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Abstract

Deep Convolutional Neural Networks (CNNs) have re-

cently evinced immense success for various image recog-

nition tasks [11, 27]. However, a question of paramount

importance is somewhat unanswered in deep learning re-

search - is the selected CNN optimal for the dataset in terms

of accuracy and model size?

In this paper, we intend to answer this question and

introduce a novel strategy that alters the architecture of a

given CNN for a specified dataset, to potentially enhance

the original accuracy while possibly reducing the model

size. We use two operations for architecture refinement, viz.

stretching and symmetrical splitting. Stretching increases

the number of hidden units (nodes) in a given CNN layer,

while a symmetrical split of say K between two layers sep-

arates the input and output channels into K equal groups,

and connects only the corresponding input-output channel

groups. Our procedure starts with a pre-trained CNN for

a given dataset, and optimally decides the stretch and split

factors across the network to refine the architecture. We em-

pirically demonstrate the necessity of the two operations.

We evaluate our approach on two natural scenes at-

tributes datasets, SUN Attributes [16] and CAMIT-NSAD

[20], with architectures of GoogleNet and VGG-11, that

are quite contrasting in their construction. We justify our

choice of datasets, and show that they are interestingly dis-

tinct from each other, and together pose a challenge to our

architectural refinement algorithm. Our results substantiate

the usefulness of the proposed method.

1. Introduction

Deep Convolutional Neural Networks (CNNs) have re-

cently shown immense success for various image recogni-

tion tasks, such as object recognition [11, 22], recognition

of man-made places [27], prediction of natural scenes at-

tributes [20] and discerning of facial attributes [13]. Out

of the many CNN architectures, AlexNet [11], GoogleNet

[22] and VGG [21] can be considered as the most popu-

lar ones, based on their impressive performance across a

variety of datasets. While architectures of AlexNet and

GoogleNet have been carefully designed for the large-scale

ImageNet [4] dataset, VGG can be seen as being relatively

more generic in curation. Irrespective of whether an archi-

tecture has been hand-curated for a given dataset or not,

all of them show significant redundancy in their parame-

ter space [8, 12], i.e. for a significantly reduced number of

parameters (sometimes as high as 90% reduction), a given

architecture might achieve nearly the same accuracy as ob-

tained with the entire set of parameters. Researchers have

utilized this fact to speed up inference by estimating the set

of parameters that can be zeroed out with a minimal loss

in original accuracy. This is typically done through sparse

optimization techniques [12] and low-rank procedures [8].

Envisaging a real-world scenario: We try to envisage

a real-world scenario. A user has a new sizeable image

dataset, which he wants to train with a CNN. He would

typically try out famous CNN architectures like AlexNet,

GoogleNet, VGG-11, VGG-16, VGG-19 and then select the

one which gives maximum accuracy. In case his application

prioritizes a reduced model size (number of parameters) as

compared to the accuracy (e.g. applications for mobile plat-

forms and embedded systems), he will try to strike a manual

trade-off of how much he wants to sacrifice the accuracy for

a reduction in model size.

Once he makes his choice, what if his finally selected ar-

chitecture could be altered so as to potentially give a better

accuracy while also reducing the model size ? In this paper,

we aim to target such a scenario. Note that in all cases, the

user can further choose to apply one of the sparsification

techniques such as [12] to significantly reduce the model

size with a slight decrease in accuracy. We now formally

define our problem statement as follows :

Given a pre-trained CNN for a specific dataset, refine the

architecture in order to potentially increase the accuracy

while possibly reducing the model size.

Operations for CNN architecture refinement: One

may now ask what is exactly meant by the refinement of

a CNN architecture. On a broader level, refining a CNN
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Figure 1. Operations considered for our approach: We consider

two operations, viz. stretch (left) and symmetric split (right), for archi-

tectural refinement of a CNN. Stretching refers to increase in number

of hidden units (nodes) for a given layer, without changing its connec-

tion pattern to the previous or the next layer. A stretch by a factor of

1.5 is shown here. A symmetrical split of say K between two layers

separates the input and output channels into K equal groups, and the

corresponding input and output channel groups are connected. A sym-

metric split of 2 is shown here. Symmetrical split is implemented as

the group parameter in Caffe [9].

architecture can involve altering one or more of the follow-

ing: the number of hidden units (nodes) in any layer, the

connection pattern between any two layers, and the depth

of the network. On a relatively finer level, one might think

of changing the convolution kernel size, pooling strategies

and stride values to refine an architecture.

