for each

action class, and we average the softmax predictions of the

two LSTM networks to obtain the score for each action.

While training these networks on long sequences, back-

propagation through time can only be done up to a fixed

number of steps, using a short sequence of chunks. To pre-

serve long-term context, we retain the hidden state of the

last element in the previous sequence when training on the

subsequent sequence.

4. Results

4.1. Datasets

We evaluate our method on two datasets: the MPII Cook-

ing 2 Dataset [21], and the new MERL Shopping Dataset

that we collected and are releasing to the community. The

MPII Cooking 2 Dataset consists of 273 video sequences

that vary in length from 40 seconds to 40 minutes, with a

total of 2.8 million frames. The videos are labeled with the

start and end times of fine-grained actions from 67 action

classes (6 of them are not part of the test set). Actions such

as “smell,” “screw open,” and “take out” may be as brief as

one-half of a second, while actions such as “grate,” “peel,”

and “stir” can last as long as a few minutes. There is also

significant intra-class variation in the duration of an action.

Our MERL Shopping Dataset consists of 96 two-minute

videos, shot by a static overhead HD camera, of people

shopping from grocery-store shelving units that we set up

in a lab space. There are 32 subjects, each of whom is in 3

videos collected on different days. Videos are labeled with

the start and end times of fine-grained actions from 5 differ-

ent action classes: “Reach to Shelf,” “Retract from Shelf,”

“Hand in Shelf,” “Inspect Product,” and “Inspect Shelf.” We

divide this dataset into three partitions: 60 training videos,

9 validation videos, and 27 test videos. For each subject, all
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Figure 6. Images for various actions in the MERL Shopping Dataset. We show images corresponding to different actions such as “retract

from shelf,” “inspect product,” “hand in shelf,” and “inspect shelf.”

three videos of that subject are in only one of the three par-

titions. Although the number of videos in this dataset is less

than in MPII Cooking 2, there are many action instances

per video, so the number of frames per action class is high

(∼ 30,000). In this dataset, the duration of an action ranges

from one-half of a second to on the order of a minute. We

show examples of frames from this dataset in Figure 6. The

version we make public will have more videos, as well as

revised labels for existing videos. We will release our re-

sults for the larger version along with the dataset.

Although our algorithm performs both temporal and spa-

tial localization of actions, only temporal accuracy is eval-

uated in order to be consistent with the MPII Cooking 2

evaluation protocol.

4.2. Implementation Details

We sample each video at 15 frames per second. We then

extract optical flow between each frame (sampled every 6

frames) and its 6 neighboring frames (K = 3 each to the left

and right). This provides pixel trajectories for each pixel.

Epic flow is used to compute optical flow [19], as it gives

reliable flow even for large movements. We then use our

tracker to obtain bounding boxes for each video. Finally,

all full-size image frames and cropped frames are resized to

256×256. Pixel trajectories are resized to 224×224. For

training of frame-based networks (the appearance stream),

we fine-tune VGG net [23] using Caffe [12]. From each

6-frame chunk of video, we use a single image frame for

the appearance streams. We encode two sets of 6 opti-

cal flow fields (one stack each for x- and y-direction) as

pixel trajectories for the motion stream. While training mo-

tion networks, we change the conv 1 filter of VGG to a

1×2K kernel, which only performs convolution in time.

We project the four fc7 layers of the multi-stream network

using a fully connected layer to a 200-dimensional vector.

This 200-dimensional vector is given to two LSTM layers

(one forward and one backward in time) with 60 hidden

units each. Finally, a softmax classifier is trained on each

LSTM’s hidden units, and the softmax predictions of both

LSTM networks are averaged to get the action scores for

each class. While training LSTMs for detection, we use the

entire video sequence, so this also includes a background

class. We use the same architecture for both datasets. Since

the four networks that make up our multi-stream network

cannot all fit in GPU (Tesla K40) memory at once, we train

each network independently. To train the LSTM networks,

we use the implementation provided in [3].

Since mean Average Precision (mAP) is the standard

measure used to evaluate action detection in past work, we

need to produce a ranked list of action clips, along with a

start frame, an end frame, and a score associated with each

clip. Midpoint hit criterion is used to evaluate detection

as done in [21]. This means that the midpoint of the de-

tected interval should lie within the ground-truth interval in

the test video. If a second detection fires within the same

ground-truth interval, that second detection is considered a

false positive. We use the evaluation code used in [20].

To obtain segments for each action class, we start with

an initial threshold. We apply this threshold to the output

score (average of the two LSTM softmax outputs) that was

assigned to each 6-frame chunk of video by our MSB-RNN

network. We group the above-threshold chunks into con-

nected components, each of which represents one detection,

which we refer to as a clip (defined by its start and end

time). The initial threshold will give us some number of

detections. If the number of detections is less than m for a

class, we lower the threshold further until we get m unique

clips. To get the next set of clips, we lower the threshold

until we get 2m unique clips. If a new action clip intersects

with any clip in the previous set, we discard the new clip.

