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Abstract

This paper presents a novel unified gradient-domain

image reconstruction framework with intensity-range con-

straint and base-structure constraint. The existing method

for manipulating base structures and detailed textures are

classifiable into two major approaches: i) gradient-domain

and ii) layer-decomposition. To generate detail-preserving

and artifact-free output images, we combine the benefits of

the two approaches into the proposed framework by intro-

ducing the intensity-range constraint and the base-structure

constraint. To preserve details of the input image, the pro-

posed method takes advantage of reconstructing the out-

put image in the gradient domain, while the output inten-

sity is guaranteed to lie within the specified intensity range,

e.g. 0-to-255, by the intensity-range constraint. In addition,

the reconstructed image lies close to the base structure by

the base-structure constraint, which is effective for restrain-

ing artifacts. Experimental results show that the proposed

framework is effective for various applications such as tone

mapping, seamless image cloning, detail enhancement, and

image restoration.

1. Introduction

Natural scenes include base structures and detailed tex-

tures of various kinds. Combinations of the base structures

and the detailed textures provide rich information. An im-

age editing algorithm, or image filtering, by manipulating

the base structures and/or the detailed textures has a cru-

cially important role in computer graphics and computer

vision. The applications of such image editing algorithms

include seamless image cloning [27], tone mapping for a

high-dynamic range image (HDR tone mapping) [12], and

detail enhancement [10]. Image editing algorithms for these

applications are classifiable as i) gradient-domain approach

or ii) layer-decomposition approach.

In the gradient-domain approach [5, 12, 27, 29], the gra-

dients extracted from the input image are manipulated de-

pending on the gradient norm. Roughly speaking, large and

small gradients respectively associate to the base structure

and the detailed texture. In the HDR tone mapping appli-

cation [12], for example, large gradients are compressed,

while preserving the small gradients. After these gradient

manipulations, the gradient-based HDR tone mapping ap-

plications integrate the gradients to generate the resultant

tone-mapped image. However, the intensity range of the

tone-mapped image remains unknown until the integration

is performed. Therefore, the intensity range of the tone-

mapped image often exceeds a fixed target range, 0-to-255

in general. Image range adjustment such as intensity rescal-

ing or clipping is required as post-processing to enforce the

intensity range into 0-to-255. This post-processing gener-

ates artifacts such as oversaturation and oversmoothing.

In the layer-decomposition approach [10, 26, 39, 38], the

input image is decomposed into the base structure and the

detailed texture. Then, the base structure and the detailed

texture are manipulated separately. In a detail enhance-

ment application [10], for example, the detailed texture is

enhanced and added to the base structure. The base struc-

ture should be extracted precisely and carefully to avoid ar-

tifacts such as ringing, halos, and gradient reversal. Various

sophisticated edge-preserving filters [10, 26, 39, 38] have

been proposed to extract the base structure precisely. How-

ever, the precise base structure extraction is still a challeng-

ing problem.

In this paper, we propose a unified gradient-domain

image reconstruction framework that involves gradient-

domain and layer-decomposition approaches. The proposed

algorithm is an optimization approach based on the tar-

get gradient, which incorporates the intensity-range and the

base-structure constraints. The proposed algorithm needs

no post-processing of the intensity range adjustment be-

cause the fixed target intensity range is already taken into

account in the optimization with the range constraint. In

addition, the base structure constraint proposed in this pa-

per are very effective for restraining artifacts such as ringing

and halos.
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2. Related works

2.1. Gradient-domain approach

The gradient-domain approach presents various applica-

tions for computer graphics and computer vision. For ex-

ample, the gradient-domain based tone mapping algorithm

was proposed by Fattal et al. [12]. Perez et al. [27] pre-

sented the gradient-domain interpolation framework called

Poisson image editing. Image fusion techniques based

on the gradient-domain were also proposed [29, 9, 35].

Other applications using gradient-domain include image

matting [33], inpainting [31, 34], image stitching [22], sur-

face reconstruction [19, 1], color interpolation [21], and

color-to-gray mapping [14, 13]. Recently, motivated by the

effectiveness of the gradient-domain approach, the general

frameworks [5, 17] were also proposed.

