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Abstract

Given a collection of “in-the-wild” face images captured

under a variety of unknown pose, expression, and illumi-

nation conditions, this paper presents a method for recon-

structing a 3D face surface model of an individual along

with albedo information. Motivated by the success of re-

cent face reconstruction techniques on large photo collec-

tions, we extend prior work to adapt to low quality photo

collections with fewer images. We achieve this by fitting a

3D Morphable Model to form a personalized template and

developing a novel photometric stereo formulation, under

a coarse-to-fine scheme. Superior experimental results are

reported on synthetic and real-world photo collections.

1. Introduction

Computer vision has had much interest in the long-

standing problem of 3D surface reconstruction, expanding

from constrained desktop objects to in-the-wild images of

large outdoor objects [1]. Face reconstruction [23, 28], the

process of creating a detailed 3D model of a person’s face,

is important with applications in face recognition, video

editing, avatar puppeteering, and more. For instance, accu-

rate face models have been shown to significantly improve

face recognition by allowing the rendering of a frontal-view

face image with neutral expression [43], thereby suppress-

ing intra-person variability. The face presents additional

challenges than general surface reconstruction due to non-

rigid deformations caused by expression variation.

For some, usually graphics, applications a highly de-

tailed model may be reconstructed in a constrained scenario

using depth scanners [26, 12], calibrated stereo images [6],

stereo videos [7, 34] or even high-definition monocular

videos [13, 9]. However, for other applications such as bio-

metrics, it is important to work on unconstrained photos like

those typical of online image searches or from surveillance

cameras. These photo collections present additional chal-

lenges since no temporal information may be used, images

are of low resolution and quality, and occlusions may exist.

Photometric stereo-based reconstruction methods have

proven effective for unconstrained photo collections.

Figure 1. The proposed system reconstructs a detailed 3D face

model of the individual, adapting to the number and quality of

photos provided.

Beginning with Kemelmacher-Shlizerman and Seitz’s

work [23] which reconstructs a 2.5D depth map and ex-

tended by Roth et al. [28] to a full 3D mesh, photometric

stereo-based approaches jointly estimate the surface nor-

mals, albedo, lighting conditions, and pose angles. Both

techniques aim to identify a single representative face from

the entire collection, which is challenging given the expres-

sion variation among images. By selecting a different con-

sistent subset of images for each vertex on the face, the typ-

ical expression of the individual is used to drive the face

reconstruction. However, there are still major limitations in

photometric stereo-based reconstruction. One is that they

require a sufficiently large collection of photos fo recon-

struction. Theoretically, only four images are necessary if

they are in perfect correspondence, but in practice the ap-

proaches use over one hundred images. Another is that the

subset selection is binary and only makes use of ∼10% of

the images for each vertex on the face.

Motivated by the success of the state of the art, we pro-

pose a novel adaptive photometric stereo-based reconstruc-

tion method from an unconstrained photo collection. Here,

“adaptive” refers to the fact that our algorithm can handle

a much wider range of photo collections, in terms of the

number, resolution, and ethnicity of face images. Specifi-

cally, given a collection of unconstrained face images, we

automatically detect faces and estimate 2D landmarks [37].

We then fit a 3D Morphable Model (3DMM) jointly to the
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collection such that the projection of its annotated 3D land-

marks are aligned with the 2D estimated landmarks [43] to

create a personalized template. Each image has its pose es-

timated and is back-projected onto the personalized tem-

plate to establish correspondence, and a dependability of

each vertex is estimated to weight its influence in the re-

construction. The correspondence is used to jointly esti-

mate the albedo, lighting conditions, and surface normals

while the template is used to regularize the estimation. The

template is then deformed to match the estimated surface

normals and produce a reconstructed surface. A coarse-to-

fine process is employed to first capture the generic shape

and then fill in the details. To demonstrate the capabilities

of the proposed approach, quantitative and qualitative ex-

periments are performed on synthetic and in-the-wild photo

collections, with comparison to the state of the art.

In summary, this paper makes three main contributions.

⋄ A 3D Morphable Model is fit jointly to 2D landmarks

for template personalization. Prior work used either a fixed

template or landmark-based deformation that does not work

well for small collections, with no prior face distribution.

⋄ Photometric stereo is solved in a joint Lambertian im-

age rendering formulation, with an adaptive template reg-

ularization that allows for graceful degradation to a small

number of images. A dependability measure is proposed to

weight the influence of images for face parts that are more

confident to produce an accurate reconstruction.

