
LOMo: Latent Ordinal Model for Facial Analysis in Videos

Karan Sikka1,∗ Gaurav Sharma2,3,† Marian Bartlett1,∗,‡

1UCSD, USA 2MPI for Informatics, Germany 3IIT Kanpur, India

Abstract

We study the problem of facial analysis in videos.

We propose a novel weakly supervised learning

method that models the video event (expression, pain

etc.) as a sequence of automatically mined, discrimi-

native sub-events (e.g. onset and offset phase for smile,

brow lower and cheek raise for pain). The proposed

model is inspired by the recent works on Multiple In-

stance Learning and latent SVM/HCRF – it extends

such frameworks to model the ordinal or temporal as-

pect in the videos, approximately. We obtain consistent

improvements over relevant competitive baselines on

four challenging and publicly available video based

facial analysis datasets for prediction of expression,

clinical pain and intent in dyadic conversations. In

combination with complimentary features, we report

state-of-the-art results on these datasets.

1. Introduction

Facial analysis is an important area of computer vi-

sion. The representative problems include face (iden-

tity) recognition [52], identity based face pair match-

ing [10], age estimation [1], kinship verification [23],

emotion prediction [6], [11], among others. Facial

analysis finds important and relevant real world appli-

∗Machine Perception Lab, University of California San Diego.
†Currently with CSE, Indian Institute of Technology Kanpur.

Majority of this work was done at MPI for Informatics.
‡Marian Bartlett was a co-founder of Emotient, a company that

may have indirectly benefitted from this work. The terms of this

arrangement have been reviewed and approved by the University

of California, San Diego, in accordance with its conflict-of-interest

policies. Support for this research was provided by NIH grant R01

NR013500. Any opinions, findings, conclusions or recommen-

dations expressed in this material are those of the author(s) and

do not necessarily reflect the views of the National Institutes of

Health.

Event 1 Event 2 Event 3

= c1

= c2

+

= c6

Different ordering of 

sub-events carry 

different costs

The model scores sub-

events (color coded) in a 

particular order

The final score is the sum of (i) the average sub-event 

scores, and (ii) the cost of the sequence in which they appear

Figure 1: Illustration of the proposed approach.

cations such as human computer interaction, personal

robotics, and patient care in hospitals [37, 25, 42, 5].

While we work with videos of faces, i.e. we assume

that face detection has been done reliably, we note that

the problem is pretty challenging due to variations in

human faces, articulations, lighting conditions, poses,

video artifacts such as blur etc. Moreover, we work in

a weakly supervised setting, where only video level

annotations are available and there are no annotations

for individual video frames.

In weakly supervised setting, Multiple Instance

Learning (MIL) [2] methods are one of the popular

approaches and have been applied to the task of fa-

cial video analysis [37, 33, 45] with video level, and

not frame level, annotations. However, the main draw-

backs of most of such approaches are that (i) they use

the maximum scoring vector to make the prediction

[2], and (ii) the temporal/ordinal information is always

lost completely. While, in the recent work by Li and

Vasconcelos [17], MIL framework has been extended

to consider multiple top scoring vectors, the temporal

order is still not incorporated. In the present paper we

propose a novel method that (i) works with weakly su-
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pervised data, (ii) mines out the prototypical and dis-

criminative set of vectors required for the task, and

(iii) learns constraints on the temporal order of such

vectors. We show how modelling multiple vectors in-

stead of the maximum one, while simultaneously con-

sidering their ordering, leads to improvements in per-

formance.

The proposed model belongs to the family of mod-

els with structured latent variables e.g. Deformable

Part Models (DPM) [7] and Hidden Conditional Ran-

dom Fields (HCRF) [43]. In DPM, Felzenszwalb et

al. [7] constrain the location of the parts (latent vari-

ables) to be around fixed anchor points with penalty

for deviation while Wang and Mori [43] impose a tree

structure on the human parts (latent variables) in their

HCRF based formulation. In contrast, we are not in-

terested in constraining our latent variables based on

fixed anchors [7] or distance (or correlation) among

themselves [43, 32], but are only interested in model-

ing the order in which they appear. Thus, the model is

stronger than models without any structure while being

weaker that models with more strict structure [7, 43].