The image-processing pipeline of the gradient-domain

approach is presented in Fig. 1 (a). The pipeline is mainly

composed of three steps: 1) gradient extraction, 2) gra-

dient manipulation, and 3) integration. In existing meth-

ods, the intensity range of the integrated image is unknown.

Therefore, the intensity range of the reconstructed image

often exceeds the fixed target range, e.g. 0-to-255, which

is the range of a widely used 8-bit image. Intensity-range

adjustment such as intensity clipping or rescaling is per-

formed implicitly as post-processing. However, this post-

processing of the intensity range adjustment can consider-

ably collapses the gradient information.

2.2. Layer-decomposition approach

The layer-decomposition approach is also widely used

for various computer graphics and compute vision applica-

tions such as HDR tone mapping [3, 10, 26], image abstrac-

tion and image enhancement [10, 26], tone management [4],

digital photography [28], and haze removal [30].

The processing pipeline of this approach is shown in

Fig. 1 (b). In the layer-decomposition approach, the input

image is decomposed into the base structure and the detailed

texture. Then, the base structure and/or the detailed texture

are manipulated and combined to generate the output im-

age.

In the layer-decomposition, the base structure is first ex-

tracted. Then, the detailed texture is obtained by subtract-

ing the base structure from the input image. An edge-

preserving filter is usually used to extract the base struc-

ture. A well-known edge-preserving filter is the bilateral

filter (BLF) [36]. Recently, many researchers have pro-

posed sophisticated edge-preserving filters including the

weighted least squares (WLS) filter [10], the guided fil-

ter [15], the local Laplacian filters (LLF) [26] and its

improved version [2], the bilateral texture filter [6], L0

smoothing [23, 38], the rolling guidance filter [40], the rela-

tive total variation [39], the edge-avoided wavelets [11], the

smoothed local histogram filter [18], and the mutual struc-
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Figure 1. Image processing pipelines of the existing approaches

and the proposed framework.

ture for joint filtering [32].

In this approach, the precise base structure extraction is

crucially important for the image quality of the output im-

age. Although the recent edge-preserving filtering dramat-

ically improves the performance of the base structure ex-

traction, subtle extraction errors still induces severe artifacts

such as halos, ringing, and gradient reversal. Furthermore,

similar to the gradient-domain approach, the intensity-range

adjustment might be necessary as post-processing.

3. Proposed method

We propose the gradient-domain image reconstruction

framework that involves the gradient-domain and layer-

decomposition approaches. The pipeline of the proposed

method is shown in Fig. 1 (c). The key of the pro-

posed method is the gradient-based reconstruction, which

takes account of the intensity-range constraint and the base-

structure constraint.

The proposed method first extracts the gradient and the

base structure from input images. The gradient contains

rich information, whereas the base structure represents the

semantically meaningful structure. Next, the gradient is

manipulated for each application, as presented in Sec. 4.

The final output is reconstructed directly using energy op-

timization. In the proposed method, in contrast to the ex-

isting gradient-domain approach, the base structure and the

intensity-range information are used to construct constraints

in the energy functional.

3.1. Image reconstruction by optimization

Image reconstruction is performed by optimizing the en-

ergy functional, which consists of three terms: 1) the gradi-

ent fidelity term, 2) the intensity-range constraint term, and
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3) the base-structure constraint term. Formally, the total en-

ergy functional E[u(x)] is given as

E[u(x)] = F [u(x)] +GR[u(x)] +GB [u(x)], (1)

where u(x) denotes the output image intensity at the posi-

tion x, F [u(x)] is the gradient fidelity term, GR[u(x)] is the

intensity-range constraint term, and GB [u(x)] is the base-

structure constraint term.

The target gradient can be preserved in the reconstructed

image by minimizing the gradient residual between the tar-

get and the reconstructed gradients, in the same manner as

the existing gradient-domain approach. The intensity range

of the reconstructed image is guaranteed to be within the

fixed target range by the intensity-range constraint. The

base-structure constraint penalizes if the reconstructed im-

age intensity is far from the base structure, so that the re-

constructed image lies close to the base structure.

In this paper, we use a weighted least square of the gra-

dient residuals as the fidelity term, following the method

described in Baht et al. [5]. The gradient fidelity term can

be formulated as

F [u(x)] =

∫

∑

d=h,v

wd(x) |∂du(x)− qd(x)|
2
dx, (2)

where d stands for the horizontal or the vertical direction,

wd(x) denotes the weight to control the influence of the

residual on the result, ∂d is the partial derivative for each

direction, and qd(x) is the target gradient of each direction.

