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Abstract

Recent progress on photometric stereo extends the tech-

nique to deal with general materials and unknown illumi-

nation conditions. However, due to the lack of suitable

benchmark data with ground truth shapes (normals), quan-

titative comparison and evaluation is difficult to achieve.

In this paper, we first survey and categorize existing meth-

ods using a photometric stereo taxonomy emphasizing on

non-Lambertian and uncalibrated methods. We then in-

troduce the ‘DiLiGenT’ photometric stereo image dataset

with calibrated Directional Lightings, objects of General

reflectance, and ‘ground Truth’ shapes (normals). Based on

our dataset, we quantitatively evaluate state-of-the-art pho-

tometric stereo methods for general non-Lambertian mate-

rials and unknown lightings to analyze their strengths and

limitations.

1. Introduction

Photometric stereo computes surface normals from ra-

diance variation due to illumination changes. The classic

algorithm [1] assumes the Lambertian surface, a fixed or-

thographic camera with linear radiometric response, and

known directional illuminations to recover a per-pixel sur-

face normal from at least three images. Many algorithms

have been developed to extend it to surfaces with general

reflectance [2], uncalibrated lighting [3], general environ-

ment illumination [4], nonlinear camera [5], multiple view-

points [6], subpixel resolution [7], moving objects [8], and

so on. However, unlike the studies in binocular and multi-

view stereo [9], a standard taxonomy of photometric stereo

algorithms is not yet available; benchmark dataset and eval-

uation, which greatly inspire future research directions, are

available in binocular and multi-view stereo [9] but not in

photometric stereo community.

∗Part of this work was finished when B. Shi was working at Nanyang

Technological University.

This paper aims to provide a taxonomy, a benchmark

dataset and evaluation for photometric stereo algorithms.

Unlike multi-view stereo, photometric stereo algorithms

have a huge diversity in model assumptions and imaging

conditions (e.g., single or multiple viewpoints, orthographic

or perspective camera, directional or environmental light-

ing, etc.). Therefore, benchmarking photometric stereo is

more feasible for a specific category of algorithms. We as-

sume a fixed orthographic camera and directional lighting

and focus on non-Lambertian and uncalibrated photomet-

ric stereo algorithms. Directional lighting and fixed ortho-

graphic camera is the most classical data capture setting [1].

Many other extensions (e.g., multi-view, environment light-

ing) can be built upon this setup. Under this setup, non-

Lambertian reflectance and uncalibrated lighting directions

are the two major difficulties for photometric stereo.

We first provide a taxonomy of photometric stereo meth-

ods, with an emphasis on recent non-Lambertian and un-

calibrated algorithms, followed by a brief categorization

for other methods with different lighting models, different

numbers of input images, and several additional properties.

We then present the ‘DiLiGenT’ photometric stereo image

dataset which is captured under carefully calibrated direc-

tional lighting, with reference shapes for all objects from a

high-end laser scanner provided. Our dataset contains ob-

jects of various materials and shapes, from ideally diffuse to

highly reflective, from smooth to bristly. Finally, we quan-

titatively evaluate recently representative non-Lambertian

[2, 10–16] and uncalibrated [3, 17–20] photometric stereo

algorithms to understand their pros and cons and motivate

future research on unsolved issues.

Our main contributions are threefold:

• An up-to-date survey/taxonomy on recent photomet-

ric stereo techniques with a special focus on non-

Lambertian and uncalibrated methods1;

• The first photometric stereo dataset with ‘ground truth’

1We refer the readers to [21] and [22] for more comprehensive surveys

on earlier and recent photometric stereo techniques.
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shapes and objects of complex reflectance for single-

view methods under directional lighting;

• A quantitative evaluation of recent algorithms for non-

Lambertian and uncalibrated photometric stereo.

The dataset and evaluation results are available for down-

load from https://sites.google.com/site/

photometricstereodata/.

2. A Photometric Stereo Taxonomy

We categorize photometric stereo methods employing

directional lightings and a fixed orthographic camera. With

such a data capture setup, the main research challenges for

photometric stereo is how to deal with non-Lambertian ma-

terials (Section 2.1) and unknown lighting conditions (Sec-

tion 2.2). To be comprehensive, we also briefly review

other algorithms with different lighting and camera models

in Section 2.3 and number of images required for different

algorithms in Section 2.4. We conclude this section by sum-

marizing and labeling all surveyed methods in Section 2.5

and the ‘References’ section.