⋄ A coarse-to-fine reconstruction scheme is proposed to

produce the similar quality reconstruction, with substan-

tially lower computational cost.

2. Prior Work

We present a brief summary of relevant prior work on

photometric stereo and face reconstruction.

Photometric stereo Classic photometric stereo estimates

the surface normals of an object from a fixed camera ori-

entation based on different light conditions. Photometric

stereo was first proposed with knowledge of the light condi-

tions [35] and even current methods still use this approach

for cooperative subjects [16, 14]. Later it was discovered

that even without knowledge of the light source photometric

stereo can take advantage of the low rank nature of spher-

ical harmonics [15, 40, 24, 4, 5, 36]. Most recent works

can take multiple camera positions and put images into cor-

respondence using Structure from Motion and even esti-

mate arbitrary non-linear camera response maps [29]. Most

photometric stereo techniques reconstruct from a common

viewpoint and produce a 2.5D face surface which can only

take advantage of frontal images. Photometric stereo usu-

ally uses SVD to find the low rank spherical harmonics, but

then has to resolve an ambiguity using integrability or prior

knowledge of the object. Such approaches require a suf-

ficient number of images to obtain an accurate reconstruc-

tion, especially for non-rigid objects like the face where ex-

pression variation can disturb the low rank assumption. We

propose using a personalized template to solve photomet-

ric stereo without using SVD, allowing the reconstruction

to adapt to a small number of images.

Face reconstruction Face reconstruction creates a 3D face

model from a set of input such as image(s), video, or depth

data. It is a difficult problem with much recent interest

and a variety of applications. In the biometrics community,

pose, expression, and illumination are the main challenges

of face recognition and all may be improved with accurate

person-specific face models [43, 25, 41]. In graphics, high

fidelity models with skeletal structures are useful for ani-

mations, puppeteering, and post processing videos. Face re-

construction began with cooperative subjects and expensive

hardware where range scanners, multi-camera stereo [6, 7],

or photometric stereo with known light arrays [16] can

produce highly accurate models. There is recent interest

from the graphics community in face reconstruction from

videos [32, 13, 10, 30, 19, 9, 17] and even from RGB-D

sequences [33]. But none of these techniques are directly

comparable with ours since videos or special setups provide

more information than unconstrained photo collections.

There are a series of recent works on reconstructing faces

from photo collections [23, 28, 27]. The seminal work [23]

creates a 2.5D model, locally consistent with the photo col-

lection. It is extended in a few different directions, one

in [38] where they use the surface normals from frontal

faces to improve the fitting of a 3DMM, two in [22, 31]

where the technique is used to generate a 3DMM, and three

in [28] where the technique is expanded to handle pose vari-

ation and reconstructs a 3D model. Our work continues

by improving the 3D reconstruction technique to adapt to

lower-quality photo collections with fewer input images.

3. Algorithm

In this section, we present the details of the proposed ap-

proach and describe the motivational differences from prior

art. We describe the basic preprocessing to obtain automatic

landmark alignment. The main algorithm is broken down

into three major steps. 1) Fit the 3DMM template to pro-

duce a coarse person-specific template mesh. 2) Estimate

the surface normals of the individual using a photometric

stereo (PS)-based approach. 3) Reconstruct a detailed sur-

face using the estimated normals. Figure 2 provides an il-

lustrated overview of the algorithm.

3.1. Photo Collection Preprocessing

A photo collection is a set of n images containing the

face of an individual and may be obtained in a variety of

ways, e.g., a Google image search for a celebrity or a per-

sonal photo collection. The first step is to detect and crop

faces from the images. We use the built-in face detection

model from Bob [2] which was trained on various face
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Figure 2. Overview of face reconstruction. Given a photo collection, we apply landmark alignment and use a 3DMM to create a personal-

ized template. Then a coarse-to-fine process alternates between normal estimation and surface reconstruction.

datasets, such as CMU-PIE, that include profile view faces.

The face detector is a cascade of Modified Census Trans-

form (MCT) local binary patterns classifiers. Given the face

bounding box, we convert the image to the intensity chan-

nel and crop outside of the face bounding box in order to

ensure inclusion of the entire face. To estimate 2D land-

marks, we employ the state-of-the-art cascade of regressors

approach [37] to automatically fit 68 landmarks denoted as

W ∈ R
2×68 onto each image.