The weight wd(x) is given as

wd(x) = (|∂duI(x)− qd(x)|+ 1)−b, (3)

where uI(x) is the input image intensity at x and b (typi-

cally 0.5 to 8.0) determines the sensitivity to the gradient

residual. In the proposed method, qd(x) is designed for

each applications.

The intensity-range constraint term GR[u(x)] is given

formally by integrating the intensity-range constraint

gR(u(x)) over the position x as

GR[u(x)] =

∫

gR(u(x))dx, (4)

where the intensity-range constraint gR(u(x)) is defined

with infinite potential as

gR(u(x)) =







∞, Rmin > u(x)
0, Rmin ≤ u(x) ≤ Rmax

∞, u(x) > Rmax,
(5)

where Rmax and Rmin is the upper and lower bound defined

by a fixed target range.

Image reconstruction using the two terms above, i.e.,

F [u(x)] and GR[u(x)], is simple but effective for many

applications such as the seamless image cloning and HDR

tone mapping applications, as presented in Sec. 4 . Fur-
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Figure 2. Base structure constraint gB(u).

thermore, by introducing the base-structure constraint term

GB [u(x)], the proposed method can find more extensive ap-

plications.

3.2. Base structure constraint

The base-structure constraint term GB [u(x)] is given by

integrating the base-structure constraint gB(u(x)) over the

position x as

GB [u(x)] =

∫

gB(u(x))dx. (6)

In general, artifacts such as ringing and gradient reversal are

generated when the output image intensity is excessively

separated from the base structure. To penalize the inten-

sity separation, the use of a simple constraint such as least

squares form can be considered. This simple constraint can

suppress the intensity separation, but it tends to over-smooth

the details because the least squares is too strong to preserve

the details.

We design the base-structure constraint, so that the inten-

sity separation is suppressed while preserving the details.

The proposed base-structure constraint is given as

gB(u(x))=

{

λ(x)|u(x)−uB(x)|, |u(x)−uB(x)|≤ε(x)
∞, |u(x)−uB(x)|>ε(x),

(7)

where uB(x) is the base structure, ε(x) is the range parame-

ter to decide the target range from the base structure uB(x),
and λ(x) is the slope parameter to control the strength of

the weak penalty. The base-structure constraint in Eq. (7)

represents the convex potential as presented in Fig. 2. This

base-structure constraint guarantees that the pixel intensity

is within the range ε(x) from the base structure by the in-

finity potential. Within the range of ε(x), the base-structure

constraint weakly penalizes the difference between the in-

tensity and the base structure, so that detailed information

is preserved. In this paper, we set that λ(x) is proportional

to the inverse of the square of differences between the input

image uI(x) and the base structure uB(x).

3.3. Parameter designs of base-structure constraint

By designing the base structure uB(x) and the range pa-

rameter ε(x), the proposed framework can be applied to

various applications such as detail enhancement and im-
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age restoration. We present examples of the base structure

uB(x) and the range parameter ε(x).

Edge-preserving filter based (EPF-based): The standard

choice to extract the base structure is applying the edge-

preserving filter:

uB(x) = J(uI(x)), ε(x) = ε0, (8)

where J(·) is an edge-preserving filtering, and ε0 (typically

15 to 45) is the globally constant parameter to determine

the target range from the base structure. For example, the

design in Eq. (8) is effective for detail enhancement appli-

cations.

Local intensity distribution based (LIB-based): In the

image restoration application such as non-blind deconvo-

lution, the overshoot or undershoot around edges generates

the ringing artifacts. The proposed framework is effective

to restrain these artifacts by designing the spatially adaptive

range parameter ε(x). In general, the over or under shoot-

ing pixel intensity is prominently larger or smaller than the

pixel intensity of its neighbors. To restrain the artifact, the

base structure uB(x) and the range parameter ε(x) are de-

signed so that the output image intensity u(x) does not ex-

ceed the local maximum or minimum of the input image

intensity uI(x) at position x. The base structure and the

range parameter can be expressed as

uB(x) =
1

2

[

max
x̃∈N (x)

uI(x̃) + min
x̃∈N (x)

uI(x̃)
]

,

ε(x) =
1

2

[

max
x̃∈N (x)

uI(x̃)− min
x̃∈N (x)

uI(x̃)
]

, (9)

where N (typically 3 to 7) is the set of neighbor pixel posi-

tions around x.