2.1. Non-Lambertian photometric stereo

The Lambert’s reflectance model is widely adopted in

photometric stereo for its simplicity. However, the real

world is full of non-Lambertian objects. Many photomet-

ric stereo algorithms have been developed to deal with non-

Lambertian materials.

Non-Lambertian photometric stereo problems could be

summarized as in the top row of Table 1. Here, IP×Q

is the observation matrix of P points under Q different

lighting conditions; N⊤

P×3 and L3×Q are stacks of normal

vector n ∈ R
3×1 and lighting vector l ∈ R

3×1 respec-

tively; ρ(n, l)P×Q is the Bidirectional Reflectance Distri-

bution Function (BRDF) values for each observation, which

is a function of normal and lighting directions given view-

ing direction fixed at v = (0, 0, 1)⊤; and ‘◦’ denotes the

element-wise multiplication.

The Lambertian photometric stereo [1] (BASELINE)

simply assumes ρ(n, l) is irrelevant of n and l, and it is an

unknown constant scaling for each normal; attached shadow

(max{·, 0}) can also be ignored. Given calibrated L, the

surface normal matrix N is solved by linear least squares,

and the reflectance values are approximated by normalizing

each row of the estimated N. The goal of non-Lambertian

photometric stereo methods is to estimate N when ρ(n, l)
is a general unknown reflectance function.

Outlier rejection based methods assume non-

Lambertian phenomena (such as shadow and specular

highlight) are local and sparse, such that they can be

detected and discarded as outliers. Earlier methods [23–25]

select three optimal lights out of four where the surface

appears mostly Lambertian to estimate normal. With more

input images, this subset of Lambertian images can be

extracted in a more robust manner by graph cuts [26],

RANSAC [27, 28], maximum-likelihood estimation [29],

maximum feasible subsystem [30], taking the median

values [31], or expectation maximization [32]. Instead of

discarding non-Lambertian reflection as outliers, Zickler et

al. [33] analyze in a subspace that is free from highlights.

Recent methods apply robust statistical techniques to re-

ject outliers, by assuming a low-rank (Lambertian) observa-

tion matrix plus a sparse outlier matrix (shadow and spec-

ularity) [10, 11] (WG10, IW12), as shown in Table 1. The

difference that is WG10 aims at minimizing the rank of ma-

trix, while IW12 employs sparse Bayesian regression to ex-

plicitly enforce the rank-3 constraint. Such rank minimiza-

tion approaches have the advantages of robustness, since the

only assumption to the outlier matrix is its sparsity regard-

less of the error magnitude and distribution.

Outlier rejection based methods generally cannot deal

with materials with broad and soft specular reflection,

where the non-Lambertian outliers are dense. They often

require more input images to make statistical analysis.

Analytic reflectance models are employed in some pho-

tometric stereo algorithms to model non-Lambertian re-

flectance. Instead of discarding specular reflection as out-

liers, they fit a nonlinear analytic BRDF to interpret all the

observed data. Therefore, they have the advantage of ex-

ploiting all available data. Along this direction, various an-

alytic BRDF models have been incorporated, including the

Torrance-Sparrow model [34], the Ward model [35], a mix-

ture of multiple Ward models [2, 5], and the specular spike

[36].

Take the method in [2] (GC10) as an example. GC10

adopts the Ward model to explicitly represent ρ(n, l).
Each Ward model involves several parameters i.e., diffuse

strength d, specular strength s, and surface roughness α, to

describe the shininess of the surface, as summarized in Ta-

ble 1. In order to handle spatially-varying BRDFs, GC10

linearly combines several ρi(di, si, αi) (i-th basis materi-

als) multiplied by a spatially-varying weight wi. GC10

needs to solve a nonlinear system for {d, s, α,w} besides

estimating surface normal n, which is computationally ex-

pensive.

The drawback of such approaches is that the analytic

models vary significantly from material to material, and

each of them is limited to a narrow class of materials. Fur-

thermore, these models are highly nonlinear. So such ap-

proaches in principal require complicated case by case anal-

ysis for different material classes.

General properties of a BRDF such as isotropy, reci-

procity, and monotonicity are valid for a broader class of

materials. Photometric stereo algorithms capitalizing on

these general properties have the potential to deal with

much broader types of materials.

Many real world materials are isotropic, which show

3708



Table 1. Summary of non-Lambertian photometric stereo assumptions and formulations.