The current model is also reminiscent of Actom Se-

quence Model (ASM) of Gaidon et al. [8], where a

temporally ordered sequence of sub-events are used to

perform action recognition in videos. However, ASM

requires annotation of such sub-events in the videos;

the proposed model aims to find such sub-events au-

tomatically. While ASM places absolute temporal lo-

calization constraints on the sub-events, the proposed

model only cares about the order in which such sub-

events occur. One advantage of doing so is the flexi-

bility of sharing appearances for two sub-events, espe-

cially when they are automatically mined. As an ex-

ample, the facial expression may start, as well as end,

with a neutral face. In such case, if the sub-event (neu-

tral face) is tied to a temporal location we will need

two redundant (in appearance) sub-events i.e. one at

the beginning and one at the end. While, here such

sub-events will merge to a single appearance model,

with the symmetry encoded with similar cost for the

two ordering of such sub-event, keeping the rest same.

In summary, we make the following contributions.

(i) We propose a novel (loosely) structured latent

variable model, which we call Latent Ordinal Model

(LOMo). It mines prototypical sub-events and learns a

prior, in the form of a cost function, on the ordering of

such sub-events automatically with weakly supervised

data. (ii) We propose a max-margin hinge loss mini-

mization objective, to learn the model and design an

efficient stochastic gradient descent based learning al-

gorithm. (iii) We validate the model on four challeng-

ing datasets of expression recognition [24, 50], clinical

pain prediction [25] and intent prediction (in dyadic

conversations) [35]. We show that the method consis-

tently outperforms temporal pooling and MIL based

competitive baselines. In combination with comple-

mentary features, we report state-of-the-art results on

these datasets with the proposed model.

2. Related works

Early approaches for facial expression recognition

used apex (maximum expression) frames [38, 29, 5]

or pre-segmented clips, and thus were strongly super-

vised. Also, they were often evaluated on posed video

datasets [24].

To encode the faces into numerical vectors, many

successful features were proposed e.g. Gabor [19]

and Local Binary Patterns (LBP) [29], fiducial points

based descriptors [49]. They handled videos by ei-

ther aggregating features over all frames, using av-

erage or max-pooling [15, 36], or extending features

to be spatio-temporal e.g. 3D Gabor [46] and LBP-

TOP [51]. Facial Action Units, represent movement of

facial muscle(s) [5], were automatically detected and

used as high level features for video prediction [5, 20].

Noting that temporal dynamics are important for

expressions [5], the recent focus has been more on

algorithms capturing dynamics e.g. Hidden Markov

Model (HMM) [4, 18] and Hidden Conditional Ran-

dom Fields (HCRF) [3, 27, 31] have been used for

predicting expressions. Chang et al. [3] proposed a

HCRF based model that included a partially observed

hidden state at the apex frame, to learn a more inter-

pretable model where hidden states had specific mean-

ing. The models based on HCRF are also similar to

latent structural SVMs [43, 39], where the structure

is defined as a linear chain over the frames. Other dis-

criminative methods were proposed based on Dynamic

Bayesian Networks [48] or hybrids of HMM and SVM

[40]. Lorincz et al. [22] explored time-series kernels

e.g. based on Dynamic Time Warping (DTW) for com-

paring expressions. Another model used probabalistic

kernels for classifying exemplar HMM models [36].
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Nguyen et al. [28] proposed a latent SVM based

algorithm for classifying and localizing events in a

time-series. They later proposed a fully supervised

structured SVM for predicting Action Unit segments

in video sequences [39]. Our algorithm differs from

[28], while they use simple MIL, we detect multiple

prototypical segments and further learn their tempo-

ral ordering. MIL based algorithm has also been used

for predicting pain [37]. In recent works, MIL has

been used with HMM [45] and also to learn embed-

ding for multiple concepts [33] for predicting facial

expressions. Rudovic et al. [32] proposed a CRF based

model that accounted for ordinal relationships between

expression intensities. Our work differs from this work

in handling weakly labeled data and modeling the or-

dinal sequence between sub-events (see §1).