3.4. Analysis of proposed constraints

We demonstrate the advantages of the intensity-range

constraint term GR[u(x)] and the base-structure constraint

term GB [u(x)] using the 1D signal examples.

Fig. 3 (a) shows the 1D signal example. We used the

gradient fidelity term F [u(x)] and the intensity-range con-

straint term GR[u(x)]. Here, the black line shows the in-

put 1D signal. The dotted red lines show the lower and

upper bounds, i.e., Rmin and Rmax. In this example, the

target gradient qd(u(x)) is given as qd(u(x)) = ∂duI(x)
for simplicity. The gradient of the input signal is shown

in Fig. 3 (b). The weak gradients originated from the de-

tails exist between the prominent gradients originated from

the strong edges. The close-up of the results obtained us-

ing the naive intensity-range adjustment (the clipping and

the rescaling), the proposed method and their gradient are

shown in Figs. 3 (c)–3 (h).

As shown in Figs. 3 (c) and 3 (d), the over-saturated ar-

tifacts are generated by the clipping, whereas the signal is

oversmoothed and the detail gradient collapses by rescal-
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(h) Gradient of (g)

Figure 3. Effectiveness of intensity range constraint GR[u(x)].

ing, as shown in Figs. 3 (e) and 3 (f). However, Figs. 3 (g)

and 3 (h) show the following: 1) the proposed method can

preserve the detail gradient, which collapses by the naive

range adjustment; and 2) the range of the obtained signal is

within the fixed target range.

Next, we demonstrate the effectiveness of the base-

structure constraint term GB [u(x)] using 1D signal exam-

ple shown in Fig. 4. The goal in this example is to re-

store the blurred signal using the inaccurate (target) gra-

dient qd(u(x)), which includes over or under shoot. This

situation is common in practical scenes because the inaccu-

rate gradient is often obtained when we restore the blurred

image using inaccurate blur kernel. Estimating the strictly

accurate blur kernel is extremely challenging. In this ex-

ample, the inaccurate target gradient is calculated based on

the image deblurred by existing non-blind deconvolution

algorithm with inaccurate blur kernel. The base-structure

constraint is calculated using Eq. (9). In Fig 4 (b), the red

line shows the base structure uB(x), whereas the red dotted

lines show the lower and upper bounds, i.e. uB(x)± ε(x).

Results shown by the existing non-blind deconvolution

method [20] using the inaccurate blur kernel and the pro-

posed method are shown respectively in Figs. 4 (c) and

(d) (black line). Although the existing method can recover

sharpness around the strong edge, the ringing artifacts are

generated. However, the proposed constraint can restrain

the artifacts while maintaining sharpness around the strong

edge because the base-structure constraint guarantees that
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x (space)

(b) Base signal (red) and lower and
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(d) Proposed method (black) and
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Figure 4. Effectiveness of base-structure constraint GB [u(x)].

the restored intensity is within the (spatially-adaptive) tar-

get range shown as the red dotted lines.

3.5. Solver by proximal algorithm

The objective functional E[u(x)] is composed of the dif-

ferential convex term F [u(x)] and the non-differential con-

vex term GR[u(x)] and GB [u(x)]. The objective func-

tional is convex, but non-differential. Therefore, its solu-

tion cannot be obtained in a trivial manner. Fortunately, re-

cent significant progress in convex optimization techniques

presents a simple but efficient algorithmic solution. Partic-

ularly, the proximal algorithms [8, 25] are a powerful op-

timization scheme for image processing [24] and compu-

tational photography [16]. If there is inexpensive proximal

mapping of the non-differential convex terms, i.e. GR[u(x)]
and GB [u(x)], the proximal algorithms can effectively op-

timize the energy E[u(x)]. The proximal algorithms ensure

the convergence and the uniqueness of the solution [8, 25].