We keep on doubling the size of the next set until we obtain

2500 unique clips. In our experiments, we set m = 5. Each

clip consists of some number of consecutive 6-frame chunks

of video, each of which is assigned an output score (aver-

age of the two LSTM softmax outputs) by our MSB-RNN

system. We assign a score to each clip by max-pooling the

output scores of all of the chunks in the clip. Since the

validation set in the MPII Cooking 2 Dataset does not con-

tain every action class in the dataset, we adopt this method

because it enables us to obtain a ranked list of detections

without requiring us to select detection thresholds for each

action class. We use the same process on the MERL Shop-
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Method mAP

Hand-cSIFT [21] 10.5%

Hand-trajectories [21] 21.3%

Hand-cSIFT+Hand-trajectories [21] 26.0%

Dense Trajectories [27, 21] 29.5%

Two-Stream Network [22] 30.18%

DT+Hand-trajectories+cSIFT [21] 34.5%

MSB-RNN 41.2%

Table 1. Comparison of performance of our MSB-RNN system

with previous action detection methods on the MPII Cooking 2

dataset. Mean Average Precision (mAP) is reported.

ping Dataset. We replicate the output labels for each chunk

6 times to get per-frame labels for evaluation. The above

process is similar to non-maximal suppression, as we rank

confident detections at the top and do not include less confi-

dent detections in the ranked list whose subsets have already

been detected.

4.3. Experiments

In Table 1 we show that our MSB-RNN obtains an mAP

of 41.2% on the MPII Cooking 2 Dataset, outperforming

the previous state of the art’s mAP of 34.5%. Note that the

34.5% reported in [21] is a very strong baseline. Dense tra-

jectories are still known to give state-of-the-art performance

in fine-grained action recognition and detection, and [21]

uses a combination of dense trajectories along with the ad-

ditional hand-centric color-SIFT and Hand-trajectories fea-

tures. Our implementation of the two-stream network [22]

(just our two full-frame streams, without our person-centric

streams, and without the LSTMs) yields an mAP of 30.18%

on this dataset, which is only slightly better than the perfor-

mance of using improved dense trajectories alone.

Pixel Trajectories

In Table 2, we compare the effectiveness of variations of

the person-centric (cropped) appearance stream (“Frame”),

and the person-centric motion stream using either pixel tra-

jectories (“Trajectories”) or stacked optical flow (“Stacked

OF”). We evaluate mAP for two versions of each network:

when the stream is followed by a unidirectional LSTM

layer, and when the LSTM is omitted and replaced by a

softmax layer. Using pixel trajectories instead of stacked

flow improves performance both with and without LSTM,

on both the MPII Cooking 2 (MPII 2) and MERL Shopping

(Shop) datasets, making pixel trajectories a clear winner

over stacked flow for action detection. For all three types of

streams on both datasets, the LSTM layer produces a large

improvement.

Multi-Stream Network

In Table 3 we compare the performance of our multi-

stream network (using both full-frame and person-centric

bounding boxes) with that of a two-stream network (full-

Method MPII2
MPII2

LSTM
Shop

Shop

LSTM

Stacked OF 21.31% 27.36% 55.29% 71.70%

Trajectories 22.35% 29.51% 57.88% 73.06%

Frame 24.72% 28.77% 40.02% 63.26%

Table 2. Evaluating individual components of our MSB-RNN sys-

tem. Mean average Precision (mAP) is reported. For both datasets,

MPII Cooking 2 and Shopping dataset, pixel trajectories outper-

form stacked flow (both with and without a subsequent LSTM

layer). For all three stream types and both datasets, incorporat-

ing the LSTM layer greatly improves performance.

Method MPII 2 Shop

Two-Stream [22] 30.18% 65.21%

Multi-Stream 33.38% 69.08%

Multi-Stream LSTM→ 38.03% 77.24%

Multi-Stream LSTM← 37.43% 75.08%

MSB-RNN 41.22% 80.31%

Table 3. Performance comparison of multi-stream vs. two-stream

network. Performance when multi-stream network is followed by

each unidirectional LSTM or by their bi-directional combination

(MSB-RNN). mAP is reported.
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Figure 7. Mean Average Precision (mAP) for pixel trajectory net-

work (left) and frame network (right) on the Shopping Dataset,

when followed by a unidirectional LSTM layer with restricted

memory duration. LSTM memory duration (x-axis) is expressed

as a number of 6-frame chunks. Note that the LSTM network can

effectively remember as far as 10 chunks (4 seconds) into the past.

frame only). Including a person-centric reference frame

improves performance on both datasets. If we use B-

LSTM only on full-frame features (Two-Stream + BLSTM,

not shown in result tables), the performance drops by 3.4%

on the MERL Shopping Dataset and 1.8% on the MPII

Cooking 2 dataset compared to MSB-RNN. We report re-

sults for individual actions of the Shopping dataset in Ta-

ble 4.