3.2. Template Personalization

The initial template plays a vital role in the reconstruc-

tion process. Many aspects of the process depend upon

the current template such as establishing correspondence

across the photos, initial normal estimation during photo-

metric recovery, and even Laplacian regularization during

surface reconstruction. A good template should match the

overall metric structure of the individual so that when it is

projected onto photos of different poses, correspondence is

established. Nevertheless, the template needs not contain

fine facial details since those will be fleshed out by photo-

metric normal estimation.

Prior work [28] used a single east Asian face mesh as

a template, and employed landmark-based deformation to

register the generic mesh to the person of interest. This

technique was basically Structure from Motion (SFM) for

the landmarks while the rest of the face was regularized by

the curvature of the template mesh. The resultant template

has two major limitations. One, the template has Asian in-

fluences that could potentially fit poorly to different ethnic-

ities. Two, the SFM technique breaks down when fitting to

a small number of photos with limited pose variations.

In light of these limitations, we propose to use a 3DMM

instead of a single template mesh. The 3DMM is shown to

accurately represent arbitrary face shapes based on a linear

combination of scanned faces. Dense correspondence is es-

tablished among the scans, and then [11] decomposes them

into a set of bases for identity and another for expression.

X = X̄+

199
∑

k=1

X
id
kα

id
k +

29
∑

k=1

X
exp

k αexp

k , (1)

is the 3DMM composed of the mean shape X̄, a set of

identity bases X
id, and a set of expression bases X

exp.

X ∈ R
3×p is the 3D coordinates of p vertices in a trian-

gulated mesh.

Typically, 3DMM fitting aims to minimize the differ-

ence between a rendered image and the observed photo [8],

but recently, Zhu et al. propose an efficient fitting method

based on landmark projection errors [43]. Our method ex-

tends [43] by jointly fitting the 3DMM to all n faces. To

fit the 3DMM to a face image, we assume weak perspec-

tive projection sRX+ t, where s is the scale, R is the first

two rows of a rotation matrix, and t is the translation on the

image plane.

Given the 2D alignment results W, the model parame-

ters are estimated by minimizing the projection error of the

landmarks that are labeled manually once onto the 3DMM,

arg min
s,R,t,αid,αexp

‖W − (sR[X]land + t)‖2F , (2)

where [X]land selects the annotated landmarks from the en-

tire model and ‖ · ‖F is the Frobenius norm. Furthermore,

as the yaw angle increases, the 2D landmark alignment re-

turns points along the contour or silhouette of the face, but

the projected 3D landmarks would be obscured behind the

cheek. [43] proposes a novel landmark marching technique

where the 3D landmarks are moved along the surface to

match the 2D silhouette under the current pose estimate.

We extend this process to jointly fit n faces of the same

person by assuming a common set of identity coefficients
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αid but a unique set of expression αexp
i and pose parameters

per image. The error function then becomes,

arg min
si,Ri,ti,αid,α

exp

i

n
∑

i=1

1

n
‖Wi−

(siRi[X̄+

199
∑

k=1

X
id
kα

id
k +

29
∑

k=1

X
exp

k αexp

ki ]landi + ti)‖
2

F , (3)

where [·]landi is used because different poses of face images

determine varying ranges of landmark marching, i.e., differ-

ent selections of vertices. This minimization is not jointly

convex, but it can be solved by alternating estimation since

it is linear with respect to each variable. Once the param-

eters are learned, we generate a personalized template X
0

using the identity coefficients and the mean of the expres-

sion coefficients.

Model projection Correspondence between images in the

collection is established based on the current template mesh

X
0. Given X

0 and the projection parameters solved per

image during model fitting, we sample the intensity of the

projected location of vertex j in image i and place the inten-

sity into a correspondence matrix F ∈ R
n×p. That is, fij =

Ii(u, v) where Ii is the ith image and 〈u, v〉⊺ = siRixj+ti

is the projected 2D location of vertex j in the image.

3.3. Photometric Normal Estimation

Fitting the 3DMM based on limited landmarks recon-

structs a face with the overall shape of the individual, with-

out the fine facial details, since it has few parameters. Even

a traditional 3DMM is constrained by the span of the face

bases and lacks the representational power to accurately re-

construct arbitrary, unseen faces. To recover these fine de-

tails, we use a photometric stereo-based approach to esti-

mate the normals which in turn drives the reconstruction of

surface details.