Solve N from I = max{ρ(n, l) ◦ (N⊤
L), 0} by using different assumptions and constraints on ρ(n, l)

Notations: h = (l+ v)/‖l+ v‖, θh = 〈n,h〉 = arccos(n⊤
h), θd = 〈l,h〉 = arccos(l⊤h)

BASELINE ρ(n, l) ≈ D, where each row of D is a constant representing the albedo of a Lambertian surface

WG10 ρ(n, l) ≈ D+E, where E is sparse and rank(I) is minimized

IW12 ρ(n, l) ≈ D+E, where E is sparse and rank(I) = 3

GC10 ρ(n, l) ≈ ∑

i wi ◦ ρi(di, si, αi), where ρi(di, si, αi) =
di

π + si

4πα2

i

√
(n⊤l)(n⊤v)

exp
( (1−1/n⊤

h)
α2

i

)

AZ08 ρ(n, l) is isotropic and depends only on (θh, θd)
ST12 ρ(n, l) is isotropic, depends only on θh, and is monotonic about n⊤

h

HM10 ρ(n, l) is isotropic, monotonic about n⊤
l, and ρ(n, l) = 0 for n⊤

l ≤ 0
ST14 The low-frequency part of ρ(n, l) is a bi-polynomial A(cos(θh))B(cos(θd)), where A,B are polynomials

IA14 ρ(n, l) ≈ ∑

i ρi(n
⊤αi), where αi = (pil+ qiv)/‖pil+ qiv‖, pi, qi are nonnegative unknown values

structured BRDF values. The isotropy means equal re-

flectance values are observed if n is symmetric about the

plane spanned by v and l. By exploring isotropy, the az-

imuth angle of a surface normal can be computed [37], and

‘iso-depth’ and ‘iso-slope’ contours [37–39] can be derived.

It has been proved in [38, 39] that these two set of contours

determine the surface shape.

Many isotropic BRDFs can be well approximated by bi-

variate functions [40], which allows iterative estimation of

surface normals and BRDF represented using a 2D discrete

table [12] (AZ08). By further assuming this bivariate func-

tion is monotonic in one dimension, Shi et al. [13] (ST12)

estimate the elevation angle of a surface normal by search-

ing for the correct candidate showing monotonic BRDF

values. Both AZ08 and ST12 are ‘two-step’ approaches

that first estimate the azimuth angle using isotropic con-

straint [37] before the elevation angle estimation. Isotropy

and monotonicity are further combined with visibility con-

straint in [14] (HM10) to deal with general materials whose

BRDF consists of a single lobe. Some recent methods

[15, 16] (ST14, IA14) develop novel bivariate BRDF rep-

resentations to facilitate normal estimation. They use two

thresholds, one to exclude shadows and the other one to

exclude specular reflections, so the remaining reflectance

values vary slowly. The specular threshold is necessary

for ST14, but optional for IA14. ST14 models such low-

frequency reflectance using a bi-polynomial representation,

while IA14 models it as a sum of lobes with unknown center

directions. Please refer to Table 1 for their analytic formu-

lae and constraints on general BRDFs.

Handling anisotropic BRDF is a well-known difficult

problem for photometric stereo. Holroyd et al. [41] utilize

symmetric elliptical microfacet normal distribution function

to solve this issue. This can also be solved by example-

based method like [42], which captures example (known

shape) and target (unknown shape) objects of the same ma-

terial under varying lighting conditions. The example-based

approach has been adopted to build a high-resolution micro-

geometry sensor [43].

The photometric stereo problem can also be solved by

embedding all pixels to a hemisphere (i.e., a 2D mani-

fold representing all possible normal directions) while keep-

ing appropriate distances between different pixels. Such

distances are measured before embedding by similarity of

pixel intensity profiles derived from analytic BRDFs [44],

general isotropic BRDFs [20], or attached shadow codes

[45] which in principal can even handle anisotropic BRDFs.

2.2. Uncalibrated photometric stereo

Many photometric stereo algorithms assume known

lighting conditions. Typically, this requires inserting ad-

ditional calibration objects, such as a mirror sphere, into

the scene during data capture. This process is tedious and

the calibration sphere often causes interreflection on other

scene objects. So uncalibrated methods are developed to

automatically calibrate lighting conditions.

Most uncalibrated photometric stereo methods are Lam-

bertian and based on the factorization technique proposed

in [46]. The Lambertian assumption simplifies ρ(n, l) as

D with each row of D being a constant, so that I = S
⊤
L

and S
⊤ encodes the albedo-scaled normals. By applying

SVD, the pseudo-normal S̃, which is different from the true

albedo-scaled normal S by a 3 × 3 ambiguity matrix A,

can be decomposed, as shown in the top row of Table 2.

