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Abstract

Recent approaches in depth-based human activity anal-

ysis achieved outstanding performance and proved the ef-

fectiveness of 3D representation for classification of ac-

tion classes. Currently available depth-based and RGB+D-

based action recognition benchmarks have a number of

limitations, including the lack of training samples, distinct

class labels, camera views and variety of subjects. In this

paper we introduce a large-scale dataset for RGB+D hu-

man action recognition with more than 56 thousand video

samples and 4 million frames, collected from 40 distinct

subjects. Our dataset contains 60 different action classes

including daily, mutual, and health-related actions. In ad-

dition, we propose a new recurrent neural network struc-

ture to model the long-term temporal correlation of the fea-

tures for each body part, and utilize them for better action

classification. Experimental results show the advantages of

applying deep learning methods over state-of-the-art hand-

crafted features on the suggested cross-subject and cross-

view evaluation criteria for our dataset. The introduction of

this large scale dataset will enable the community to apply,

develop and adapt various data-hungry learning techniques

for the task of depth-based and RGB+D-based human ac-

tivity analysis.

1. Introduction

Recent development of depth sensors enabled us to ob-

tain effective 3D structures of the scenes and objects [13].

This empowers the vision solutions to move one impor-

tant step towards 3D vision, e.g. 3D object recognition, 3D

scene understanding, and 3D action recognition [1].

Unlike the RGB-based counterpart, 3D video analysis

suffers from the lack of large-sized benchmark datasets.

Yet there are no any sources of publicly shared 3D videos

such as YouTube to supply “in-the-wild” samples. This

limits our ability to build large-sized benchmarks to eval-
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uate and compare the strengths of different methods, espe-

cially the recent data-hungry techniques like deep learning

approaches. To the best of our knowledge, all the current

3D action recognition benchmarks have limitations in vari-

ous aspects.

First is the small number of subjects and very narrow

range of performers’ ages, which makes the intra-class vari-

ation of the actions very limited. The constitution of hu-

man activities depends on the age, gender, culture and even

physical conditions of the subjects. Therefore, variation of

human subjects is crucial for an action recognition bench-

mark.

Second factor is the number of the action classes. When

only a very small number of classes are available, each ac-

tion class can be easily distinguishable by finding a simple

motion pattern or even the appearance of an interacted ob-

ject. But when the number of classes grows, the motion pat-

terns and interacting objects will be shared between classes

and the classification task will be more challenging.

Third is the highly restricted camera views. For most

of the datasets, all the samples are captured from a front

view with a fixed camera viewpoint. For some others, views

are bounded to fixed front and side views, using multiple

cameras at the same time.

Finally and most importantly, the highly limited num-

ber of video samples prevents us from applying the most

advanced data-driven learning methods to this problem. Al-

though some attempts have been done [9, 42], they suffered

from overfitting and had to scale down the size of learning

parameters; as a result, they clearly need many more sam-

ples to generalize and perform better on testing data.

To overcome these limitations, we develop a new large-

scale benchmark dataset for 3D human activity analysis.

The proposed dataset consists of 56, 880 RGB+D video

samples, captured from 40 different human subjects, using

Microsoft Kinect v2. We have collected RGB videos, depth

sequences, skeleton data (3D locations of 25 major body

joints), and infrared frames. Samples are captured in 80

distinct camera viewpoints. The age range of the subjects in

our dataset is from 10 to 35 years which brings more realis-
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Datasets Samples Classes Subjects Views Sensor Modalities Year