In this paper, we consider the task of CNN architecture

refinement on a broader level. Since we embark on such a

problem in this work, we only consider two operations, viz.

stretch and symmetric split. Stretching refers to increase

in number of hidden units (nodes) for a given layer, while

a symmetrical split of say K between two layers separates

the input and output channels into K equal groups, and the

kth input channel group is only connected to the kth out-

put channel group1. Please see Fig 1 for an illustration of

these operations. We do not consider the other plausible op-

erations for architectural refinement of CNN; for instance,

arbitrary connection patterns between two layers (instead of

just symmetric splitting), reducing the number of nodes in

a layer, and alteration in the depth of the network.

Intuition behind our approach: The main idea behind

our approach is to best separate the classes of a dataset, as-

suming a constant depth of the network. Our method starts

with a pre-trained CNN, and studies separation between

classes at each convolutional layer. Based on the nature of

the dataset, separation between some classes may be more

at lower layers, while for others, may be lesser at lower lay-

ers. Similar variations may be seen at deeper layers. In

1For better understanding, we give an example of symmetric splitting

with convolutional layers. Let a convolutional layer conv1 having 96 out-

puts be connected to conv2 having 256 outputs. Then there are 96× 256
input connections for conv2, each connection having a filter of square size

(11 × 11 say). A splitting of 2 for conv2 divides input connections of

conv2 into 2 symmetric groups, such that the first / second 48 outputs of

conv1 only get connected to the first / second 128 outputs of conv2.

comparison to its previous layer, a given layer can increase

the class separation for some class pairs, while decreasing

for others. The number of class pairs for which the class

separation increases contributes to the stretching / widening

of the layer; while the number of class pairs where the class

separation decreases contributes to the symmetric splitting

of the layer inputs. Thus, both stretch and split operations

can be simultaneously applied to each layer. The amount

of stretch or split is not only decided by how the layer af-

fects the class separation, but also by the class separation

capacity of the subsequent layers. Once the stretch and split

factors are estimated, they are applied to original CNN for

architectural refinement. The refined architecture is then

trained again (from scratch) on the same dataset. Section 3

provides complete details of our proposed approach.

Our contribution(s): Our major contributions can now

be summarized as follows :

1. For a given pre-trained CNN, we introduce the problem of

refining network architecture so as to potentially enhance

the accuracy while possibly reducing the required number

of parameters.

2. We introduce a strategy that starts with a pre-trained

CNN, and uses stretch and symmetric split (Fig 1) op-

erations for CNN architecture refinement.

2. Related Work

Deep Convolutional Neural Networks (CNNs) have ex-

perienced a recent surge in computer vision research due to

their immense success for visual recognition tasks [11, 27].

Given a sizeable training set, CNNs have proven to be

far more robust as compared to the hand-crafted low-level

features like Histogram of Oriented Gradients (HOG) [3],

color histograms, gist descriptors [14] and the like. For

visual recognition, CNNs provide impressive performance

for recognition of objects [22], man-made places [27], at-

tributes of natural scenes [20] and facial attributes [13].

However, learning an optimal CNN architecture for a given

dataset is largely an open problem. Moreover, it is less

known, how to find if the selected CNN is optimal for the

dataset in terms of accuracy and model size or not.

Transfer learning with deep nets: With the availabil-

ity of large scale datasets such as ImageNet [4] and MIT

Places [27], researchers have resorted to transfer learning

techniques [23] for efficient training of relatively smaller

related datasets [15, 28]. During transfer learning, the pa-

rameters of the CNN trained with base dataset are dupli-

cated, and some additional layers are attached at the deep

end of the CNN which are trained exclusively on the new

dataset. In the process, the parameters copied from the net

trained on the base dataset might or might not be allowed

for slight perturbation. However, none of the transfer learn-

ing techniques attempts to refine the CNN architecture ef-

2213



MAX POOL1x1 Conv 1x1 Conv 1x1 Conv

1x1 Conv3x3 Conv 5x5 Conv

Previous Layer

Filter Concatenation

Layer 1

Layer 2

Figure 2. Inception Module of GoogleNet [22] : The incep-

tion module is an intrinsic component of the GoogleNet architecture.