We also note the excellent performances reached

by recurrent neural networks on video classification

tasks e.g. Karpathy et al. [12] and the reference within.

While such, neural networks based, methods lead to

impressive results, they require a large amount of data

to train. In the tasks we are interested in, collecting

large amounts of data is costly and has practical and

ethical challenges e.g. clinical pain prediction [25, 44].

While networks trained on large datasets for identity

verification have been recently made public [30], we

found empirically that they do not generalize effec-

tively to the tasks we are interested in (§4).

3. Approach

We now describe our proposed Latent Ordinal

Model (LOMo) in detail. We denote the video as a

sequence of N frames1 represented as a matrix X =
[x1, x2, . . . , xN ] with xf ∈ R

d being the feature vector

for frame f . We work in a weakly supervised binary

classification setting, where we are given a training set

X = {(X, y)} ⊂ R
d×N × {−1,+1} (1)

containing videos annotated with the presence (y =
+1) or absence (y = −1) of a class in X , with-

out any annotations for specific columns of X i.e.

xf∀f ∈ [1, N ]. While we present our model for the

case of face videos annotated with absence or presence

of an expression, we note that it is a general multi-

dimensional vector sequence classification model.

1We assume, for brevity, all videos have the same number of

frames, extension to different number of frames is immediate

Algorithm 1 SGD based learning for LOMo

1: Given: X ,M, λ, η, k

2: Initalize: wi ← 0.01 × rand(0, 1)∀i ∈
[1,M ], c← 0

3: for all t = 1, . . . , maxiter do

4: Randomly sample (X, y) ∈ X
5: Obtain sΘ(X) and k using Eq. 4a

6: if ysΘ(X) < 1 then

7: for all i = 1, . . . ,M do

8: wi ← wi(1− λη) + 1
M
ηyixki

9: end for

10: cσ(k) ← cσ(k) − η

11: end if

12: end for

13: Return: Model Θ =
(

{wi}
M
i=1, {cj}

M !
j=1

)

The model is a collection of discriminative tem-

plates (cf. SVM hyperplane parameters) and a cost

function associated with the sequence of templates.

The templates capture the appearances of different

sub-events e.g. neutral, onset or offset phase of an ex-

pression [39], while the cost function captures the like-

lihood of the occurrence of the sub-events in different

temporal orders. The parts and the cost function are

all automatically and jointly learned, from the train-

ing data. Hence, the sub-events are not constrained to

be either similar or distinct and are not fixed to rep-

resent certain expected states. They are mined from

the data and could potentially be a combination of the

sub-events generally used to describe expressions.

Formally, the model is given by

Θ =
(

{wi}
M
i=1, {cj}

M !
j=1

)

,wi ∈ R
d, cj ∈ R (2)

with i = 1, . . . ,M indexing over the M sub-event

templates and j = 1, . . . ,M ! indexing over the dif-

ferent temporal orders in which these templates can

occur. The cost function depends only on the or-

dering in which the sub-events occur in the current

video, and hence is a look-up table (simple array,

c = [c1, . . . , cM !]) with size equal to the number of

permutations of the number of sub-events M . The

reason and use of this will become more clear in §3.1

when we describe the scoring function.

We learn the model Θ with a regularized max-
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margin hinge loss minimization, given by

λ

2

M
∑

i=1

‖wi‖
2 +

1

|X |

∑

X∈X

[1− yisΘ(X)]+ (3)

where [a]+ = max(a, 0) ∀a ∈ R. sΘ(X) is our

scoring function which uses the templates and the cost

function to assign a confidence score to the example

X . The decision boundary is given by sΘ(X) = 0.