Resolving this intrinsic shape-lighting ambiguity requires

additional information. It is solved up to a rotation ambi-

guity, if six points with the same albedo or six lights of the

same intensity can be identified [46]. If the surface is inte-

grable [47] or the shadow boundary is observed [48], this

ambiguity is reduced to the General Bas-Relief (GBR) am-

biguity [49], which is denoted as the matrix G with only

three unknowns. Since then, many algorithms have been

developed to further resolve this GBR ambiguity. There are

methods relying on analyzing the specular spikes [50, 51],

parametric specular reflection (e.g., the Torrance-Sparrow

model) [34], isotropic specular reflection [19, 52, 53], inter-
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Table 2. Summary of uncalibrated photometric stereo constraints and solutions.

Solve N from I = max{ρ(n, l) ◦ (N⊤
L), 0} when L is unknown

For Lambertian objects, I = max{D ◦ (N⊤
L), 0} = S

⊤
L = S̃

⊤
A

⊤
A

−1
L̃ = Ŝ

⊤
G

⊤
G

−1
L̂

AM07 D has only a few different albedos, i.e., the rows of S have only a few different lengths

SM10 Several surface points have equal albedo, i.e., several rows of S having equal length are identified

PF14 Several points with locally maximum intensity on a Lambertian surface, i.e., points with n = l are identified

WT13 ρ(n, l) ≈ D+ ρs(θh, θd), i.e., the specular reflection depends only on {θh, θd}

reflection [54], a ring of light sources [55], and a perspective

camera [56, 57].

We summarize some recent methods and their constrains

for solving the ambiguity matrix G in Table 2. Alldrin et al.

[3] (AM07) assume the distribution of albedos in a natural

image contains a few dominant values (i.e., a few domi-

nant colors of a scene), so that the GBR transform can be

found by minimizing the entropy of this distribution. Shi et

al. [17] (SM10) automatically identify pixels with the same

albedo by chromaticity clustering to solve G. Papadhim-

itri and Favaro [18] (PF14) propose to identify local dif-

fuse reflectance (LDR) maxima, where the normal vector

is coincident with the lighting direction. Wu and Tan [19]

(WT13) assume an additive bivariate specular reflection to

solve the GBR ambiguity. SM10 and PF14 need to select

desired pixels (or lighting directions), but their solutions for

G are quite simple, i.e., a linear problem for SM10 and a

close-form solution for PF14. AM07 and WT13 seek the

optimal three unknowns in G by a brute-force search.

Manifold embedding based methods [20, 44, 45] can

also work with uncalibrated lighting conditions. They first

recover normals up to a global rotation ambiguity, which

is removed by boundary or integrability constraint. In par-

ticular, the method in [20] (LM13) directly handles general

isotropic BRDFs by mapping the distances of intensity pro-

files to angular differences of normals. Such a method can-

not be described using the framework in Table 2.

2.3. Other categorization

To be comprehensive, we briefly review other photomet-

ric stereo algorithms beyond the classic setup of fixed or-

thographic camera and directional lighting.

Point lighting based methods adopt the more precise

point light source model with spatially-varying lighting di-

rections, while directional lighting assumes all pixels share

the same lighting direction which is simpler but less accu-

rate. The point lighting model is often used for a nearby

light source, and the lighting intensity fall-off is considered

in [58] for normal estimation. This model is adopted in [59]

to build a handheld photometric stereo device.

General lighting (or environment lighting) model al-

lows photometric stereo to work in less constrained lighting

conditions. Environment lighting could be considered as a

spherical function. Basri et al. [4] take spherical harmon-

ics representation and extend the factorization based uncal-

ibrated photometric stereo method [46] to arbitrary lighting.

Such a representation is followed by many methods [60–63]

that study photometric stereo in general lighting. Environ-

ment lighting can also be represented as a sum of many di-

rectional lights and calibrated by a mirror sphere [64].

Perspective camera model is a more precise camera

model. A perspective camera model will improve photo-

metric stereo at the cost of nonlinear optimization even for

Lambertian material [65]. Perspective model is also useful

in building a handheld photometric stereo camera [59] and

auto-calibrating the lighting conditions [56, 57].

Cameras with non-linear response distort the scene ra-

diance values. While most of the methods apply a sepa-

rate radiometric calibration to correct this distortion, some

methods [5, 17, 63, 66] include automatic radiometric cam-

era calibration. Reflectance monotonicity [14], symme-

try [37], manifold embedding [44, 45], and example-based

methods [42] are naturally unaffected by the nonlinear cam-

era response. Thus, radiometric calibration is not required

for these methods.