GoogleNet has 9 inception modules named as 3a, 3b, 4a, 4b, 4c, 4d,

4e, 5a, 5b connected one after another. The inception module has

two layers and 6 convolutional blocks (green blocks), connected as

shown in the figure. As an implementation perspective of our ap-

proach with GoogleNet, for a convolutional block l in Layer 1, the

subsequent blocks are all convolutional blocks in layer 2, irrespective

of the connection pattern. This is done for ease in the computation of

(2) and (3). However, for a given convolutional block l in a layer of

inception module, its previous convolutional block is considered only

to be the one from which l has incoming links. The distinction is made

for simplicity in computation, as the statistics of the previous layer is

only required in case (b) of our approach (Section 3), for deciding

whether any operation should be applied to the current block or not.

fecting an increase in original accuracy and a reduction in

model size simultaneously. While transfer learning can be

effective when the base dataset has a similar distribution as

the target dataset, it might be a deterrent otherwise [20].

We emphasize that our approach can be applied to any pre-

trained CNN, irrespective of whether the training has been

done through transfer learning or from scratch.

Low-rank and sparsification methods for CNNs: Ir-

respective of whether a CNN has been hand-designed for

a specific dataset or not, all the famous CNN architectures

exhibit enormous redundancy in parameter space [12]. Re-

searchers have recently exploited this fact to speed up the

inference speeds by estimating a highly reduced set of pa-

rameters which is sufficient to produce nearly the same ac-

curacy as the original CNN does with the full set of pa-

rameters. While some works like [8, 18, 24] have resorted

to low-rank factorization of weight matrices between two

given layers, others have used sparsification methods for

the same [6]. Recently, [12] has combined the low-rank

and sparsification methods to produce a highly sparse CNN

with a slight decrease in the original accuracy. The work

of [5] can be considered as a pseudo-reduction method for

the parameter space of a CNN. It does not sparsify the net-

work, but presents an approach to estimate almost 95% of

parameters from only the rest 5%. Thus, they do not claim

that most parameters are not necessary, but that most pa-

rameters can be estimated by a relatively small set.

It is worthwhile to mention that our approach falls into

a different solution paradigm, that can complement various

methods developed for deep learning for distinct purposes.

All the related works discussed above and some other works

that tend to enhance the accuracy with deep learning such

as [20] and deep boosting methods [1, 17, 19], assume a

fixed architectural model of the CNN. Our approach instead

modifies the architecture of the original CNN to potentially

enhance the accuracy while possibly reducing the model

size. Thus, all the techniques applied to a fixed architecture

can be applied to the architecture refined by our method,

for a plausibly better performance as per the chosen met-

ric. Also, due to the novel operations that we consider for

CNN architectural refinement, our method can complement

the various other methods developed for a similar purpose.

3. Approach

Let the dataset containM classes. Let the CNN architec-

ture have L convolutional layers. At a given convolutional

layer l ∈ {1, . . . , L}, let there be hl number of hidden units

(nodes). Then for a given input image i, one can generate an

hl dimensional feature vector f i

l
at convolutional layer l, by

taking average spatial responses at each hidden unit of the

layer [26]. Using this, one can find a mean feature vector of

dimension hl for every classm ∈ {1, . . . ,M} at every con-

volutional layer l by taking the average of f i

l
∀ i ∈ am,

where the set am contains images annotated with class label

m. Let this average feature vector for class m be denoted

by gm

l
.

Finding the inter-class separation: For a given dataset

and a base CNN architecture, we first train the CNN on the

dataset using a given loss function (such as softmax loss,

sigmoid cross entropy loss, etc. [9]). From this pre-trained

CNN, we compute gm

l
; l ∈ {1, . . . , L},m ∈ {1, . . . ,M}.

Using gm

l
, inter-class correlation matrices Cl of sizes M ×

M are found out for every convolutional layer l, where a

value at the index-pair (m, m̂);m, m̂ ∈ {1, . . . ,M} in Cl

indicates the correlation between gm

l
and gm̂

l
. Note that the

correlation between two feature vectors of the same length

can vary between -1 and 1, inclusive. Examples of Cl can

be seen in Fig 4. All Cl are symmetric, since correlation

is non-causal. A lesser correlation between classes implies

better separation, and vice-versa.

Measuring separation enhancement and deteriora-

tion capacity of a layer: The correlation matrices give an

indication of the separation between classes for a given con-

volutional layer. Comparing Cl and Cl+1, one can know

for which class pairs, the separation increased (correlation

decreased) in layer l + 1, and for which ones, the separa-

tion deteriorated (correlation increased) in l + 1. Similar

statistics for layer l can be computed by comparing Cl−1

and Cl. For a convolutional layer l, let the number of class

pairs where the separation increased in comparison to layer

l− 1 be nl+, and where the separation decreased be nl
−

. Let

nT = M2 denote the total number of class pairs. Note that

both stretch and split operations can be simultaneously ap-
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plied to each layer. nl+ contributes to the stretching / widen-

ing of the layer l, while nl
−

contributes to the symmetric

splitting of its inputs.