3.1. Scoring function

Deviating from a linear SVM classifier, which has a

single parameter vector, our model has multiple such

vectors which act at different temporal positions. We

propose to score a video X , with model Θ, as

sΘ(X) = max
k

1

M

M
∑

i=1

w⊤
i xki + cσ(k) (4a)

s.t. O(k) ≤ β (4b)

where, k = [k1, . . . , kM ] ∈ N
M are the M latent

variables, and σ : NM → N maps k = (k1, . . . , kM )
to an index, with lexicographical ordering e.g. with

M = 4 and without loss of generality k1 < k2 <

k3 < k4, σ(k1, k2, k3, k4) = 1, σ(k1, k2, k4, k3) =
2, σ(k1, k3, k2, k4) = 3 and so on. The latent variables

take the values of the frames on which the correspond-

ing sub-event templates in the model gives maximal

response while being penalized by the cost function for

the sequence of occurrence of the sub-events. O(k) is

an overlap function, with β being a threshold, to en-

sure that multiple wi’s do not select close by frames.

Intuitively, we capture the idea that each expression

or pain sequence is composed of a small number of

prototypical appearances e.g. onset and offset phase

for smile, brow lower and cheek raise for pain, or a

combination thereof. Each of the wi captures such a

prototypical appearance, albeit (i) they are learned in

a discriminative framework and (ii) are mined auto-

matically, again with a discriminative objective. The

cost component c effectively learns the order in which

such appearances should occur. It is expected to sup-

port the likely order of sub-events while penalizing the

unlikely ones. Even if a negative example gives rea-

sonable detections of such prototypical appearances,

the order of such false positive detections is expected

to be incorrect and it is expected to be penalized by the

order dependent cost. We later validate such intuitions

with qualitative results in §4.3.

3.2. Learning

We propose to learn the model using a stochastic

gradient descent (SGD) based algorithm with analyti-

cally calculable sub-gradients. The algorithm, summa-

rized in Alg. 1, randomly samples the training set and

does stochastic updates based on the current example.

Due to its stochastic nature, the algorithm is quite fast

and is usable in online settings where the data is not

entirely available in advance and arrives with time.

We solve the scoring optimization with an ap-

proximate algorithm. We obtain the best scoring

frame xki for wi and remove wi from the model and

xf−t, . . . , xf+t frames from the video; and repeat steps

M times so that every wi has a corresponding xki . t

is a hyperparameter to ensure temporal coverage by

the model – it stops multiple wi’s from choosing (tem-

porally) close frames. Once the k = k1, . . . , kM are

chosen we add cσ(k) to their average template score.

4. Experimental Results

We empirically evaluated the proposed approach

on four challenging, publicly available, facial behav-

ior datsets, of emotions, clinical pain and non-verbal

behavior, in a weakly supervised setting i.e. without

frame level annotations. The four datasets ranged from

both posed (recorded in lab setting) to spontaneous

expressions (recorded in realistic settings). We now

briefly describe the datasets with experimental proto-

cols used and the performance measures reported.

In the following, we first describe the datasets and

their respective protocols and performance measures.

We then give quantitative comparisons with out own

implementation of competitive existing methods. We

then present some qualitative results highlighting the

choice of subevents and their orders by the method.

Finally, we compare the proposed method with state-

of-the-art methods on the datasets used.

CK+2 [24] is a benchmark dataset for expression

recognition, with 327 videos from 118 participants

posing for seven basic emotions – anger, sadness, dis-

gust, contempt, happy, surprise and fear. We use a

standard subject independent 10 fold cross-validation

and report mean of average class accuracies over the

10 folds. It has annotation for the apex frame and thus

2
http://www.consortium.ri.cmu.edu/ckagree/

5583

http://www.consortium.ri.cmu.edu/ckagree/


also allows fully supervised training and testing.