In computer graphics, a 3D model, projection model,

texture map, and light sources are combined under a light-

ing model to render images. Computer vision aims to solve

the inverse problem, i.e., inferring the model parameters

from one or multiple images. In either case, simplifying as-

sumptions must be made. For graphics, the assumptions are

because of either limited understanding about reflectance

properties of different surfaces or computational efficiency.

For vision, assumptions or prior knowledge are required to

make the under-constrained inverse problem solvable.

We assume a Lambertian lighting model where the inten-

sity at a projected point is defined by a linear combination

of lighting parameters and the surface normal,

I(u, v) = ρj
(

ka + kd

(

lxnx
j + lyny

j + lznz
j

))

, (4)

where ρj is the surface albedo at vertex j, nx
j , n

y
j , n

z
j

is the unit surface normal at vertex j, ka is the ambi-

ent coefficient, kd is the diffuse coefficient, and lx, ly, lz

(a) (b)
Figure 3. Effect on albedo estimation with (a) and without (b) de-

pendability. Skin should have a consistent albedo, but without de-

pendability the cheek shows ghosting effects from misalignment.

is the unit light source direction. For simplicity, we de-

fine l = 〈ka, kdl
x, kdl

y, kdl
z〉⊺ for the lighting, nj =

〈1, nx
j , n

y
j , n

z
j 〉

⊺ for the normal, and sj = ρjnj for the

shape, so that I(u, v) = l
⊺
sj .

To solve the Lambertian equation, prior work recognized

that 95% of the variation in a face image set is explained by

the first four principal components of F [5]. Thus, singular

value decomposition (SVD) is used to factor F into a light

matrix L
⊺, where each row is the light coefficients of image

i, and S, where each column is the shape coefficients of ver-

tex j. Unfortunately, SVD alone cannot determine the true

lighting and shape matrices since any invertible 4 × 4 ma-

trix A forms a valid solution, F = L
⊺
S = L̃

⊺
A

−1
AS̃. To

resolve this ambiguity the template face is typically used to

constrain A to a numerically stable solution. In our study,

we discover that this SVD approach fails to reconstruct for

small image collections or when too much noise enters the

rank-4 approximation from either extreme expression for

people like Jim Carrey, or inconsistent occlusions such as

long hair from women.

Instead we propose to solve the unknowns in an energy

minimization approach with the following loss function,

argmin
ρj ,li,nj

p
∑

j=1

(

n
∑

i=1

‖fij − ρjl
⊺

inj‖
2 + λn‖nj − n

t
j‖

2

)

,

(5)

where n
t
j is the current surface normal of the template at

vertex j. This function may be solved by initializing nj to

n
t
j and ρj to 1 and then solving in an alternating manner for

lighting, albedo, and normals.

3.3.1 Dependability

Not every part of each image is created equal. Clearly

non-visible parts are not dependable, but even some visi-

ble parts may not help. For example, a low-resolution im-

age will contribute less information than a higher-resolution

one. Parts of faces changed by expression will have differ-

ent surface normals. Faces with inaccurate landmark align-

ment will be out of correspondence. Many different fac-

tors play a role in the dependability of a projected point

within an image. In the end, we found that simply using
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dij = max(cos(c⊺inj), 0) where ci is a unit camera vec-

tor perpendicular to the image plane is a good measure of

dependability. This decreases the weight as a vertex ap-

proaches perpendicular to the camera since it is more sus-

ceptible to small changes in the pose estimation, whereas

a vertex pointing towards the camera is more dependable.

Fig. 3 shows the albedo estimation with and without de-

pendability. We update Eqn. 5 to,

argmin
ρj ,li,nj

p
∑

j=1

(

n
∑

i=1

‖dij(fij − ρjl
⊺

inj)‖
2 +

λn‖nj − n
t
j‖

2

)

. (6)

3.3.2 Lighting and albedo estimation

We begin by initializing nj to the template surface nor-

mal at vertex j and ρj to 1. While keeping the surface

normals fixed, we alternate between solving the light co-

efficients and the surface albedo. We let this converge be-

fore estimating the surface normal, which allows the cur-

rent surface normal to influence which local minimum solu-

tion is found. Solving for albedo is then an overconstrained

least squares solution, i.e., ρj = (d⊺jL
⊺
nj)/(d

⊺

jfj). Simi-

larly, the lighting for an image has the closed form solution

l
⊺

i = (fi ◦ di)/(S ◦ di), where ◦ is the Hadamard or entry-

wise product.