In the domain of decision tree training [2], information

gain is used to quantify the value a node adds to the clas-

sification task. However, in the context of our work, this

measure would not enable us to estimate both the split and

the stretch factors for the same layer. Thus, we resort to

the number of class pairs where the separation increases /

decreases to measure the separation enhancement and dete-

rioration capacity of a layer respectively. As we will discuss

in the next subsection and Section 4, both the stretch and

split operations applied to the same layer helps us to opti-

mally reduce the model size and increase accuracy.

Estimating stretch and split factors: By the definition

of nl+, for a layer l, we define the average class separation

enhancement capability of the subsequent layers by the fol-

lowing expression:

ξ(l) =

L−1
∑

i=l+1

(ni+ / nT )/(L− l − 1) (1)

Note that we omit the last layer L in the above expression.

This is discussed at the end of this subsection.

For each l, there can be two cases, (a) nl+ < nl
−

, (b)

nl+ ≥ nl
−

. Case (a) implies that the number of class pairs

for which separation decreased were more than for which

separation increased. This is not a desired scenario, since

with subsequent layers, we would want to gradually in-

crease the separation between classes. Thus, in case (a),

we do a symmetric split between l − 1 and l, i.e. the con-

nections incoming to l undergo a split. This is done under

the hypothesis that split should minimize the hindering link-

ages and thus cause a lesser deterioration in the separation

of class pairs in layer l. The amount of split is decided by

nl
−

and the average separation enhancement potential of the

subsequent layers ξ(l). For example, if the subsequent lay-

ers greatly increase the separation between classes, a lesser

split should suffice since we do not need to improve the sep-

aration potential between layers l and l+1 by a major extent.

Doing a high amount of split in this case may be counter-

productive, since the efficient subsequent layers might not

then get sufficiently informative features to proceed with.

Based on this hypothesis, we arrive at the following equa-

tion indicating the split factor rls for convolutional layer l
under case(a):

rls = 2
ψ

(

n
l
−

nT
ξ(l)

)

(2)

where ψ(x) = ⌊x/λ⌋. λ is a parameter that controls the

amount of reduction in model size. Note that the expression

is raised to the power of 2 in (2), meaning that we do splits

in multiples of 2. This is done to make the implementation

coherent for Caffe’s [9] group parameter. The group pa-

rameter in Caffe is similar to the symmetric split operation

considered here (Fig 1). Although group parameter can be

any integer, it should exactly divide the number of nodes be-

ing split. Since, the number of nodes in architecture layers

are typically multiples of 2, we raise the expression to the

power of 2 in (2). For case (a), no stretching is performed,

since that might lead to more redundancy.

For case (b), the number of class pairs experiencing

increased separation are greater than those undergoing de-

terioration. We aim to stretch the layer as well as split its

inputs in such a scenario. The stretch factor is based on

nl+ and the average separation enhancement capability of

subsequent layers ξ(l). If ξ(l) is significant, stretching in

l is done to a lesser extent indicating that l needs to help

but only to a limited extent to avoid overfitting; and vice-

versa. We thus arrive at the following equation indicating

the stretch factor rle for layer l in case (b):

rle = 1 + φ

(

nl+
nT

ξ(l)

)

(3)

where φ(x) = ⌊x/λ⌋ λ is a function that depends on λ. We

add 1 in (3), since a stretch factor of say 1.25 indicates that

the number of nodes in the respective layer be increased by

a quarter. Note that φ(x) = λψ(x). This indicates that for

say λ = 0.25, a split factor of 2 might be roughly equivalent

to a stretch factor of 1.25 for enhancing the class separation.

This is an empirical choice, which helps us to optimally

increase the accuracy and reduce the model size. We will

delineate the importance of λ in the next subsection.

In case (b), due to nl
−

, there is also some redundancy

in the connections between l and l − 1. Thus the inputs of

layer l also need to be split. The split factor in this case

is again decided by (2). The operation of splitting along

with stretching helps to reduce the model size while also

potentially enhancing the accuracy.

In our approach, we do not consider the refinement of

fully connected layers, but only refine the convolutional

layers. This is motivated by the fact that in CNNs, con-

volutional layers are mostly present in high numbers, with

fully connected layers being lesser in number. For instance,

GoogleNet has only one fully connected layer at the end af-

ter 21 convolutional layers. However, since fully connected

layers can contain a significant amount of parameters in

comparison to convolutional layers (like in AlexNet), con-

sidering fully connected layers for architectural refinement

can be worth exploring.