Multiple viewpoints provide useful constraints in var-

ious aspects. While single-view methods only recover a

normal map, multi-view photometric stereo methods recon-

struct a complete 3D model [6, 67–69]. The rough shape

from multi-view stereo can calibrate directional lighting

[6, 8, 68, 70], near point lighting [59], or general lighting

[63] for Lambertian surfaces. Additional viewpoints also

simplify non-Lambertian photometric stereo. For arbitrary

isotropic surfaces, Zhou et al. [69] fuse the iso-depth con-

tours reconstructed by [37] from multiple viewpoints to ob-

tain a complete 3D model at high precision.

Object motion provides stronger constraint than multi-

view data when illumination condition is fixed, since the

angle between lighting and surface normal varies under ob-

ject motion. The 3D shape can be recovered from object

motion with as few as two frames [71]. With more frames,

it can calibrate the directional lighting [8, 72] and general

lighting [60] for Lambertian surfaces, and directional light-

ing for general BRDFs [73].

2.4. Number of input images

We further categorize photometric stereo methods ac-

cording to their number of input images. The basic trend
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is the more general assumption and complicated problem

require more images as input.

A small number of images (at least three) are required

for classic photometric stereo [1]. More input images help

to enhance the system robustness, such as four- [23–25, 33]

or five-light configurations [31]. Under general lighting, the

first and second order spherical harmonics approximations

require at least four [61] or nine images [4, 60].

Many photometric stereo algorithms take more images

than the theoretical minimum number for better robustness.

Typically 10 - 20 images are used for calibrated methods

with shadow analysis [26], analytic BRDF models [2, 34,

35] and general lighting [64]. Most uncalibrated methods

under directional lighting [3, 17–19, 28, 38, 50, 51, 54, 56]

or near point lighting [48, 57] also take 10 - 20 input images.

A medium number of images (about 50 - 100) are re-

quired for many outlier rejection based methods [10, 11, 27,

29, 30]. Most methods handling general BRDFs also take

about 50 - 100 images [12–16, 20, 37]. Multi-view meth-

ods naturally take more images since they need to capture

images from different viewpoints. Lambertian multi-view

photometric stereo [6, 59] often take 50 - 100 images to

cover more than 36 viewpoints.

A large number of images (about 500 - 1000) are re-

quired for outdoor photometric stereo [5, 66] and manifold

embedding based methods [44, 45], or to handle anisotropic

BRDFs [41]. Some multi-view photometric stereo methods

also take such a number of images to deal with dynamic

shapes [67], intricate geometries [68], or non-Lambertian

materials [69].

2.5. Category labels

We propose the following labels to categorize the papers

reviewed in Section 2:

• Reflectance model: L – Lambert’s model, R – Lam-

bert’s model + outliers (usually solved by Robust

methods), A – Analytic non-Lambertian model (e.g.,

the Ward, Cook-Torrance model, etc.), and B – Gen-

eral properties of BRDF (e.g., symmetry, monotonic-

ity, etc.).

• Lighting calibration requirement: C – Calibrated

(known lighting conditions) and U – Uncalibrated (un-

known lighting conditions).

• Lighting model: D – Directional lighting, P – Point

lighting, and G – General (environment) lighting.

• Number of input images: S – Small, at least three and

typically 10 - 20, M – Medium, typically 50 - 100, and

L – Large, typically 500 - 1000.

Such labels provide an easy way to categorize a photomet-

ric stereo method. For example, the classic method [1] is

indicated as [LCDS], i.e., Lambert’s model, Calibrated, Di-

rectional lighting, with a Small number of input images.

Other properties are labeled as: PC: Perspective Camera;

NL: Non-Linear camera response; MV: Multi-View setup;

OM: Object Motion. For easy reference, we include such

labels for all surveyed papers in the ‘References’ section.

3. Photometric Stereo Dataset

In this section, we introduce the ‘DiLiGenT’ dataset to

evaluate photometric stereo algorithms under classic imag-

ing condition (i.e., fixed orthographic camera and direc-

tional lighting), with a special focus on non-Lambertian and

uncalibrated methods. There are a few publicly available

photometric stereo dataset2,3 without ground truth shape;

the point feature dataset in [74] and multi-view stereo

dataset in [75] also contain images under varying illumi-

nation and with scanned shapes provided. But none of

them are suitable for evaluating non-Lambertian photomet-

ric stereo, because most of their objects are simple in re-

flectance and the number of different lighting conditions is

small. This motivates us to create a new dataset with objects

of various shapes and BRDFs, carefully calibrated lighting

conditions, and ‘ground truth’ 3D shapes (normals).