To minimize the objective functional E[u(x)], we use the

proximal algorithms [8, 25]. The proximal algorithm itera-

tively updates u(x) as

uk+1(x) = proxηG
(

zk(x)
)

, (10)

where proxηg(·) is proximal mapping with step parameter

η, G is the non-differential term G=GR+GB , zk(x) is the

result obtained by standard gradient descent iteration for the

deferential term F [u(x)] which is given by

zk(x) = uk(x)− η
δF [u(x)]

δu(x)
, (11)

where δF [u(x)]/δu(x) is the functional derivative of

F [u(x)]. Here, we set η = 0.25 in this paper. It is note-

worthy that the initial value uk=1 is given by preprocess-

ing, which is designed for each application. From Eq. (2),

the functional derivative of F [u(x)] is described as

δF [u(x)]

δu(x)
= −

∑

d=h,v

∂d
(

wd(x) (∂du(x)− qd)
)

. (12)

In our energy, the proximal mapping proxηG(·) can be cal-

culated position-by-position. The proximal mapping at the

position x can be derived based on the integrand g(x) =
gR(x)+gB(x) of G[u(x)]. In the following, we discuss

the proximal mapping of integrand g(x) at the position x,

which is denoted by proxηg(·). To simplify the expression,

we omit the argument x. To calculate the proximal map-

ping proxηg(·), we rewrite the sum of the intensity-range

constraint gR(u) and the base-structure constraint gB(u) as

gR(u) + gB(u) = Φ(u) + ι(u), (13)

where Φ(u) is the slope function given as Φ(u) = λ|u −
uB |, ι(u) is the indicator function given as shown below.

ι(u) =







∞, u > u
0, u ≤ u ≤ u,
∞, u > u

(14)

where u=min(uB+ε,Rmax) and u=max(uB−ε,Rmin)
are upper and lower bounds at position x. As shown in

Eq. (13), the proposed constraints, i.e. gR(u) and gB(u),
are formally expressed as the summation of the indicator

function ι(u) and the slope function Φ(u). The proximal

mapping proxηg(·) is calculable as the proximal mapping

of the indicator function ι(u) and the slope function Φ(u)
as follows:

proxηg
(

z
)

= proxηι+ηΦ

(

z
)

= proxηι
(

proxηΦ
(

z
))

(15)

= P[u,u]

(

soft[ηλ,ηλ]

(

z − uB

)

+ uB

)

,

where P[u,u](·) is the hard thresholding operator by u and u,

and soft[γ,γ](·) is the soft thresholding operator by γ [25].

The step parameter η is updated for each step. Conse-

quently, our algorithm for minimizing the energy functional

in Eq. (1) can be expressed with simple implementation us-

ing the proximal gradient method. The computational cost

is proportional to the number of the iteration, and it takes

several minutes with non-optimized implementation in mat-

lab.

4. Applications

The proposed framework has various applications in-

cluding seamless image cloning, HDR tone mapping, im-

age enhancement, image fusion, and image restoration. In

this section, we demonstrate the examples of the perfor-

mance of the proposed framework for each application1.

The intensity-range constraint and the base-structure con-

straint for each application are listed in Table 1. The lumi-

nance component is reconstructed by the proposed frame-

work. The color component extracted from the input image

1The additional results and the source code will be available at

http://www.ok.ctrl.titech.ac.jp/res/IC/
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Table 1. Examples of intensity-range constraint and base-structure

constraint for each application.

Application GR[u(x)] GB [u(x)]

Seamless image cloning ✓ -

Tone mapping ✓ -

Detail enhancement ✓ EPF-based

Non-blind deconvolution ✓ LID-based

(a) Source image (c) Poisson image editing [27]

(b) Target image (d) Proposed method

Figure 5. Seamless image cloning.

(a) Fattal’s method [12] (b) Gradient shop [5] (c) LLF[26] (d) WLS [10] (e) L0 smoothing [38] (f) Proposed method

Figure 6. HDR tone mapping result.

is added to the reconstructed luminance component.