MSR-Action3D [19] 567 20 10 1 N/A D+3DJoints 2010

CAD-60 [34] 60 12 4 - Kinect v1 RGB+D+3DJoints 2011

RGBD-HuDaAct [23] 1189 13 30 1 Kinect v1 RGB+D 2011

MSRDailyActivity3D [38] 320 16 10 1 Kinect v1 RGB+D+3DJoints 2012

Act42 [6] 6844 14 24 4 Kinect v1 RGB+D 2012

CAD-120 [18] 120 10+10 4 - Kinect v1 RGB+D+3DJoints 2013

3D Action Pairs [25] 360 12 10 1 Kinect v1 RGB+D+3DJoints 2013

Multiview 3D Event [43] 3815 8 8 3 Kinect v1 RGB+D+3DJoints 2013

Online RGB+D Action [46] 336 7 24 1 Kinect v1 RGB+D+3DJoints 2014

Northwestern-UCLA [40] 1475 10 10 3 Kinect v1 RGB+D+3DJoints 2014

UWA3D Multiview [28] ∼900 30 10 1 Kinect v1 RGB+D+3DJoints 2014

Office Activity [41] 1180 20 10 3 Kinect v1 RGB+D 2014

UTD-MHAD [4] 861 27 8 1 Kinect v1+WIS RGB+D+3DJoints+ID 2015

UWA3D Multiview II [26] 1075 30 10 5 Kinect v1 RGB+D+3DJoints 2015

NTU RGB+D 56880 60 40 80 Kinect v2 RGB+D+IR+3DJoints 2016

Table 1. Comparison between NTU RGB+D dataset and some of the other publicly available datasets for 3D action recognition. Our

dataset provides many more samples, action classes, human subjects, and camera views in comparison with other available datasets for

RGB+D action recogniton.

tic variation to the quality of actions. Although our dataset

is limited to indoor scenes, due to the operational limitation

of the acquisition sensor, we provide the ambiance incon-

stancy by capturing in various background conditions. This

large amount of variation in subjects and views makes it

possible to have more accurate cross-subject and cross-view

evaluations for various 3D-based action analysis methods.

The proposed dataset can help the community to move

steps forward in 3D human activity analysis and makes it

possible to apply data-hungry methods such as deep learn-

ing techniques for this task.

As another contribution, inspired by the physical charac-

teristics of human body motion, we propose a novel part-

aware extension of the long short-term memory (LSTM)

model [14]. Human actions can be interpreted as interac-

tions of different parts of the body. In this way, the joints of

each body part always move together and the combination

of their 3D trajectories form more complex motion patterns.

By splitting the memory cell of the LSTM into part-based

sub-cells, the recurrent network will learn the long-term pat-

terns specifically for each body part and the output of the

unit will be learned from the combination of all the sub-

cells.

Our experimental results on the proposed dataset shows

the clear advantages of data-driven learning methods over

state-of-the-art hand-crafted features.

The rest of this paper is organized as follows: Section

2 explores the current 3D-based human action recognition

methods and benchmarks. Section 3 introduces the pro-

posed dataset, its structure, and defined evaluation crite-

ria. Section 4 presents our new part-aware long short-term

memory network for action analysis in a recurrent neural

network fashion. Section 5 shows the experimental evalua-

tions of state-of-the-art hand-crafted features alongside the

proposed recurrent learning method on our benchmark, and

section 6 concludes the paper.

2. Related work

In this section we briefly review publicly available 3D

activity analysis benchmark datasets and recent methods in

this domain. Here we introduce a limited number of the

most famous ones. For a more extensive list of current 3D

activity analysis datasets and methods, readers are referred

to these survey papers [47, 1, 5, 12, 21, 45, 3].

2.1. 3D activity analysis datasets

After the release of Microsoft Kinect [48], several

datasets are collected by different groups to perform re-

search on 3D action recognition and to evaluate different

methods in this field.

MSR-Action3D dataset [19] was one of the earliest ones

which opened up the research in depth-based action analy-

sis. The samples of this dataset were limited to depth se-

quences of gaming actions e.g. forward punch, side-boxing,

forward kick, side kick, tennis swing, tennis serve, golf

swing, etc. Later the body joint data was added to the

dataset. Joint information includes the 3D locations of 20

different body joints in each frame. A decent number of

methods are evaluated on this benchmark and recent ones

reported close to saturation accuracies [22, 20, 32].

CAD-60 [34] and CAD-120 [18] contain RGB, depth,

and skeleton data of human actions. The special character-
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istic of these datasets is the variety of camera views. Unlike

most of the other datasets, camera is not bound to front-

view or side-views. However, the limited number of video

samples (60 and 120) is the downside of them.

RGBD-HuDaAct [23] was one of the largest datasets. It

contains RGB and depth sequences of 1189 videos of 12

human daily actions (plus one background class), with high

variation in time lengths. The special characteristic of this

dataset was the synced and aligned RGB and depth channels

which enabled local multimodal analysis of RBGD signals1.