Since for a layer, our method considers the change in

class separation compared to the previous layer, no stretch-

ing or splitting is done for the first convolutional layer since

it is preceded by the input layer. Also, we notice that the fi-

nal convolutional layer in general, enhances the separation

for most classes in comparison to the penultimate convolu-

tional layer. Thus, stretching it mostly amounts to overfit-

ting, and so, we exclude the last convolutional layer from
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Figure 3. Datasets and Classes: The figure shows the classes present in the SUN Attributes Dataset (SAD) as considered in [20] and CAMIT-

NSAD dataset [20]. While classes in SAD are purely attributes, classes in CAMIT-NSAD are attribute-noun pairs.

all our analysis. By a similar argument, the last inception

unit is omitted from our analysis in GoogleNet.

Once the stretch / split factors are found using a pre-

trained architecture, the refined architecture is trained from

scratch. Thus, we do not share any weights between the

original and the refined architecture. The weight initializa-

tion in all cases is done according to [7].

On choice of λ and upper bound: The parameter λ
controls the amount of reduction in model size. It is meant

to be empirically chosen and the functions ψ(.), φ(.) have

been formulated so that they satisfy our hypotheses men-

tioned in the previous subsection while taking into account

the possible effect of λ. If λ increases, the stretch factors

decrease and the splits are smaller (see φ(.) and ψ(.)). If

λ decreases, the split factors can be very high along with

decent values for stretch factors. However, due to the dif-

ference in φ(.) and ψ(.), the increase in the stretch factor

will be limited as compared to the increase in the split fac-

tor. This is desired since we do not wish to increase the

model size by vast amounts of stretching operations, which

may also lead to overfitting. Hence, with increasing λ, the

model size tends to increase, and vice-versa. For all our

experiments, we set an empirically chosen λ = 0.25.

A natural question to now ask is that what range of values

of λ should one try? The lower bound may be empirically

chosen based on the maximum split factor that one wishes

to support. However, λ can be upper-bounded by a value λo
above which no split and stretch factor can change. From

the definitions of ψ(.) and φ(.), λo can be easily given as

follows:

λo = max

[(

nl
′

+

nT
ξ(l′)

)

,

(

nl
′

−

nT
ξ(l′)

)

,

(

nl
−

nT
ξ(l)

)

]

(4)

where nl
′

+ ≥ nl
′

−
∀ l′;nl+ < nl

−
∀ l.

Refining with GoogleNet: Note that GoogleNet con-

tains various inception modules (Fig 2), each module hav-

ing two layers with multiple convolutional blocks. While

describing our refinement algorithm, wherever we have

mentioned the term convolutional layer, in context of

GoogleNet, it should be considered as a convolutional

block. Please see Fig 2 for a better understanding of how

do we decide subsequent and previous layers in GoogleNet

for refining. Also see Fig 6 for the stretch and split factors

obtained after architectural refinement of GoogleNet.

Continuing architectural refinement: Our method re-

fines the architecture of a pre-trained CNN. One can also

apply such a procedure to an architecture that has been al-

ready refined by our approach. One can stop once no sig-

nificant difference in the accuracy or model size is noticed

for some choices of λ 2.

4. Results and Discussion

Datasets: We evaluate our approach on SUN Attributes

Dataset (SAD) [16] and Cambridge-MIT Natural Scenes

Attributes Dataset (CAMIT-NSAD) [20]. Both the datasets

have classes of natural scenes attributes, whose listing can

be found in Fig 3.

The full version of SAD [16] has 102 classes. However,

following [20], we discard the classes in the full version of

SAD which lie under the paradigm of recognizing activities,

poses and colors; and only consider the 42 visual attribute

classes, so that the dataset is reasonably homogeneous for

our problem. SAD with 42 attributes has 22,084 images

for training, 3056 images for validation and 5618 images

for testing. Each image in the training set is annotated with

only one class label. Each test image has a binary label for

each of the 42 attributes, indicating the absence / presence

of the respective attribute. In all, the test set contains 53,096

positive labels.