The ‘DiLiGenT’ dataset contains ten objects, as shown

in Figure 1. In terms of surface BRDFs, it covers ma-

terials that are mostly diffuse (CAT) or with a rough sur-

face (POT1), with strong and sparse specular spikes (BALL,

READING), with broad and soft specular lobes on uni-

form (BEAR, BUDDHA) and spatially-varying materials

(POT2, GOBLET
4), and with metallic paint on mostly uni-

form (COW) and spatially-varying (HARVEST) surfaces. In

terms of surface shapes, we have the simple sphere (BALL),

smoothly curved surfaces (BEAR, CAT, GOBLET, COW),

smooth surfaces with local details (POT1, POT2), surfaces

with complicated geometry (BUDDHA, READING), and del-

icate shapes with concave parts (HARVEST).

Data capture is performed using a Point Grey Grasshop-

per (GRAS-50S5C-C) camera that has a linear radiometric

response function with a 50mm lens. All images have a

resolution of 2448 × 2048. The objects are about 20cm in

diameter and placed about 1.5m from the camera to approx-

imate orthographic projection. To avoid interreflection, all

data are captured in a dark room with everything covered

by black cloth except the target object. Under each light-

ing condition, we take four images under different exposure

times5 and combine them to obtain a single input HDR im-

age. According to Section 2.4, most non-Lambertian meth-

ods require about 100 differently illuminated images, so we

design our light sources as 96 white LED bulbs fixed on a

2http://courses.cs.washington.edu/courses/

csep576/05wi/projects/project3/project3.htm
3http://vision.ucsd.edu/˜nalldrin/research/
4This object is made from one material, but the rust on surface makes

its BRDF spatially-varying. We exclude the concave interior of this object

for evaluation due to its strong interreflection, which is not modeled in

almost all existing photometric stereo algorithms.
5A typical exposure times setting is {20, 40, 70, 100}ms.
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BALL CAT POT1                                   BEAR POT2

BUDDHA GOBLET READING COW HARVEST

[Mostly diffuse] [Rough material][Sparse specular spike]

[Sparse specular spike]

[Broad spec. / uniform]

[Metal. paint / uniform]

[Broad spec. / spa.-var.]

0 1 2 3 4

5 6 7 8 9

[Metal. paint / spa.-var.][Broad spec. / uniform] [Broad spec. / spa.-var.]

Figure 1. Photometric stereo images (tone-mapped HDR images) and ‘ground truth’ normals for ten objects in the ‘DiLiGenT’ dataset.

The texts in brackets indicate the dominant reflectance properties of the objects. Please zoom in the electronic version for better details.

rectangular metal frame. The frame is divided into 12 × 8
regular samples spanning 74.6◦×51.4◦, with one LED fixed

at each of the grid points. We design the light frame in this

way for its portability and efficiency in cost and space. The

light frame is fixed with the camera at its center.

Lighting condition calibration includes calibrating

light source intensities and directions. The lighting intensity

is calibrated using a Macbeth white balance chart, which

is a good approximation of a uniform Lambertian surface.

We calibrate the lighting directions by treating each LED

as a point light source and fitting all positions of the 2D

grid of lights together. Specifically, we capture an image

of a mirror sphere with all LEDs turned on. The 3D po-

sition of the mirror sphere is determined from the camera

intrinsics and the radius of sphere. So the reflections of the

LEDs in the mirror sphere provide 3D light rays where the

LED bulbs should lie on. We measure the physical dimen-

sion of the LED grid frame, and fit an optimal rigid trans-

formation to align it to those 3D light rays. Finally, the

lighting directions are calculated by subtracting the center

of the mirror sphere from 3D positions of the LED bulbs.

Note though we assume directional lighting in this paper,

our data can also be used for photometric stereo methods

with point light assumption by directly using the positions

of point light sources.

‘Ground truth’ shapes are scanned with a Rexcan CS+

scanner (precision up to 0.01mm). Each 3D mesh is

stitched from 162 scans of different rotation and swing

poses of the turntable, which are then registered using the

eZScan 7 software affiliated with the scanner. The regis-

tration error is reported to be lower than 0.01mm. Manual

refinement such as hole filling and smoothing are applied

using Autodesk Meshmixer 2.8 only when it is really neces-

sary. The shape-to-image registration is estimated using the

mutual information method [76] in Meshlab. We try multi-

ple manual initializations, and select the alignment with the

best visual consistency. The alignment is further manually

verified by comparing the normal map rendered from the

scanned shape and the normal map estimated from photo-

metric stereo to ensure subpixel precision.