MSR-DailyActivity [38] was among the most challeng-

ing benchmarks in this field. It contains 320 samples of 16

daily activities with higher intra-class variation. Small num-

ber of samples and the fixed viewpoint of the camera are the

limitations of this dataset. Recently reported results on this

dataset also achieved very high accuracies [20, 15, 22, 31].

3D Action Pairs [25] was proposed to provide multiple

pairs of action classes. Each pair contains very closely re-

lated actions with differences along temporal axis e.g. pick

up/put down a box, push/pull a chair, wear/take off a hat,

etc. State-of-the-art methods [17, 32, 31] achieved perfect

accuracy on this benchmark.

Multiview 3D event [43] and Northwestern-UCLA [40]

datasets used more than one Kincect cameras at the same

time to collect multi-view representations of the same ac-

tion, and scale up the number of samples.

It is worth mentioning, there are more than 40 datasets

specifically for 3D human action recognition [47]. Al-

though each of them provided important challenges of hu-

man activity analysis, they have limitations in some aspects.

Table 1 shows the comparison between some of the cur-

rent datasets with our large-scale RGB+D action recogni-

tion dataset.

To summarize the advantages of our dataset over the ex-

isting ones, NTU RGB+D has: 1- many more action classes,

2- many more samples for each action class, 3- much more

intra-class variations (poses, environmental conditions, in-

teracted objects, age of actors, ...), 4- more camera views,

5- more camera-to-subject distances, and 6- used Kinect v.2

which provides more accurate depth-maps and 3D joints,

especially in a multi-camera setup compared to the previ-

ous version of Kinect.

2.2. 3D action recognition methods

After the introduction of first few benchmarks, a decent

number of methods were proposed and evaluated on them.

Oreifej et al. [25] calculated the four-dimensional nor-

mals (X-Y-depth-time) from depth sequences and accu-

mulates them on spatio-temporal cubes as quantized his-

1 We emphasize the difference between RGBD and RGB+D terms. We

suggest to use RGBD when the two modalities are aligned pixel-wise, and

RGB+D when the resolutions of the two are different and frames are not

aligned.

tograms over 120 vertices of a regular polychoron. The

work of [26] proposed histograms of oriented principle

components of depth cloud points, in order to extract robust

features against viewpoint variations. Lu et al. [20] applied

τ test based binary range-sample features on depth maps

and achieved robust representation against noise, scaling,

camera views, and background clutter. Yang and Tian [44]

proposed supernormal vectors as aggregated dictionary-

based codewords of four-dimensional normals over space-

time grids.

To have a view-invariant representation of the actions,

features can be extracted from the 3D body joint positions

which are available for each frame. Evangelidis et al. [10]

divided the body into part-based joint quadruples and en-

codes the configuration of each part with a succinct 6D

feature vector, so called skeletal quads. To aggregate the

skeletal quads, they applied Fisher vectors and classified the

samples by a linear SVM. In [37] different skeleton config-

urations were represented as points on a Lie group. Actions

as time-series of skeletal configurations, were encoded as

curves on this manifold. The work of [22] utilized group

sparsity based class-specific dictionary coding with geomet-

ric constraints to extract skeleton-based features. Rahmani

and Mian [29] introduced a nonlinear knowledge transfer

model to transform different views of human actions to a

canonical view. To apply ConvNet-based learning to this

domain, [30] used synthetically generated data and fitted

them to real mocap data. Their learning method was able to

recognize actions from novel poses and viewpoints.

In most of 3D action recognition scenarios, there are

more than one modality of information and combining them

helps to improve the classification accuracy. Ohn-Bar and

Trivedi [24] combined second order joint-angle similarity

representations of skeletons with a modified two step HOG

feature on spatio-temporal depth maps to build global rep-

resentation of each video sample and utilized a linear SVM

to classify the actions. Wang et al. [39], combined Fourier

temporal pyramids of skeletal information with local occu-

pancy pattern features extracted from depth maps and ap-

plied a data mining framework to discover the most dis-

criminative combinations of body joints. A structured spar-

sity based multimodal feature fusion technique was intro-

duced by [33] for action recognition in RGB+D domain. In

[27] random decision forests were utilized for learning and

feature pruning over a combination of depth and skeleton-

based features. The work of [32] proposed hierarchical

mixed norms to fuse different features and select most in-

formative body parts in a joint learning framework. Hu et

al. [15] proposed dynamic skeletons as Fourier temporal

pyramids of spline-based interpolated skeleton points and

their gradients, and HOG-based dynamic color and depth

patterns to be used in a RGB+D joint-learning model for

action classification.
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Figure 1. Configuration of 25 body joints in our dataset. The la-