CAMIT-NSAD [20] is a natural scenes attributes dataset

containing classes as attribute noun pairs, instead of just

attributes. CAMIT-NSAD has 22 attributes and contains

46,008 training images, with at least 500 images for each

attribute-noun pair. The validation set and the test set con-

tain 2104 and 2967 images respectively. While each train-

ing image is annotated with only one class label, the test

2Although our approach does not induce a concrete optimization objec-

tive from the correlation analysis, we believe that it is a step towards solv-

ing the deep architecture learning problem, and furthers the related works

towards more principled directions. The intuition behind our method was

established from various experiments, done on diverse datasets with a va-

riety of shallow and deep CNNs.
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Figure 4. Correlation Matrices for 8 Convolutional Layers of VGG-11 trained on SAD and CAMIT-NSAD : Traversed row-wise, correlation

matrices Cl : l ∈ {1, . . . , 8} are shown. Dark Blue color indicates minimum correlation between classes, while a bright yellow color indicates

maximum correlation. Thus, all diagonals are bright yellow, since each class is maximally correlated with itself. For each matrix, the attribute

classes are ordered as in Fig 3 seen left to right. Note that more correlation implies lesser separation and vice-versa. Top Row (SAD) : The

lower layers can separate the classes better as compared to deeper layers. Bottom Row (CAMIT-NSAD): The classes are separated lesser in lower

layers and more prominently in deeper layers. This is mainly because classes in SAD are purely attributes, while classes in CAMIT-NSAD are

attribute-noun pairs. Due to this distinction, the two datasets have nearly contrasting characteristics which pose a challenge to the architectural

refinement problem. For instance, snow class in SAD can be separated from dirt class mostly by the distinction of white and brown colors; while in

CAMIT-NSAD, the class of snowy forests cannot be separated from snowy mountains just by noticing the color difference, since both forests and

mountains are snowy. Infact, in this case, the separation is most likely to appear in deeper layers where the distinction is also made between forests

and mountains. The above explanation is made under the widely accepted notion that a CNN learns low-level type features (edges, color patterns,

etc.) in lower layers, and more class-specific features in deeper layers [25]. Also note that some classes in the datasets have a natural correlation, e.g.

classes of vegetation, shrubbery, foliage and leaves in SAD are well correlated, since the presence of leaves is very likely where some vegetation

occurs. As a result, separation between these classes may always be low as compared to separation between the classes of vegetation and running

water. A similar analysis can be made for CAMIT-NSAD. Figure is best viewed in color.

images contain binary labels for each of the 22 attributes.

In all, the test set contains 8517 positive labels. All images

in SAD and CAMIT-NSAD are 256× 256 RGB.

It can be seen that classes in SAD are pure attributes,

while that in CAMIT-NSAD are noun-attribute pairs. Due

to this distinction, the two datasets have different charac-

teristics which make them challenging for the problem of

architectural refinement. Please see Fig 4 for a better un-

derstanding of this distinction.

Notice that classes in CAMIT-NSAD can be finally sepa-

rated to a greater extent as compared to classes in SAD. This

is because almost each class in SAD has a variety of outdoor

and indoor scenes, since an attribute can exist for both. For

instance, both an outdoor and indoor scene can be glossy

as well as can have direct sunlight. However, with noun-

attribute pairing as in CAMIT-NSAD, the classes are more

specifically defined, and thus significant separation between

a greater number of class pairs is achieved at the end.

Choice of Datasets: The choice of the datasets used

for evaluation needs a special mention. We chose attribute

datasets, since given the type of labels here, it is difficult to

establish where should the model parameters be reduced /

increased. This we found was in contrast to object recog-

nition datasets such as ImageNe, where we observed that

refining an architecture by symmetric splitting in the first

few layers could increase accuracy. However, we thought

this to be very intuitive, since objects are generally encoded

in deeper layers, and thus, one would expect to reduce pa-

rameters in the top layers. We thus evaluate our procedure

with the types of datasets, where one cannot easily decide

which network layers contribute to the class labels.

Architectures for Refinement: We choose GoogleNet

[22] and VGG-11 [21] as the base CNN architectures,

which we intend to alter using our approach. Since

GoogleNet and VGG-11 are quite contrasting in their con-

struction, they together pose a considerable challenge to our

architectural refinement algorithm. While VGG-11 (which

can be loosely considered as a deeper form of AlexNet [11])

has 8 convolutional layers, and 3 fully connected layers,

GoogleNet is a 22-layer deep net having 9 inception units

after three convolutional layers, and a fully connected layer

before the final output. Each inception unit has 6 convo-

lutional blocks arranged in 2 layers. We refer the reader

to [22] and [21] for complete details of GoogleNet and

VGG-11 respectively. An instance of inception module in

GoogleNet is shown in Fig 2.