Oulu-CASIA VIS3 [50] is another challenging bench-

mark for basic emotion classification. We used the

subset of expressions that were recorded under the vis-

ible light condition. There are 480 sequences (from 80
subjects) and six classes (as CK+ except contempt). It

has a higher variability due to differences among sub-

jects. We report average accuracy across all classes

and use subject independent folds provided by the

dataset creators.

UNBC McMaster Shoulder Pain4 [25] is used to

evaluate clinical pain prediction. It consists of real

world videos of subjects with pain while performing

guided movements of their affected and unaffected

arm in a clinical interview. The videos are rated for

pain intensity (0 to 5) by trained experts. Follow-

ing [45], we labeled videos as ‘pain’ for intensity

above three and ‘no pain’ for intensity zero, and dis-

carded the rest. This resulted in 149 videos from 25
subjects with 57 positive and 92 negative samples. Fol-

lowing [45] we do a standard leave-one-subject out

cross-validation and report classification rate at ROC-

EER.

LILiR5 [35] is a dataset of non-verbal behavior such

as agreeing, thinking, in natural social conversations.

It contains 527 videos of 8 subjects involved in dyadic

conversations. The videos are annotated for 4 dis-

played non-verbal behavior signals- agreeing, ques-

tioning, thinking and understanding, by multiple an-

notators. We generated positive and negative exam-

ples by thresholding the scores with a lower and higher

value and discarding those in between. We then gener-

ated ten folds at random and report average Area under

ROC – we will make our cross-validation folds pub-

lic. This differs from Sheerman et al. [35], who used a

very small subset of only 50 video samples that were

annotated with the highest and the lowest scores.

4.1. Implementation Details and Baselines

We now give the details of the features used, fol-

lowed by the details of the baselines and the parameter

settings for the model learning algorithms (proposed

3
http://www.cse.oulu.fi/CMV/Downloads/Oulu-CASIA

4
http://www.pitt.edu/˜emotion/um-spread.htm

5
http://www.ee.surrey.ac.uk/Projects/LILiR/twotalk_corpus/

and our implementations of the baselines).

Features. For our experiments, we computed four

types of facial descriptors. We extracted 49 facial land-

mark points and head-pose information using super-

vised gradient descent6 [47] and used them for align-

ing faces. The first set of descriptors were SIFT-

based features, which we computed by extracting SIFT

features around facial landmarks and thereafter con-

catenating them [47, 5]. We aligned the faces into

128 × 128 pixel and extracted SIFT features (using

open source vlfeat library [41]) in a fixed window

of size 12 pixels. The SIFT features were normalized

to unit ℓ2 norm. We chose location of 16 landmark

points around eyes (4), brows (4), nose (2) and mouth

(6) for extracting the features. Since SIFT features are

known to contain redundant information [13], we used

Principal Component Analysis to reduce their dimen-

sionality to 24. To each of these frame-level features,

we added coarse temporal information by appending

the descriptors from next 5 consecutive frames, lead-

ing to a dimensionality of 1920. The second features

that we used were geometric features [49, 5], that are

known to contain shape or location information of per-

manent facial features (e.g. eyes, nose). We extracted

them from each frame by subtracting x and y coor-

dinates of the landmark points of that frame from the

first frame (assumed to be neutral) of the video and

concatenating them into a single vector (98 dimen-

sions). We also computed LBP features7 (with ra-

dius 1 and neighborhood 8) that represent texture in-

formation in an image as a histogram. We added spa-

tial information to the LBP features by dividing the

aligned faces into a 9 × 9 regular grid and concate-

nating the histograms (4779 dimensions) [38, 16]. We

also considered Convolution Neural Network (CNN)

features by using publicly available models of Parkhi

et al. [30] that was trained on a large dataset for face

recognition. We used the network output from the

last fully connected layer. However, we found that

these performed lower than other features e.g. on Oulu

and CK+ datasets they performed about 10% absolute

lower than LBP features. We suspected that they are

not adapted to tasks other than identity discrimination

and did not use them further.