bels of the joints are: 1-base of the spine 2-middle of the spine

3-neck 4-head 5-left shoulder 6-left elbow 7-left wrist 8-

left hand 9-right shoulder 10-right elbow 11-right wrist 12-

right hand 13-left hip 14-left knee 15-left ankle 16-left foot 17-

right hip 18-right knee 19-right ankle 20-right foot 21-spine 22-

tip of the left hand 23-left thumb 24-tip of the right hand 25-

right thumb

RNN based 3D action recognition: The applications of

recurrent neural networks for 3D human action recognition

were explored very recently [36, 9, 49].

Differential RNN [36] added a new gating mechanism to

the traditional LSTM to extract the derivatives of internal

state (DoS). The derived DoS was fed to the LSTM gates to

learn salient dynamic patterns in 3D skeleton data.

HBRNN-L [9] proposed a multilayer RNN framework

for action recognition on a hierarchy of skeleton-based in-

puts. At the first layer, each subnetwork received the inputs

from one body part. On next layers, the combined hidden

representation of previous layers were fed as inputs in a hi-

erarchical combination of body parts.

The work of [49] introduced an internal dropout mech-

anism applied to LSTM gates for stronger regularization in

the RNN-based 3D action learning network. To further reg-

ularize the learning, a co-occurrence inducing norm was

added to the network’s cost function which enforced the

learning to discover the groups of co-occurring and discrim-

inative joints for better action recognition.

Different from these, our Part-aware LSTM (section 4)

is a new RNN-based learning framework which has inter-

nal part-based memory sub-cells with a novel gating mech-

anism.

3. The Dataset

This section introduces the details and the evaluation cri-

teria of NTU RGB+D action recognition dataset.2

3.1. The RGB+D Action Dataset

Data Modalities: To collect this dataset, we utilized Mi-

crosoft Kinect v2 sensors. We collected four major data

modalities provided by this sensor: depth maps, 3D joint

information, RGB frames, and IR sequences.

Depth maps are sequences of two dimensional depth val-

ues in millimeters. To maintain all the information, we ap-

plied lossless compression for each individual frame. The

resolution of each depth frame is 512× 424.

Joint information consists of 3-dimensional locations of

25 major body joints for detected and tracked human bodies

in the scene. The corresponding pixels on RGB frames and

depth maps are also provided for each joint and every frame.

The configuration of body joints is illustrated in Figure 1.

RGB videos are recorded in the provided resolution of

1920× 1080.

Infrared sequences are also collected and stored frame

by frame in 512× 424.

Action Classes: We have 60 action classes in total,

which are divided into three major groups: 40 daily ac-

tions (drinking, eating, reading, etc.), 9 health-related ac-

tions (sneezing, staggering, falling down, etc.), and 11 mu-

tual actions (punching, kicking, hugging, etc.).

Subjects: We invited 40 distinct subjects for our data

collection. The ages of the subjects are between 10 and 35.

Figure 4 shows the variety of the subjects in age, gender,

and height. Each subject is assigned a consistent ID number

over the entire dataset.

Views: We used three cameras at the same time to

capture three different horizontal views from the same ac-

tion. For each setup, the three cameras were located at

the same height but from three different horizontal angles:

−45◦, 0◦,+45◦. Each subject was asked to perform each

action twice, once towards the left camera and once towards

the right camera. In this way, we capture two front views,

one left side view, one right side view, one left side 45 de-

grees view, and one right side 45 degrees view. The three

cameras are assigned consistent camera numbers. Camera 1

always observes the 45 degrees views, while camera 2 and

3 observe front and side views.

To further increase the camera views, on each setup we

changed the height and distances of the cameras to the sub-

jects, as reported in Table 2. All the camera and setup num-

bers are provided for each video sample.