Evaluation criteria is based on the statistics of angu-

lar error. For each pixel, the angular error is calculated as

arccos(n⊤
0 n) in degrees, where n0 and n are ‘ground truth’

and estimated normals respectively. In addition to the mean

angular error, which is a commonly adopted metric in pa-

pers surveyed here, we also calculate the minimum, max-

imum, median, the first quartile, and the third quartile of

angular errors for each estimated normal map.

4. Quantitative Evaluation

4.1. Evaluation for non-Lambertian methods

We evaluate and compare non-Lambertian photometric

stereo methods summarized in Table 1, i.e., BASELINE
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Figure 2. Benchmark results for calibrated non-Lambertian photometric stereo. Each subplot shows the results by one evaluated method

using all ten data; the X-axis is the ID of the data according to Figure 1, and the Y -axis is the angular error in degrees. The statistics of

angular errors are displayed using the box-and-whisker plot: The red dot indicates the mean value, the black dot is the median, the lower

and upper bound of the blue box indicate the first and third quartile values, and the vertical blue lines indicate the minimum and maximum

errors.

Figure 3. Benchmark results for classic photometric stereo (BASE-

LINE) with position thresholds (Tlow, Thigh). Please refer to Fig-

ure 2 caption for more description.

[1], WG10 [10], IW12 [11], GC10 [2], AZ08 [12], ST12

[13], HM10 [14], ST14 [15], and IA14 [16]. We choose

these methods because they cover most categories of non-

Lambertian methods and achieve state-of-the-art perfor-

mance. For all evaluated methods, we use the parameters

provided in the original codes or suggested by the original

papers. The evaluation results are summarized in Figure 2.

Estimated normal maps and difference maps w.r.t. ‘ground

truth’ are in the supplementary material.

The BASELINE method has the largest errors in most

data. When sparse outliers could be efficiently removed,

WG10 and IW12 show improvement on objects including a

dominant Lambertian component (BALL, CAT, POT1). But

they cannot handle broad and soft specularity well (POT2,

COW). Adopting a mixture of the Ward model, GC10 pro-

duces superior results on objects with broad and soft spec-

ularity (POT2, COW). Its performance drops on objects

with complicated spatially-varying BRDFs (GOBLET). Fur-

ther, the mixture model fitting might suffer from some lo-

cal minima as indicated by the relatively large errors in

some objects (BUDDHA, READING). The bivariate BRDF

constraint from AZ08 consistently achieves moderate ac-

curacy on all data, and performs better when the highlight

is sparser or weaker (BALL, BEAR). ST12 suffers from

large error when the BRDF is not 1D monotonic (BALL,

BEAR), but achieves best results among all evaluated meth-

ods on one challenging example (COW), where its assump-

tion is satisfied. HM10 works reasonably well for mono-

tonic reflectance described by a single lobe BRDF (GOB-

LET), but not for the mixture of diffuse and specular compo-

nents (BEAR, POT2). In general, the two most recent meth-

ods ST14 and IA14 perform best for most data. All eval-

uated methods show large errors in concave areas (HAR-

VEST), due to frequent cast shadow and interreflection.

A position threshold method: Non-Lambertian phe-

nomena such as shadows and specular highlights are the

main problems for calibrated photometric stereo. Since

shadows and highlights are often associated with dark and

bright pixels, we could simply sort pixels by their intensi-

ties and discard shadows and highlights as bottom and top

ranked observations respectively. The classic photometric

stereo (BASELINE) can be safely applied once the non-

Lambertian observations are largely discarded. Such a strat-

egy has been used in [2, 15, 16] as initialization. We experi-

ment this simple position threshold method using the ‘DiLi-

GenT’ dataset. The position thresholds for shadow and

highlight are chosen among Tlow = {0%, 10%, · · · , 40%}
and Thigh = {100%, 90%, · · · , 60%} respectively. The

benchmark results are summarized in Figure 3. It is inter-

esting to note that a narrower interval produces more ac-

curate normal estimates on most of the data. In particular,

the tightest thresholding (Tlow = 40%, Thigh = 60%) pro-

duces comparable results to state-of-the-art methods ST14

[15] and IA14 [16].