6
http://www.humansensing.cs.cmu.edu/intraface/download.html

7
http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
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Baselines. We report results with 4 baseline ap-

proaches. For first two baselines we used average (or

mean) and max temporal pooling [36] over per-frame

facial features along with SVM. Temporal pooling is

often used along with spatio-temporal features such as

Bag of Words [15, 37], LBP [51] in video event clas-

sification, as it yields vectorial representation for each

video by summarizing variable length frame features.

We selected Multiple Instance Learning based on la-

tent SVM [2] as the third baseline algorithm. We also

computed the performance of the fully supervised al-

gorithms for cases with known location of the frame

that contains the expression. For making a fair com-

parison, we used the same implementation for SVM,

MIL and LOMo.

Parameters. We fix M = 1 and cσ = 0 in the cur-

rent implementation, for obtaining SVM baseline re-

sults with a single vector input, and report best results

across both learning rate and number of iterations. For

both MIL (M = 1) and LOMo, which take a se-

quence of vectors as input, we set the learning rate to

η = 0.05 and for MIL we set cσ = 0. We fix the reg-

ularization parameter λ = 10−5 for all experiments.

We do multiclass classification using one-vs-all strat-

egy. For ensuring temporal coverage (see §3.2), we set

the search space for finding the next sub-event to ex-

clude t = 5 and 50 neighboring frames from the previ-

ously detected sub-events’ locations for datasets with

fewer frames per video (i.e. CK+, Oulu-CASIA VIS

and LILiR datasets) and UNBC McMaster dataset, re-

spectively. For our final implementation, we combined

LOMo models learned on multiple features using late

fusion i.e. we averaged the scores.

4.2. Quantitative Results

The performances of the proposed approach, along

with those of the baseline methods, are shown in Ta-

ble. 1. In this comparison, we used SIFT-based facial

features for all datasets. Since head nod information

is important for identifying non-verbal behavior such

as agreeing, we also appended head-pose information

(yaw, pitch and roll) to the SIFT-based features for the

LILiR dataset.

We see performance improvements with proposed

LOMo, in comparison to baseline methods, on 6 out

of 7 prediction tasks. In comparison to MIL, we ob-

serve that LOMo outperforms the former method on

all tasks. The improvements are 1.2%, 4.2% and 1.1%
absolute, on CK+, Oulu-CASIA VIS and UNBC Mc-

Master datasets, respectively. This improvement can

be explained by the modeling advantages of LOMo,

where it not only discovers multiple discriminative

sub-events but also learns their ordinal arrangement.

For the LILiR dataset, we see improvements in partic-

ular on the ‘Questioning’ (5.9% absolute) and ‘Agree-

ing’ (1.7% absolute), where temporal information is

useful for recognition. In comparison to temporal

pooling based approaches, LOMo outperforms both

mean and max pooling on 6 out of 7 tasks. This

is not surprising since temporal pooling operations

are known to add noise to discriminative segments of

a video by adding information from non-informative

segments [36]. Moreover, they discard any temporal

ordering, which is often important for analyzing facial

activity [37].

On both facial expression tasks, i.e. emotion (CK+

and Oulu-CASIA VIS) and pain prediction (UNBC

McMaster), methods can be arranged in increasing

order of performance as mean-pooling, max-pooling,

MIL, LOMo. A similar trend between temporal pool-

ing and weakly supervised methods has also been

reported by previous studies on video classification

[37, 8]. We again stress that LOMo performs better

than the existing weakly supervised methods, which

are the preferred choice for these tasks. In particular,

we observed the difference to be higher between tem-

poral pooling and weakly supervised methods on the

UNBC McMaster dataset, 67.4% for mean-pooling,

81.5% for max-pooling, 85.9% for MIL and 87.0% for

LOMo. This is because the subjects exhibit both head

movements and non-verbal behavior unrelated to pain,

and thus focusing on the discriminative segment, cf.

using a global description, leads to performance gain.