Baselines: We consider the following baselines to com-

pare with our proposed approach. (a) Our approach with

only stretching and no splitting - We consider refinement

with only the stretching operation and no splitting opera-

tion, i.e. the CNN architecture is refined by only stretching

some layers, but no symmetric splitting between layers is

done. This proves the importance of stretching operation

for architectural refinement. (b) Our approach with only

splitting and no stretching - Evaluating by only consider-

ing the symmetrical split operation and no stretch operation
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Figure 5. Results and Comparisons : The figure shows results on SAD and CAMIT-NSAD with VGG-11 and GoogleNet using our approach

and various other baselines. Orig = Original architecture, DR = Deep Refined Architecture (our approach), DR-1 = Deep Refined Architecture

with only the Stretch Operation, DR-2 = Deep Refined Architecture with only the Symmetric Split Operation, Sp-1 = L1 Sparsified network, Sp-2

- Sparsified network with [12]. We use precision@k as our performance metric, and report that here as a percentage. For SAD, k = 21, while for

CAMIT-NSAD, k = 7. Please refer text for details on this. We report the reduction percentage in the parameters of the convolutional layers in

comparison to the original architecture. Thus, reporting reduction in model size for Orig is not applicable. Also, since DR-1 only does a stretching

operation over the original architecture, it is bound to increase the model size, and thus % reductions in the model size are not applicable here

as well. Note that DR performs significantly well for SAD giving a decent reduction in model size with impressive increase in precision. For

CAMIT-NSAD, DR does not improve the precision of the original architecture. The results here are reported for λ = 0.25. For CAMIT-NSAD, we

also did experiments for higher values of λ but we did not see any increase in precision; rather with increased λ, we got lesser reduction in model

size as expected (Section 3) . Nevertheless, for CAMIT-NSAD, DR and DR-2 could produce architectures with a reduced model size producing

precision better than the state-of-the-art sparsification techniques of Sp-1 and Sp-2.
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Figure 6. Refined Architectures obtained with our approach: Left column shows the refined architectures for SAD, and the right column for

CAMIT-NSAD. The corresponding precision results are reported in Fig 5 under the column DR. Each tuple (a, b) indicates that a is the stretch

factor for the convolutional layer/block, while b is the split factor for the input of that convolutional layer / block. Entry of (1, 1) implies no stretch

and splitting should be done. In Fig 5, for DR-1 , every value of b is made 1, while for DR-2 , every value of a is made 1. VGG-11 contains 8

convolutional layers, for which the factors are shown. In Googlenet, the factors for first three convolutional layers are shown in the first row (under

GoogleNet). After that , each row under GoogleNet contains the factors of the convolutional blocks in the inception unit of Fig 2. Traversed

row-wise, inception units correspond to the ordering 3a, 3b, 4a, 4b, 4c, 4d, 4e, 5a, 5b of GoogleNet architecture [22]. Note that since we do not

consider the last convolutional layer (that is connected to the fully connected layer) in our analysis, all factors for that are 1 in VGG-11. A similar

argument exists for the last inception unit in GoogleNet.

provides evidence to the utility of splitting. (c) L1 Spar-

sification - We consider the L1 sparsification of a CNN as

one of the important baselines. Here, the weights (param-

eters) of a CNN are regularized with an L1 norm, and the

regularization term is added to the loss function. Due to

the L1 norm, this results in a sparse CNN, i.e. a CNN with

a reduced model size. Following [12], all the parameters

with values less than or equal to 1e-4 are made zero both

during training and testing. This not only ensures maximal

sparsity, but also stabilizes the training procedure resulting

in better convergence. (d) Sparsification with the method

of [12] - The method of [12] combines the low-rank de-

composition [8] and L1 sparsification techniques for bet-

ter sparsity. However, they mention that the critical step in

achieving comparable accuracy with high amount of spar-

sity, is minimizing the loss function along with L1 and L2

regularization terms upon the weights of the CNN. Low-

rank decomposition can increase sparsity with a further de-

crease in accuracy. Since, in this work, we are interested in

an optimal trade-off between accuracy and model size, we

evaluate the method of [12] without the low-rank decom-

position. This ensures that we obtain maximum possible
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accuracy with [12] at the expense of some reduced sparsity.

(e) Original architecture: We consider the original archi-

tecture without any architectural refinement and sparsifica-

tion techniques applied. The amount of reduction achieved

in the model size with our approach and other baselines

along with the recognition performance is compared with

this baseline.