2http://rose1.ntu.edu.sg/datasets/actionrecognition.asp
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Setup Height Distance Setup Height Distance

No. (m) (m) No. (m) (m)

1 1.7 3.5 2 1.7 2.5

3 1.4 2.5 4 1.2 3.0

5 1.2 3.0 6 0.8 3.5

7 0.5 4.5 8 1.4 3.5

9 0.8 2.0 10 1.8 3.0

11 1.9 3.0 12 2.0 3.0

13 2.1 3.0 14 2.2 3.0

15 2.3 3.5 16 2.7 3.5

17 2.5 3.0

Table 2. Height and distance of the three cameras for each collec-

tion setup. All height and distance values are in meters.

3.2. Benchmark Evaluations

To have standard evaluations for all the reported results

on this benchmark, we define precise criteria for two types

of action classification evaluation, as described in this sec-

tion. For each of these two, we report the classification ac-

curacy in percentage.

3.2.1 Cross-Subject Evaluation

In cross-subject evaluation, we split the 40 subjects into

training and testing groups. Each group consists of 20 sub-

jects. For this evaluation, the training and testing sets have

40, 320 and 16, 560 samples, respectively. The IDs of train-

ing subjects in this evaluation are: 1, 2, 4, 5, 8, 9, 13, 14, 15,

16, 17, 18, 19, 25, 27, 28, 31, 34, 35, 38; remaining subjects

are reserved for testing.

3.2.2 Cross-View Evaluation

For cross-view evaluation, we pick all the samples of cam-

era 1 for testing and samples of cameras 2 and 3 for training.

In other words, the training set consists of front and two side

views of the actions, while testing set includes left and right

45 degree views of the action performances. For this evalu-

ation, the training and testing sets have 37, 920 and 18, 960
samples, respectively.

4. Part-Aware LSTM Network

In this section, we introduce a new data-driven learning

method to model the human actions using our collected 3D

action sequences.

Human actions can be interpreted as time series of body

configurations. These body configurations can be effec-

tively and succinctly represented by the 3D locations of ma-

jor joints of the body. In this fashion, each video sample can

be modeled as a sequential representation of configurations.

Recurrent Neural Networks (RNNs) and Long Short-

Term Memory Networks (LSTMs) [14] have been shown

to be among the most successful deep learning models to

encode and learn sequential data in various applications

[35, 8, 2, 16].

In this section, we introduce the traditional recurrent

neural networks and then propose our part-aware LSTM

model.

4.1. Traditional RNN and LSTM

A recurrent neural network transforms an input sequence

(X) to another sequence (Y) by updating its internal state

representation (ht) at each time step (t) as a linear func-

tion of the last step’s state and the input at the current step,

followed by a nonlinear scaling function. Mathematically:

ht = σ

(

W

(

xt

ht−1

))

(1)

yt = σ
(

Vht

)

(2)

where t ∈ {1, .., T} represents time steps, and σ ∈
{Sigm, Tanh} is a nonlinear scaling function.

Layers of RNNs can be stacked to build a deep recurrent

network:

hl
t = σ

(

Wl

(

hl−1

t

hl
t−1

))

(3)

h0

t := xt (4)

yt = σ
(

VhL
t

)

(5)

where l ∈ {1, ..., L} represents layers.

Traditional RNNs have limited abilities to keep long-

term representation of the sequences and were unable to

discover relations among long-ranges of inputs. To allevi-

ate this drawback, Long Short-Term Memory Network [14]

was introduced to keep a long term memory inside each

RNN unit and learn when to remember or forget informa-

tion stored inside its internal memory cell (ct):









i

f

o

g









=









Sigm

Sigm

Sigm

Tanh









(

W

(

xt

ht−1

))

(6)

ct = f ⊙ ct−1 + i⊙ g (7)

ht = o⊙ Tanh(ct) (8)

In this model, i, f, o, and g denote input gate, forget gate,

output gate, and input modulation gate respectively. Opera-

tor ⊙ denotes element-wise multiplication. Figure 2 shows

the schema of this recurrent unit.

The output yt is fed to a softmax layer to transform the

output codes to probability values of class labels. To train

such networks for action recognition, we fix the training

output label for each input sample over time.
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ct

i

g

f

o ht

ht−1

xt

Figure 2. Schema of a long short-term memory (LSTM) unit. o is

the output gate, i is the input gate, g is the input modulation gate,

and f is the forget gate. c is the memory cell to keep the long term

context.

4.2. Proposed Part­Aware LSTM

In human actions, body joints move together in groups.