However, we didn’t notice a similar trend on the LILiR

dataset – the differences are smaller or reversed e.g.

for ‘Understanding’ mean-pooling is marginally bet-

ter than MIL (79.4% vs. 78.9%), while LOMo is bet-

ter than both (80.3%). This could be because most

conversation videos are pre-segmented and predicting

non-verbal behavior relying on a single prototypical

segment might be difficult e.g. ‘Understanding’ in-

cludes both upward and downward head nod, which

cannot be captured well by detecting a single event.
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Dataset Task Full Sup. Mean Pool Max Pool MIL LOMo

Cohn-Kanade+ Emotion 91.9 86.0 87.5 90.8 92.0

Oulu-CASIA VIS Emotion 75.0 68.3 69.0 69.8 74.0

UNBC McMaster Pain − 67.4 81.5 85.9 87.0

LILiR

Agree − 84.7 85.5 77.7 79.4
Question − 86.2 84.3 80.7 86.6

Thinking − 93.6 88.9 93.8 94.8

Understand − 79.4 79.2 78.9 80.3

Table 1: Comparison of LOMo with Baseline methods on 4 facial behavior prediction datasets using SIFT based

facial features (see §4.1).

In such cases we see LOMo beats MIL by temporal

modeling of multiple events.

5 24 72 8447

Event 1 Event 2 Event 3

Final Score = 2.56

Figure 2: Detection of multiple discriminative sub-

events, discovered by LOMo, on a video sequence

from the UNBC McMaster Pain dataset. The num-

ber below the timeline shows the relative location (in

percentile of total number of frames).

4.3. Qualitative Results

Fig. 3 shows the detections of our approach, with

model trained for ‘happy’ expression, on two se-

quences from the Oulu-CASIA VIS dataset. The

model was trained with three sub-events. As seen in

Fig. 3, the three events seem to correspond to the ex-

pected semantic events i.e. neutral, low-intensity and

apex, in that order, for the positive example (left),

while for the negative example (right) the events are

incorrectly detected and in the wrong order as well.

Further, the final scores assigned to the negative ex-

ample is −2.87 owing to low detection scores as well

as penalization due to incorrect temporal order. The

cost learned, by the model, for the ordering (3, 1, 2)
was−0.6 which is much lower than 0.9 for the correct

order of (1, 2, 3). This result highlights the modeling

strength of LOMo, where it learns both multiple sub-

events and a prior on their temporal order.

Fig. 2 shows detections on an example sequence

from the UNBC McMaster dataset where subjects

could show multiple expressions of pain [37, 33]. The

results show that our approach is able to detect such

multiple expressions of pain as sub-events.

Thus, we conclude that qualitatively our model sup-

ports our intuition, that not only the correct sub-events

but their correct temporal order is critical for high per-

formance in such tasks.

4.4. Comparison with StateoftheArt

In this section we compare our approach with sev-

eral existing approaches on the three facial expression

datasets (CK+, Oulu-CASIA VIS and UNBC McMas-

ter). Tab. 2 shows our results along with many com-

peting methods on these datasets. To obtain the best

performance from the model, we exploited the com-

plementarity of different facial features by combining

LOMo models learned on three facial descriptors –

SIFT based, geometric and LBP (see §4.1). We used

late fusion for combination by averaging the prediction

scores from each model. With this setup, we achieve

state-of-the-art results on the three datasets. We now

discuss some representative works.