3.3.3 Surface normal estimation

Once the lighting and surface reflectance properties are es-

timated, we finally estimate the surface normals. Similar

to [23], we use a local subset of images to estimate the sur-

face normal at each vertex. The goal of the local selection

is to capture the dominant local expression among the col-

lection, instead of a smoothed average of all expressions; it

also serves to filter occlusions or areas with poorly fit tem-

plates. Given a subset of images B = {i | ‖l⊺isj − fij‖
2 <

ǫn}, we minimize the following energy for each vertex:

argmin
nj

∑

i∈B

‖dij(ρjl
⊺

inj − fij)‖
2 + λn‖nj − n

t
j‖

2. (7)

The regularization helps keep the face close to the initial-

ization. But since the summation is not averaged, as more

photos are added to the collection, the regularization has

less weight and the estimated normals can deviate to match

the observed photometric properties of the collection. In

contrast, when the photo collection is small, the regulariza-

tion term will play a relatively larger weight in determining

the desired surface normal. Thus, this adaptive weighting

handles a diverse photo collection size.

3.4. Surface Reconstruction

Given the surface normals nj that specify the fine de-

tails of the face, we reconstruct a new surface X following

Algorithm 1: Adaptive 3D face reconstruction

Data: Photo collection

Result: 3D face mesh X

// Template personalization

1 estimate landmarks Wi for each image

2 fit the 3DMM via Eq. 3 to generate template X
0

3 remesh to the coarse resolution

4 for resolution ∈ {coarse, medium, fine} do

5 repeat

6 estimate projection si,Ri, ti for each image

7 establish correspondence F via backprojection

8 estimate lighting L and albedo ρ via Eq. 6

9 estimate surface normals N via Eq. 7

10 reconstruct surface X
k+1 via Eq. 8

11 until 1

p
‖Xk+1 −X

k‖2F < τ

12 subdivide surface

the procedure outlined in [28]. We briefly summarize the

procedure, and refer the reader to [28] for full details.

The overall energy for surface reconstruction is com-

posed of three parts,

argmin
X̃

En + λbEb + λlEl. (8)

We define X̃ as a 3p-dim reshaping of X collecting the

x-coordinates followed by y and z, ∆ is the Laplacian

operator, L is its discretization up to a sign, H is the

mean curvature, and Hj is the estimation based on the nor-

mals [28]. Then En = ‖LX̃ − H
k‖2 is the normal en-

ergy derived from the mean curvature formula ∆x = −Hn

and we collect and repeat −Hjnj into a 3p-dim vector H.

Eb = ‖LbX̃ − LbX̃
k‖2 is the boundary energy, required

since the mean curvature formula degenerates along the sur-

face boundary into the geodesic curvature, which cannot

be determined from the photometric normals. We there-

fore seek to maintain the same Laplacian along the bound-

ary with Lb,ij = 1/eij where eij is the edge length con-

necting adjacent boundary vertices i and j. And El =
∑

i ‖siRi[X̃]land + ti − Wi‖
2

F , which uses the landmark

projection error to provide a global constraint on the face,

without which, the integration of the normals can have nu-

meric drift across the surface of the face. Unlike [28] we

do not include a shadow region smoothing since we use the

template normal as a regularizer during normal estimation.

3.5. Adaptive Mesh Resolution

Algorithm 1 describes the order of steps as put together

in the final face reconstruction system. When putting the

steps together, we use a coarse-to-fine scheme to first fit the

overall face shape and later adapt to the details present in

the collection. To begin, we use ReMESH [3] to uniformly

resample the personalized mesh X
0 to a coarse 6, 248 (= p)

vertices. The resampling is done once offline on the mean
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Figure 4. Synthetic data with expression, pose, lighting variation.

shape and is transferred to a personalized mesh by using the

barycentric coordinates of the corresponding triangle. The

algorithm is repeated within each detail level until it con-

verges. After convergence, Loop subdivision [18] is per-

formed to increase the resolution of the mesh, multiplying

the number of vertices by 4. Moving from the coarse to

fine level, we decrease ǫn and λn to increase selectivity of

images used for surface normal estimation and lower tem-

plate normal regularization. This helps the coarse recon-

struction stay smooth and fit the generic structure while al-

lowing the fine reconstruction to capture the details. We

would like to stop the reconstruction automatically after the

coarse or medium level if the photo collection does not con-

tain enough information for detailed reconstruction, since

the fine level may overfit to noise and lead to poor quality

reconstruction. But we have yet to identify a good stopping

criterion so we leave this for future work.