Each group can be assigned to a major part of the body, and

actions can be interpreted based on the interactions between

body parts or with other objects. Based on this intuition, we

propose a part-aware LSTM human action learning model.

We dub the method P-LSTM.

Instead of keeping a long-term memory of the entire

body’s motion in the cell, we split it to part-based cells. It is

intuitive and more efficient to keep the context of each body

part independently and represent the output of the P-LSTM

unit as a combination of independent body part context in-

formation. In this fashion, each part’s cell has its individual

input, forget, and modulation gates, but the output gate will

be shared among the body parts. In our model, we group

the body joints into five part groups: torso, two hands, and

two legs.

At each frame t, we concatenate the 3D coordinates of

the joints inside each part p ∈ {1, ..., P} and consider them

as the input representation of that part, denoted as x
p
t .

Thusly, the proposed P-LSTM is modeled as:





ip

fp

gp



 =





Sigm

Sigm

Tanh





(

Wp

(

x
p
t

ht−1

))

(9)

c
p
t = fp ⊙ c

p
t−1

+ ip ⊙ gp (10)

o = Sigm











Wo











x1

t

...

xP
t

ht−1





















(11)

ht = o⊙ Tanh







c1t
...

cPt






(12)

A graphical representation of the propsed P-LSTM is il-

lustrated in Figure 3.

The LSTM baseline has full connections between all the

memory cells and all the input features via input modula-

c1t

i1

g1

f1

htht−1

x1

t

cPt

iP

gP

fP

xP
t

o

c t

Figure 3. Illustration of the proposed part-aware long short-term

memory (P-LSTM) unit.

tion gate and the memory cell was supposed to represent

the long-term dynamics of the entire skeleton over time.

This leads to a very large size of training parameters which

are prone to overfitting. We propose to regularize this by

dropping unnecessary links. We divide the entire body’s

dynamics (represented in the memory cell) to the dynamics

of body parts (part-based cells) and learn the final classifier

over their concatenation. Our P-LSTM learns the common

temporal patterns of the parts independently and combines

them in the global level representation for action recogni-

tion.

5. Experiments

In our experiments, we evaluate state-of-the-art depth-

based action recognition methods and compare them with

RNN, LSTM, and the proposed P-LSTM based on the eval-

uation criteria of our dataset.

5.1. Experimental Setup

We use the publicly available implementation of six

depth-based action recognition methods and apply them on

our new dataset benchmark. Among them, HOG2 [24], Su-

per Normal Vector [44], and HON4D [25] extract features

directly from depth maps without using the skeletal infor-

mation. Lie group [37], Skeletal Quads [10], and FTP Dy-

namic Skeletons [15] are skeleton-based methods.

The other evaluated methods are RNN, LSTM, and the

proposed P-LSTM method.

For skeletal representation, we apply a normalization

preprocessing step. The original 3D locations of the body

joints are provided in camera coordinate system. We trans-

late them to the body coordinate system with its origin on

the “middle of the spine” joint (number 2 in Figure 1), fol-
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lowed by a 3D rotation to fix the X axis parallel to the 3D

vector from “right shoulder” to “left shoulder”, and Y axis

towards the 3D vector from “spine base” to “spine”. The

Z axis is fixed as the new X × Y . In the last step of nor-

malization, we scale all the 3D points based on the distance

between “spine base” and “spine” joints.

In the cases of having more than one body in the scene,

we transform all of them with regard to the main actor’s

skeleton. To choose the main actor among the available

skeletons, we pick the one with the highest amount of 3D

body motion.

Kinect’s body tracker is prone to detecting some objects

e.g. seats or tables as bodies. To filter out these noisy de-

tections, for each tracked skeleton we calculate the spread

of the joint locations towards image axis and filtered out the

ones whose X spread were more than 0.8 of their Y spread.

For our recurrent model evaluation, we reserve about five

percent of the training data as validation set. The networks

are trained on a large number of iterations and we pick the

network with the least validation error among all the itera-

tions and report its performance on testing data.

For each video sample at each training iteration, we split

the video to T = 8 equal sized temporal segments and ran-

domly pick one frame from each segment to feed the skele-

tal information of that frame as input to the recurrent lean-

ing models in t ∈ {1, ..., T} time steps.

For the baseline methods which use SVM as their classi-

fier, to be able to manage the large scale of the data, we use

Libliner SVM toolbox [11].