Open problems: High-quality photometric stereo for

complicated BRDFs (COW), spatially-varying materials

(GOBLET), and concave shapes (READING, HARVEST) is

still challenging. Methods exploiting general reflectance

properties such as symmetry or monotonicity often re-

quire far more input images than the BASELINE. Non-

Lambertian photometric stereo also involves extensive

computation, and all evaluated methods here take much

more memory and computation resources than the BASE-

LINE. Computationally efficient non-Lambertian photo-

metric stereo methods using a small number of images are

still missing. The unavoidable global illumination effect de-

teriorates all evaluated methods, and how to integrate global

illumination removal (e.g., using structured light pattern

[77]) to photometric stereo is an open problem.
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Figure 4. Benchmark results for uncalibrated photometric stereo. Please refer to Figure 2 caption for more description.

4.2. Evaluation for uncalibrated methods

We evaluate and compare recent uncalibrated methods

summarized in Table 2, i.e., AM07 [3], SM10 [17], PF14

[18], and WT13 [19], plus a manifold embedding based

method LM13 [20]. These methods so far are evaluated

by their consistency with calibrated methods. Using the

‘DiLiGenT’ dataset with ‘ground truth’ shapes, we can di-

rectly evaluate the accuracy in surface normal directions. To

fairly evaluate and compare AM07, SM10, and PF14, we

start from the same GBR-distorted normal map that is gen-

erated from the code of PF14. Unlike these three methods,

WT13 applies diffuse-specular separation [78] beforehand

and LM13 is not specific to GBR distortion, so we simply

take their complete system for evaluation. We summarize

the evaluation results in Figure 4.

The uncalibrated methods produce much larger errors

than the calibrated ones especially for non-Lambertian ma-

terials. AM07 and SM10 only produce reasonable results

on near Lambertian objects (BALL, POT1, BEAR). AM07

assumes piecewise constant albedo, and is sensitive to ob-

jects with smoothly varying texture (CAT). SM10 requires

albedo based segmentation and hence fails on objects with

high-frequency material changes (GOBLET). Though PF14

is designed for Lambertian surfaces, it shows excellent ro-

bustness and tolerance to non-Lambertian objects (POT2,

BUDDHA, COW). Its average error for all test data is the

smallest. The specular reflection based method WT13 out-

performs other methods on materials with broad and soft

highlights (BEAR, POT2, BUDDHA, COW). Its perfor-

mance deteriorates when the specular reflection is weak

(CAT) or spatially-varying (GOBLET, HARVEST) and it suf-

fers from catastrophic failure when diffuse-specular separa-

tion is poor (READING). The performance of LM13 is poor

in our evaluation, partially due to its requirement on uni-

formly distributed directional lighting.

We further evaluate the linearly- and GBR-distorted nor-

mals, which are inputs to auto-calibration. We solve the

optimal linear transformation A and GBR transformation

G by registering the distorted normals to the ‘ground truth’

normals. The mean angular errors between the registered

and ‘ground truth’ normals are reported in Figure 4 as Opt.

A and Opt. G for linearly- and GBR-distorted normals re-

spectively. Both results show surprisingly large residual er-

rors, which suggests a more robust method is needed for

recovering the pseudo-normal S̃ (up to A) and Ŝ (up to G).

Open problems: Uncalibrated photometric stereo is

still a very difficult problem for real-world objects and

a major bottleneck is from the widely adopted factoriza-

tion step [46] which is designed for Lambertain materials.

Pre-processing of the data using outlier rejection methods

[10, 11] can only solve the problem in a limited scale, since

they need to assume the existence of a dominant Lambertian

component. LM13 presents a successful trial to avoid this

factorization for general BRDFs, but it is largely limited by

the requirement of uniformly distributed lighting. Explor-

ing general BRDF properties and how to accurately esti-

mate the pseudo-normal for non-Lambertian objects could

be interesting future topics. In terms of resolving the GBR

ambiguity, it might be interesting to combine the strength

of diffuse reflection based method (e.g., PF14) and specular

reflection based method (e.g., WT13).

5. Conclusion

We survey recent photometric stereo methods according

to our taxonomy focusing on non-Lambertian and uncali-

brated photometric stereo algorithms and present photomet-

ric stereo images dataset with carefully calibrated lighting

conditions as well as scanned and registered ‘ground truth’

shapes (normals). Eight recent non-Lambertian photomet-

ric stereo methods and five uncalibrated methods are quan-

titatively evaluated and compared using our data, which re-

veals interesting future research directions.
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