4. Experimental Results

To examine the effectiveness of the proposed approach,

we experiment using synthetic data, personal photo col-

lections with ground truth scans, and Internet images of

celebrities and political figures. For baselines, we compare

against prior photometric stereo-based approaches [28, 23].

Stereo imaging or video-based reconstruction techniques

have access to additional information and are not compared.

Furthermore, because the proposed approach uses a 3DMM

to create the initial personal template, we do not compare

against 3DMM either. Despite only using the landmarks for

3DMM fitting, the proposed approach can theoretically use

any state-of-the-art 3DMM as initialization.

4.1. Experimental Setup

Data Collection We gather the three types of photo collec-

tions. Synthetic images are rendered from subject M001 of

the BU-4DFE database [39] using the provided texture and

selecting random frames from the 6 expression sequences

(Fig. 4). A Lambertian lighting model re-illuminates the

face with light sources randomly sampled from a uniform

distribution in front of the face. Personal photos are used

with ground truth models of the subjects created with a Mi-

nolta VIVID 910 range scanner at VGA resolution captur-

ing 2.5D depth scans accurate to 220 microns. Given frontal

and both 45◦ yaw scans, we stitch them together using Ge-

omagic Studio to create a full 3D model. For Internet im-

ages, we query the Bing image search API with a person’s

Table 1. Error comparison on synthetic data.

Method Neutral 30◦ Yaw Expression

Ours 3.22% 3.82% 4.40%
[28] 6.13% 7.48% 6.59%

Table 2. Error comparison of PC2 with different image numbers.

# Images 1 5 10 20 40

Ours 4.19% 4.07% 4.03% 3.46% 3.18%

[28] - 8.77% 5.40% 4.73% 4.13%

full name. Face clustering is performed with Picasa to filter

out spurious results and locate the subject of interest.

Metrics To quantitatively evaluate the reconstruction per-

formance we compute the average distance between the

ground truth and reconstructed surfaces. The two surfaces

are aligned by Procrustes superimposition of the 3D land-

marks from the internal part of the face. The normalized

vertex error is computed as the distance between a vertex

in the ground truth mesh and the closest vertex in the re-

constructed surface divided by the eye-to-eye distance. We

report the average normalized vertex error.

Parameters The parameters for the algorithm are set as fol-

lows: τ = 0.005, λl = 0.01, λb = 10, λn = [1, 0.1, 0.01],
and ǫn = [0.2, 0.08, 0.08] for coarse, medium, and fine res-

olution respectively.

4.2. Results, Comparisons, and Discussions

Synthetic The synthetic dataset allows us to test the al-

gorithm’s robustness to pose and expression independently.

We generate three different sets of 50 images each: frontal

faces with neutral expression, neutral expression faces with

random yaw angles between ±30◦, and frontal faces with

random expressions. The ground truth model is taken as

the neutral expression and reconstructions are aligned to the

model using manually annotated 3D landmarks around the

eyes, nose, and mouth. Table 1 shows that the proposed ap-

proach outperforms prior work in all scenarios. We see the

proposed algorithm is more robust to pose than expression

variation. Hopefully the improved capability of landmark

alignment for large-pose faces [20, 21, 42] will further im-

prove 3D reconstruction performance.

Personal photo collections To evaluate the reconstruction

empirically on in-the-wild images, we capture two personal

photo collections as well as ground truth 3D models of their

neutral expression. Photo collection 1 (PC1) consists of 39
professional photos taken at a wedding. The proposed ap-

proach has 5.10% error while [28] has 8.31% on this set.

Both results are relatively poor, which we hypothesize is

due to the post processing usually done on professional pho-

tos of this nature, which invalidates the Lambertian assump-

tion. Photo collection 2 (PC2) consists of 40 images cap-

tured on an iPhone by moving around to get different over-

head lights and having the subject make random expressions

and poses. This collection is similar to the popular selfies.
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Ours [28] [23] Ours [28] [23] Ours [28] [23]
Figure 5. Qualitative comparison on celebrities. The proposed approach incorporates more of the sides of the face and neck than [23] while

producing a better depth estimate than [28].