Our RNN, LSTM, and P-LSTM implementations are

done on the Torch toolbox platform [7]. We use a Nvidia

Tesla K40 GPU to run our experiments.

5.2. Experimental Evaluations

The results of our evaluations of the above-mentioned

methods are reported in Table 3. First three rows show

the accuracies of the evaluated depth-map features. They

perform better in cross-subject evaluation compared to the

cross-view one. The reason for this difference is that in the

cross-view scenario, the depth appearance of the actions are

different and these methods are more prone to learning the

appearances or view-dependent motion patterns.

Skeletal-based features (Lie group [37], Skeletal Quads

[10], and FTP Dynamic Skeletons [15]), perform better with

a notable gap on both settings. They are stronger to gener-

alize between the views because the 3D skeletal representa-

tion is view-invariant in essence, but it’s prone to errors of

the body tracker.

As the most relevant baseline, we implemented

HBRNN-L [9] which achieved competitive results to the

best hand-crafted methods. Although [9] reported the in-

effectiveness of dropout on their experiments, we found it

effective on all of our evaluations (including their method).

Cross Cross

Method Subject View

Accuracy Accuracy

HOG2 [24] 32.24% 22.27%

Super Normal Vector [44] 31.82% 13.61%

HON4D [25] 30.56% 7.26%

Lie Group [37] 50.08% 52.76%

Skeletal Quads [10] 38.62% 41.36%

FTP Dynamic Skeletons [15] 60.23% 65.22%

HBRNN-L [9] 59.07% 63.97%

1 Layer RNN 56.02% 60.24%

2 Layer RNN 56.29% 64.09%

1 Layer LSTM 59.14% 66.81%

2 Layer LSTM 60.69% 67.29%

1 Layer P-LSTM 62.05% 69.40%

2 Layer P-LSTM 62.93% 70.27%

Table 3. The results of the two evaluation settings of our bench-

mark using different methods. First three rows are depth-map

based baseline methods. Rows 4, 5, and 6 are three skeleton-

based baseline methods. Following rows report the performance

of RNN, LSTM and the proposed P-LSTM model. Our P-LSTM

learning model outperforms other methods on both of the evalua-

tion settings.

This shows they have their model was prone to overfitting

due to the lack of training data and proves the demand for

a bigger dataset and approves our motivation for proposing

NTU RGB+D dataset.

At the next step, we evaluate the discussed recurrent net-

works on this benchmark. Although RNN has the limi-

tation in discovering long-term interdependency of inputs,

they perform competitively with the hand-crafted methods.

Stacking one more RNN layer improves the overall perfor-

mance of the network, especially in cross-view scenario.

By utilizing long-term context in LSTM, the perfor-

mances are improved significantly. LSTM’s performance

improves slightly by stacking one more layer.

At the last step, we evaluate the proposed P-LSTM

model. By isolating the context memory of each body part

and training the classifier based on their combination, we

model a new way of regularization in the learning process

of LSTM parameters. It utilizes the high intra-part and low

inter-part correlation of input features to improve the learn-

ing process of the LSTM network. As shown in Table 3 P-

LSTM outperforms all other methods by achieving 62.93%

in cross-subject, and 70.27% in cross-view evaluations.

6. Conclusion

A large-scale RGB+D action recognition dataset is in-

troduced in this paper. Our dataset includes 56880 video

samples collected from 60 action classes in highly variant
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Figure 4. Sample frames of the NTU RGB+D dataset. First four rows show the variety in human subjects and camera views. Fifth row

depicts the intra-class variation of the performances. The last row illustrates RGB, RGB+joints, depth, depth+joints, and IR modalities of

a sample frame.

camera settings. Compared to the current datasets for this

task, our dataset is larger in orders and contains much more

variety in different aspects.

The large scale of the collected data enables us to apply

data-driven learning methods like Long Short-Term Mem-

ory networks in this problem and achieve better perfor-

mance accuracies compared to hand-crafted features.

We also propose a Part-aware LSTM model to utilize the

physical structure of the human body to further improve the

performance of the LSTM learning framework.

The provided experimental results show the availability

of large-scale data enables the data-driven learning frame-

works to outperform hand-crafted features. They also show

the effectiveness of the proposed P-LSTM model over tra-

ditional recurrent models.
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