LSTM

Tables 3 and 4 also compare the performance of our

multi-stream network when followed by a forward unidi-

rectional LSTM, a backward unidirectional LSTM, or the

bi-directional LSTM (which is our complete MSB-RNN

system). Each unidirectional LSTM provides a significant

1967



Action Two Stream MSN LSTM← LSTM→ MSB-RNN

Reach To Shelf 75.95% 80.8% 84.39% 84.86% 89.74%

Retract From Shelf 74.53% 77.71% 81.45% 84.61% 90.47%

Hand In Shelf 52.48% 54.13% 59.69% 68.73% 65.56%

Inspect Product 67.56% 75.68% 79.29% 78.6% 82.7%

Inspect Shelf 55.52% 57.09% 70.57% 70.31% 73.09%

Mean 65.21% 69.08% 75.08% 77.42% 80.31%

Table 4. Results for each action class in the Shopping Dataset using various network configurations.

boost, and including bi-directional LSTMs (MSB-RNN)

yields an even larger improvement, because it provides

more temporal context than a unidirectional LSTM. The re-

sults in these tables and Table 2 clearly show that the LSTM

layer is the most important factor contributing to our sys-

tem’s improved performance over previous methods.

These observations led us to explore in more detail why

using an LSTM layer improves performance by such a large

margin. We conducted two experiments to analyze the con-

tributions of an LSTM layer to our system.

How long does the LSTM remember?

In the first experiment, we use the trained model and an-

alyze the effective temporal duration of the LSTM layer’s

memory. For this experiment, we clear the memory of the

LSTM layer at different time steps using a continuation se-

quence indicator. A continuation sequence indicator is 0 at

the beginning of a sequence and 1 otherwise. Thus, we can

set every kth indicator to 0 for clearing the memory, if we

are interested in an LSTM which remembers history from

the past k chunks in the sequence. However, this would

abruptly reduce the memory of the element at the beginning

of the sequence to zero. To avoid this problem, we gener-

ate k different continuation indicator sequences, shifted by

one element, to limit the memory of the LSTM layer to k

time steps. Thus, when a prediction is made for an element,

we choose the output from the sequence whose continua-

tion indicator was set to zero k time steps before. In Fig-

ure 7, we plot the mAP when an LSTM is used on top of

frame or pixel trajectory features on the Shopping Dataset.

We observe that performance improves as we increase the

memory duration for LSTM. It is quite encouraging that

the unidirectional LSTM layer can make effective use of

as many as 10 preceding chunks in a sequence. Thus, a bi-

directional LSTM would use a context of 20 chunks in a se-

quence while making a prediction. In the context of a video,

where each chunk comprises 6 frames of a video (sampled

at 15 frames per second), this sequence length would cor-

respond to 8 seconds. Thus, the bi-directional LSTM im-

proves action detection performance by a large margin, by

incorporating information from about 8 seconds of temporal

context. Many actions last less than 8 seconds, and actions

that last longer than that are likely to have a recurring pat-

tern that can be captured in 8 seconds.

Learning transitions between actions

The first experiment (above) demonstrates that an LSTM

can remember long-term temporal information. In the sec-

ond experiment, we explore whether the LSTM can also

learn information from the transitions between different ac-

tions in a video sequence. Recent works train an LSTM

network on trimmed video sequences [3, 15]. Thus, they

cannot learn long-term context that extends beyond the start

or end of an action. Therefore, we conducted our second

experiment, in which the continuation indicators are set to

0 (while training only) whenever an action starts or ends.

This simulates training on trimmed video sequences, in-

stead of a continuous video sequence that includes many

actions. We observe that training on trimmed clips drops

the performance from 77.24% to 75.51% on the Shopping

Dataset and from 38.03% to 36.22% on the MPII Cooking

2 dataset (using a unidirectional LSTM). This confirms our

hypothesis that training networks on long video sequences

is beneficial as compared to training on temporally clipped

videos of individual actions.

5. Conclusion

In this paper, we showed that using a multi-stream net-

work that augments full-frame image features with features

from a bounding box surrounding the actor is useful in fine-

grained action detection. We showed that for this task, pixel

trajectories give better results than stacked optical flow due

to their location correspondence. We showed that to capture

long-term temporal dynamics within and between actions, a

bi-directional LSTM is highly effective. We also provided

an analysis of how long an LSTM network can remember

information in the action detection scenario. Finally, our

results represent a significant step forward in accuracy on

a difficult publicly available dataset (MPII Cooking 2), as

well as on a new MERL Shopping Dataset that we are re-

leasing with the publication of this paper.
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