Several initial methods worked with pooling the

spatio-temporal information in the videos e.g. (i) LBP-

TOP [51] – Local Binary Patterns in three planes (XY

and time), (ii) HOG3D [14] – spatio-temporal gradi-

ents, and (iii) 3D SIFT [34]. We report results from

Liu et al. [21], who used a similar experimental pro-

tocol. These were initial works and we see that their

performances are far from current method e.g. com-

pared to 81.2% for the proposed LOMo, HOG3D ob-

tains 70.6% and LBPTOP obtains 72.1% on the Oulu-

CASIA VIS dataset.
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Event 1 Event 2 Event 3

6 31 68 10050

Final Score = 1.44

Event 3 Event 1 Event 2

7 23 69 10053

Final Score = -2.87

Figure 3: Detections made by LOMo trained (M = 3) for classifying ‘happy’ expression on two expression

sequences from Oulu-CASIA VIS dataset. LOMo assigns a negative score to the sad expression (on the right)

owing to negative detections for each sub-event and also negative cost of their ordering (see §3.1). The number

below the timeline shows the relative location (in percentile of total number of frames).

CK+ dataset [24]

3DSIFT [34] 81.4

LBPTOP [51] 89.0

HOG3D [14] 91.4

Ex-HMMs [36] 93.9

STM-ExpLet [21] 94.2

LOMo (proposed) 95.1

Oulu-CASIA VIS dataset [50]

HOG3D [14] 70.6

LBPTOP [51] 72.1

STM-ExpLet [21] 74.6

Atlases [9] 75.5

Ex-HMMs [36] 75.6

LOMo (proposed) 82.1

UNBC McMaster dataset [25]

Ashraf et al. [26] 68.3

Lucey et al. [26] 81.0

MS-MIL [37] 83.7

MIL-HMM [45] 85.2

RMC-MIL [33] 85.7

LOMo (proposed) 87.0

Table 2: Comparison of the proposed approach with several state-of-the-art algorithms on three datasets.

Approaches modeling temporal information include

Exemplar-HMMs [36], STM-ExpLet [21], MS-MIL

[42]. While Sikka et al. (Exemplar-HMM) [36] com-

pute distances between exemplar HMM models, Liu

et al. (STM-ExpLet) [21] learns a flexible spatio-

temporal model by aligning local spatio-temporal fea-

tures in an expression video with a universal Gaussian

Mixture Model. LOMo outperforms such methods on

both emotion classification tasks e.g. on Oulu-CASIA

VIS dataset, LOMo achieves a performance improve-

ment of 7.5% and 6.5% absolute relative to STM-

ExpLet and Exemplar-HMMs respectively. Sikka et

al. [37] first extracted multiple temporal segments

and then used MIL based on boosting MIL [42].

Chongliang et al. [45] extended this approach to in-

clude temporal information by adapting HMM to MIL.

We also note the performance in comparison to both

MIL based approaches (MS-MIL [37] and MIL-HMM

[45]) on the pain dataset. Both the methods report

very competitive performances of 83.7% and 85.2%
on UNBC McMaster dataset compared to 87.0% ob-

tained by the proposed LOMo. Since having a large

amount of data is difficult for many facial analysis

tasks, e.g. clinical pain prediction, our results also

show that combining, simple but complementary, fea-

tures with a competitive model leads to higher results.

5. Conclusion

We proposed a (loosely) structured latent variable

model that discovers prototypical and discriminative

sub-events and learn a prior on the order in which

they occur in the video. We learn the model with

a regularized max-margin hinge loss minimization

which we optimize with an efficient stochastic gra-

dient descent based solver. We evaluated our model

on four challenging datasets of expression recogni-

tion, clinical pain prediction and intent prediction is

dyadic conversations. We provide experimental re-

sults that show that the proposed model consistently

improves over other competitive baselines based on

spatio-temporal pooling and Multiple Instance Learn-

ing. Further in combination with complementary fea-

tures, the model achieves state-of-the-art results on the

above datasets. We also showed qualitative results

demonstrating the improved modeling capabilities of

the proposed method. The model is a general ordered

sequence prediction model and we hope to extend it to

other sequence prediction tasks.
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