Figure 6(c) shows the resulting reconstruction with differ-

ent numbers of images and photo resolution overlaid with

the reconstruction error to demonstrate how different error

amounts appear. This error measurement does a good job

of capturing the global reconstruction error. We also com-

pare with the prior work [28] for decreasing image numbers

in Table 2. This shows our method has consistently lower

errors, especially with lower numbers of images.

Internet collections A reconstruction may have a very

good fit to the overall structure of the individual, but fail to

capture some of the fine details that help define the person.

For example, missing facial wrinkles will have a very minor

impact on the surface-to-surface error, but can play a large

role in convincing a human that the reconstruction is accu-

rate. We strive not just for a metrically correct reconstruc-

tion, but also for a visually compelling reconstruction. After

all, one major goal of using the photometric normals is to

allow for reconstruction of the details outside of the span of

a traditional 3DMM. We process the same set of celebrities

used in [23] and [28], George Clooney (359 photos), Kevin

Spacey (231), Bill Clinton (330), and Tom Hanks (264).

The resolution of the images is scaled to 500 vertical pixels

to match [28]. Figure 5 presents a side by side compari-

son between the various approaches. Our reconstruction is

able to capture a larger surface area stretching to the neck

and all the way back to the ears, while still capturing the

fine details of the face. Fig. 7 presents more examples us-

ing 25-50 photos demonstrating the ability of our algorithm

to generalize across races and genders. Note the ability to

even reconstruct hairstyles for some people. The contrast

between the personalized template and final reconstruction

shows the limitation of landmark-based 3DMM fitting and

the power of normal-based surface reconstruction.

Efficiency Written in a mixture of C++ and Matlab, the al-

gorithm runs on a commodity PC with an AMD A10-5700
3.40 GHz CPU and 8 GB RAM. The processing time is

O(np + p2) and we report times w.r.t. 100-image collec-

tions. Preprocessing, including face detection, cropping,

and landmark alignment, takes 38 seconds. Template per-

sonalization takes 5 seconds. Photometric normal estima-

tion and surface reconstruction take 6, 22, and 94 seconds

for each iteration of the coarse, medium, and fine resolution,

respectively. A typical reconstruction of George Clooney

takes 5 coarse iterations, 2 medium, and 1 fine for a total

time of 3.5 minutes.

Number of images One critique of photometric stereo-

based reconstructions in the past is their dependence on a

large number of images, typically several hundreds, which

is too many for most applications. Figure 6(a) shows the re-

construction results for George Clooney with varied image

numbers and resolutions. When only a few images exist,

the algorithm relies more on the template face to regular-
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Figure 6. (a) George Clooney with different quality images. (b) Reconstruction without coarse-to-fine process. (b) Personal collection with

different quality images. Reconstruction errors of our method are overlaid on each face pair.

Figure 7. Reconstruction results for Jinping Xi, Robin Williams

and Sonya Sotomayor. From Left to right, personalized template,

final reconstruction, and estimated albedo rendered on the surface.

ize the photometric normals. This allows the reconstruction

to gracefully degrade; as more images are available, the al-

gorithm uses the additional data to create a more accurate

and detailed reconstruction. Even with low resolution it is

able to capture wrinkles on the forehead since the sampling

across multiple images acts as super-resolution.

We also present the reconstruction errors for PC2 with

different numbers of images in Figure 6(c). Note that the

proposed approach can reconstruct a reasonable appearing

face with only a few images and the error decreases as more

images are used. The minimal number of images for PC2 is

less than Fig. 6(a) since personal photo collections tend to

be higher quality.

Coarse to Fine The coarse-to-fine scheme benefits both ef-

ficiency and quality. If the coarse-to-fine scheme is not used

and instead the reconstruction starts at the fine resolution, it

takes 4 iterations to converge for a total time of 7 minutes or

double the time. Also, Fig. 6(b) shows the resultant recon-

structions which are similar for large amounts of images,

but noisy for small collections since the coarse step allows

for more template regularization.

5. Conclusions

We presented a method for reconstructing a 3D face

model from an unconstrained 2D photo collection which

adapts to lower quality and fewer images. By using a

3DMM to create a personalized template which adaptively

influences reconstruction in a coarse-to-fine scheme, we can

efficiently create a more accurate model than prior work as

demonstrated by experiments on synthetic and real-world

data. There are numerous paths for future work, e.g., fusing

3DMM and photometric stereo-based reconstructions so it

can gracefully degrade down to a single image, and auto-

matically identifying the detail level of reconstruction pos-

sible from an arbitrary photo collection.
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