4.1. Seamless image cloning

The proposed framework is effective for gradient-based

image editing applications such as the seamless image

cloning. In general, existing methods including Poisson im-

age editing [27] suffer from over-saturation because the in-

tensity range of the integrated image is unknown until the

gradient integration is performed. The intensity range after

gradient integration often exceeds the fixed target range. On

the other hand, the proposed framework using the intensity-

range constraint can generate the output within the fixed

target range while preserving the details. In this appli-

cation, the target (combined) gradient qd(x) is given as

qd(x)=φ(x)∂duI(x)+(1−φ(x))∂duT (x), where uI(x) is

the source image, uT (x) is the target image, and φ(x) is

the binary mask which is specified by the user. The initial

value uk=1(x) is given by the naive composed intensity as

uk=1(x) =φ(x)uI(x)+(1−φ(x))uT (x).

The results obtained using the proposed and the existing

methods [27] are shown respectively in Figs. 5 (c) and 5 (d).

Although the detailed texture of the moon are diminished in

the result obtained using the existing method [27], as shown

in Fig. 5 (c), the proposed method can preserve the detailed

texture of the moon, as shown in Fig. 5 (d). It is noteworthy

that the proposed method automatically adjusts the whole

image intensity to preserve the details under the intensity-

range constraint, while the existing method only adjusts the

intensity within the specified target region.

4.2. HDR Tone mapping

Our framework with the intensity-range constraint is also

effective for the HDR tone mapping application. In this

application, the target gradient qd(x) is given as qd(x) =
α∂dũI(x), where α is the parameter to control the target

gradient strength, ũ is the normalized input image inten-

sity by dividing by the local maximum of the input image

uI(x). The initial value uk=1(x) is obtained by the naive

range adjustment, i.e. the intensity rescaling.

An example of the results obtained using the proposed

method is shown in Figs. 6 (f) . Here, α= 0.015 in this

experiment. Comparison with the existing gradient-domain

approaches (Fattal et al. [12] and Gradient shop [5]), and

the existing layer-decomposition approaches (L0 smooth-

ing [38], Local Laplacian filter (LLF) [26], and WLS fil-

ter [10]) are also shown in Figs. 6 (a)–6 (e)2. As shown in

Fig. 6, the proposed method can generate detail-preserving

output without oversaturation in the stained glass region,

while the pixel intensity is saturated in the region using ex-

2Here, the default setting or the suggested parameters were used for

the method [5, 10]. The results by the existing methods [12, 26, 38] are

collected by their project pages.
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(a) Input image

(intensity rescaling)

(b) Default setting by

the proposed method

(α = 0.015)

(c) Enhanced details by

the proposed method

(α = 0.03)
Figure 7. HDR tone mapping with detail enhancement by adjusting

the target gradient strength α in the proposed method.

Table 2. Root mean squared error of gradient components.

Method QG Method QG

Clipping 11.0 Gradient shop [5] 0.038
Rescaling 0.042 LLF [26] 0.038

Proposed method 0.027 WLS [10] 0.040

isting methods.

Another example is shown in Fig. 7. The proposed

method can control details by adjusting the target gradient

strength α. As shown in Fig. 7 (c), the details of the floor

are enhanced by increasing α without saturation.

Finally, to evaluate the performance of our framework,

we measured the gradient preservation of the details using

root mean squared error of the gradient QG:

QG =

√

∫

∑

d=h,v

|∂du(x)− qd(x)|
2
dx. (16)

In this evaluation, 35 HDR images were used to evaluate the

metric QG. The average value of the metric of the proposed

method and the existing methods are presented in Table 2.

Evaluation shows that the proposed method can preserve the

details of the gradient better than the existing tone mapping

algorithms.

4.3. Detail enhancement

Next, we demonstrate the performance of the proposed

method for the detail enhancement application. Using our

base-structure constraint term, the proposed method can

generate the detail-enhanced image without artifacts such

as gradient reversals even though the target gradient is de-

signed simply. To examine this benefit, the simplest de-

(a) Input image

(c) Layer-decomposition approach

using WLS [10] (α=1.2, λ=1)

(e) Layer-decomposition approach

using BLF [36] (σs=3, σr=0.1)

(b) Proposed method (using WLS)

(d) Proposed method using WLS

(α=1.2, λ=1)

(f) Proposed method using BLF

(σs=3, σr=0.1)

Figure 8. Detail enhancement result by the proposed method.

sign of the target gradient qd(x) is used as follows: qd(x)=
α∂duI(x), where α is the parameter to control the target

gradient strength. The input intensity is used as initial value

uk=1(x).