Note that for all the above mentioned baselines, the CNN

is first trained on the respective dataset with the standard

minimization of softmax loss function [9], after which a

second training step is done. For baselines (a) and (b), the

re-training step is performed on the refined architecture as

described in Section 3; while for baselines (c) and (d), re-

training is done as a fine-tuning step, where the learning rate

of the output layer is increased to 5 times the learning rate

of all other layers.

Other plausible baselines: We also tried randomly

splitting and stretching throughout the network as a plau-

sible baseline. Here although in some cases, we could re-

duce the model size by almost similar amounts as our pro-

posed approach, significantly higher accuracy was consis-

tently achieved using our method.

Training: For all datasets and CNN architectures, the

networks are trained using the Caffe library [9]. The pre-

training step is always performed with the standard softmax

loss function [9]. For all the pre-training, refinement and

baseline cases, batch size of 32 samples is considered. An

adaptive step policy is followed during training, i.e. if the

change in validation accuracy over a range of 5 consecutive

epochs is less than 0.5, the learning rate is reduced by a

factor of 10. For SAD, we start with an initial learning rate

of 0.01 for both GoogleNet and VGG-11, while for CAMIT-

NSAD, a starting learning rate of 0.001 suffices for both the

architectures. In all cases, we train for 100 epochs.

Testing: Given a trained CNN, we need to predict mul-

tiple labels for each test image in SAD and CAMIT-NSAD.

We use precision@k as our performance metric. The metric

is normally chosen when one needs to predict top-k labels

for a test image. Since, our ground-truth annotations con-

tain only binary labels for each class, for a given test image,

we cannot sort the labels according to their degree of pres-

ence. We thus decide k for each dataset as the maximum

number of positive labels present for any image in the test

set. For SAD, k is 21, while for CAMIT-NSAD, k is 7.

Thus, given a test image, we predict the output probabilities

of each class using the trained net, and sort these proba-

bilities in the descending order to produce a vector T . If

that test image has say 5 positive labels in ground-truth an-

notations, we expect the first 5 entries of T to correspond

to the same labels for a 100% precision. We thus compute

the true positives and false positives over the entire test set

and report the final precision. This is in line with the test

procedure followed by [20].

Discussion of results: Fig 5 shows the precision and

model size reduction results obtained with our approach and

the baselines, for both the datasets and both the architec-

tures. For understanding intrinsic details of the refined ar-

chitectures, please refer to Fig 6 and Fig 2. It is clear that

for SAD, our approach for both VGG-11 and GoogleNet,

offers an increase in original precision while giving a rea-

sonable reduction in model size. The reduction in the num-

ber of parameters in convolutional layers holds more impor-

tance here, since our method was only applied to the con-

volutional layers. It is interesting to note from the results

on SAD, that the predicted combination of stretch and split

is more optimal as compared to only having the split or the

stretch operation. This also shows that stretching alone is

not always bound to enhance the precision, since it may lead

to overfitting. In all cases, the sparsification baselines fall

behind the precision obtained with our approach, although

they produce more sparsity.

The results on CAMIT-NSAD present a different sce-

nario. Note that our approach is not able to enhance the

precision in this case, but decreases the precision by a small

amount, while giving decent reduction in model size. How-

ever, the precision obtained with a reduced model size by

using our approach is still greater than the one obtained

by other baseline sparsification methods, though at the ex-

pense of lesser sparsity. The inability to increase preci-

sion in this case can be attributed to the fact that our ap-

proach is greedy, i.e. it estimates the stretch and split factors

for every layer, and not jointly for all layers. This affects

CAMIT-NSAD since the classes are attribute-noun pairs,

and attribute-specific information and noun-specific infor-

mation are encoded at different layers, which need to be

considered together for refinement.

Note that a single metric jointly quantifying both the ac-

curacy increase and the model size reduction is difficult to

formulate. In cases where we increase the accuracy as well

as decrease the model size (SAD), we offer a win-win situ-

ation. However, in cases where we decrease the model size

but cannot increase the accuracy (CAMIT-NSAD), we be-

lieve that the model choice depends on user’s requirements,

and our method provides an additional and plausibly a use-

ful alternative for the user, and can also complement the

other approaches. One can obtain an architecture using our

approach, and then apply a sparsification technique like [12]

in case the user’s application demands maximum sparsity,

and not that good a precision.

5. Conclusion

We have introduced a novel strategy that alters the archi-

tecture of a given CNN for a specified dataset for effecting

a possible increase in original accuracy and reduction of pa-

rameters. Evaluation on two challenging datasets shows its

utility over relevant baselines.
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