To compare the performance of the proposed method

with those of the existing methods based on layer-

decomposition approach, we compare the detail enhanced

results obtained using the existing methods and the pro-

posed method with the same edge-preserving filter as shown

in Fig. 8. Here, we set α=8.0 in this experiment. Using the

existing method, gradient reversal and oversaturated arti-

facts are generated at the edge region, as shown in Figs. 8 (c)

and 8 (e). In the results of the existing methods, the ar-

tifacts severely appear because the gradient strength factor

is relatively large. However, even in this extreme case, the

proposed method can restrain the artifacts though the same

edge-preserving filter is used to extract the base structure,

as shown in Figs. 8 (d) and 8 (f). Furthermore, one can find

that the proposed method can generate similar outputs irre-

spective of the edge-preserving filter algorithms. These re-

sults demonstrate that the proposed method is robust against

choosing edge-preserving filter algorithms and their param-

eters.

4.4. Robust restoration: non-blind deconvolution

As discussed in Sec. 3.4, the proposed method with

the base-structure constraint term can restore the blurred

image using the inaccurate gradient without ringing arti-

facts. This benefit is considerably effective for non-blind

deconvolution with an inaccurate blur kernel. We evaluated

the performance of the proposed method for the non-blind
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(a) Input image (b) Krishnan’s method [20] (c) Cho’s method [7] (d) Proposed method (e) Ground truth

Figure 10. Comparison of the proposed method with existing methods.

deconvolution application. It is noteworthy that although

the non-blind deconvolution application is discussed in this

section, the proposed method is also effective for blind-

deconvolution application because, in general, non-blind

deconvolution and the blur kernel estimation are alterna-

tively conducted in many blind-deconvolution algorithms.

In this application, the inaccurate (targeted) gradient

qd(x) is calculated based on the image deblurred by an

existing non-blind deconvolution algorithm with inaccurate

blur kernel. Formally, the inaccurate gradient is given as

qd(x)=∂dṽ(x), where ṽ(x) is the result obtained using the

existing non-blind deconvolution method. In this paper, we

used Cho’s method [7] to obtain ṽ(x).

The blurred image and the result by the proposed method

are shown in Fig. 9. A comparison of the proposed method

with the existing methods (Krishnan et. al [20] and that of

Cho et al. [7]) at the blue and the red box regions is shown

in Fig. 10. Here, default setting parameters were used for

each existing methods. The input image is blurred using the

spacially variant kernel based on the depth of each object.

The restored images are generated by debluring with the

spacially invariant kernel which is for the back ground. As

shown in Figs. 10 (b) and 10 (c), the existing methods gen-

erate severe ringing artifact in the foreground, e.g. the cow,

where the image is restored by the inaccurate blur kernel.

The proposed method can dramatically reduce the ringing

artifact while maintaining the sharpness of the strong edge

in the background where the image is restored by the accu-

rate blur kernel.

To evaluate the robustness against the blur kernel inac-

curacy, we conducted the experiment using kernels having

different kernel width. The true width of the setting kernel

is σ=2 [pix]. The Peak Signal-to-Noise Ratio (PSNR) and

SSIM [37] between the ground truth and the restored results

are presented in Fig. 11. These figures show that the pro-

posed method outperforms the existing methods in terms of

both measures when the kernel width σ is greater than the

true width, because the existing methods generate strong

ringing artifacts, while the proposed method can restrain it.

This result shows that the proposed method is effective for

(a) Input image (b) Result by Proposed method

Figure 9. Results of non-blind deconvolution.
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Figure 11. Robustness against inaccurate blur kernels.

robust image restoration using the inaccurate gradient such

as non-blind deconvolution application with the inaccurate

blur kernel.

5. Conclusions

We have proposed the novel gradient-domain image re-

construction framework with the intensity-range constraint

and the base-structure constraint. The intensity-range con-

straint can generate an image with intensity within the fixed

target range. By introducing the base-structure constraint,

the proposed method can generate detail-preserving output

while reducing artifacts. The proposed framework can in-

herit the benefit of the existing gradient-domain approach

and the layer-decomposition approach. Experiments have

shown that the proposed framework has various applica-

tions such as tone mapping, seamless image cloning, detail

enhancement, and image restoration.
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