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Abstract

While current approaches to action recognition on pre-

segmented video clips already achieve high accuracies,

temporal action detection is still far from comparably good

results. Automatically locating and classifying the relevant

action segments in videos of varying lengths proves to be a

challenging task. We propose a novel method for temporal

action detection including statistical length and language

modeling to represent temporal and contextual structure.

Our approach aims at globally optimizing the joint prob-

ability of three components, a length and language model

and a discriminative action model, without making inter-

mediate decisions. The problem of finding the most likely

action sequence and the corresponding segment boundaries

in an exponentially large search space is addressed by dy-

namic programming. We provide an extensive evaluation of

each model component on Thumos 14, a large action de-

tection dataset, and report state-of-the-art results on three

datasets.

1. Introduction

Action recognition is a major research topic in computer

vision since decades due to its applications in various fields

like video understanding, human-computer-interaction, or

surveillance. In recent years, there has been a major

progress on classifying pre-segmented video clips. On chal-

lenging large-scale datasets like UCF-101 [23], current ap-

proaches for video-clip classification already achieve accu-

racies of eighty percent and more [28, 10, 22]. However,

when the videos are not pre-segmented and the task requires

the temporal segmentation of the activities in a video, as it

is required for the temporal action detection task of Thumos

14 [8], current approaches struggle to achieve good results.

One reason is that an action class can be arbitrarily long,

e.g., a background class, but it can also take only a few

frames in a video. Without a pre-segmentation of the video,

the duration of the action classes needs to be well mod-

eled. Another difference between video clip classification

and temporal action detection is the relevance of the con-

text. While video clips can already be well recognized by

using only spatial [22] or context information [10], the dif-

ferences between the frames where an activity occurs and

the rest of the video are more subtle. For this task, the con-

text of the temporal change is more important than the spa-

tial context.

The most successful methods for temporal action detec-

tion on a dataset like Thumos 14 [8] follow a two step ap-

proach. They first extract segments from the video using a

sliding temporal window and classify each segment in a sec-

ond step. The final segmentation is then achieved by greed-

ily selecting the segments with the highest scores [17, 19].

In this paper, we present an approach to temporal action

detection that avoids a greedy approximation and aims to

find the globally most likely action sequence in a single step

by solving the segmentation and classification task jointly.

Our model incorporates information about the duration of

an action class by a length model and the temporal con-

text by a language model. The length and language model

are combined with a discriminative model for recognizing

actions. We further show how inference can be efficiently

performed using dynamic programming.

In our experiments, we provide an extensive analysis of

our approach on three datasets where we evaluate the im-

pact of the length and language model in detail. Our model

achieves state-of-the-art accuracy for temporal action detec-

tion on the challenging Thumos 14 benchmark [8].

2. Related Work

Recent action recognition systems, which combine

Fisher vectors of improved dense trajectories [28] or CNN

features [10, 22, 7] with a classifier like a support vector

machine (SVM), achieve very good performances for video

clip classification on various real world datasets.

For temporal action detection, most approaches incorpo-

rate these classifiers into the detector. For instance, a sliding

temporal window approach with a greedy non-maximum

suppression can be applied to locate the action segments

[19, 17, 29, 9]. In the context of spatio-temporal action de-

tection, the number of windows can be reduced by finding

good action proposals [6, 26] or optimal action tubes using
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branch-and-bound [32]. These methods, however, focus on

the spatio-temporal localization of a single action in a short

video clip and cannot be applied to long videos contain-

ing a large number of different actions. Other approaches

model the sequence with structured temporal models. Early

works use hidden Markov models for action segmentation,

see [30] for a survey. Shi et al. [21] use a semi-Markov

model in combination with three different feature types for

segment boundaries, segment content, and interaction be-

tween neighboring segments, respectively. Similar to [5, 4],

in [21] action detection is formulated as a max-margin prob-

lem, which is solved by an SVM, and specific features that

correlate with transitions between classes are proposed. In

our work, on the contrary, none of these features are used,

but an explicit length and language model are proposed.

Also note that the dynamic programming used in [5, 4, 21]

aims at finding a segmentation that maximizes the individ-

ual SVM scores, whereas we use dynamic programming to

obtain the solution that maximizes our probabilistic model

consisting of action, length, and language model.

With the publication of datasets providing action annota-

tions on multiple granularity levels like Breakfast [11] or 50

Salads [24], hierarchical models using context free stochas-

tic grammars gained attention [18, 11, 27]. Vo and Bobick

[27] use a Bayes network and model the temporal struc-

ture of high level activities with a grammar. AND- and

OR-rules define possible compositions of actions and the

optimal hierarchical activity composition is computed via a

message passing algorithm. The approach of Kuehne et al.

[11, 12] similarly requires the definition of a context free

grammar to model temporal structures. In this work, activi-

ties are treated as compositions of smaller sub-actions, each

of which is modeled with a hidden Markov model.

The use of multiple types of granularity has also been

explored without grammars. Ni et al. [16] track hands

and object parts to infer hand-object interactions and com-

pute dense trajectories around the tracked positions. They

outperform the sliding window approach from [19] on the

MPII-Cooking dataset. In [13], mid-level action elements

are generated by concatenating low-level actions of differ-

ent granularity levels. This approach allows for a multi-

resolution reasoning even if only low level actions are an-

notated. Sharir and Tuytelaars [20] propose to divide the

video into a spatio-temporal grid and compute the action

chain with highest likelihood over the cells. Although the

approach is inferior to [19] or [16] for temporal localization,

it also predicts the spatial location of the actions.

In order to model long-term relations in complex

event detection tasks, the authors of [3] propose the “se-

quence memoizer”, which is a hierarchical Bayesian non-

parametric model, for joint detection and classification of

events. In [2], events are recognized by modeling temporal

dynamics of mid-level concept detectors. Mettes et al. [14]

apply a bag-of-fragments approach to event detection and

obtain a precise temporal event localization.

Finally, Sun et al. [25] train long short-term memory net-

work (LSTM) based fine-grained action detectors on both

weakly labeled videos, where only video-level annotations

without segmentation are available, and noisily tagged web

images.

3. Temporal Action Detection

We propose a probabilistic model for temporal action de-

tection that jointly models the segmentation and classifica-

tion task. We first describe the model in Section 3.1 and

present in Section 3.2 an approach for exact inference using

dynamic programming.

3.1. Model

Given a video with T frames, let xT
1 be a sequence of

feature vectors xt ∈ R
D from a D-dimensional input space

representing the video. Let further C = {1, . . . , C} be the

set of C possible action classes. Our goal is to segment

the given input sequence into an unknown number of N

segments and assign an action class to each of the segments.

More specifically, we aim to find the sequence of action end

positions tN1 and corresponding action classes cN1 that are

most likely for the given video, i.e.

max
N,tN1 ,cN1

{

p(cN1 , tN1 |xT
1 )

}

(1)

= max
N,tN1 ,cN1

{

p(cN1 )p(tN1 |cN1 )p(xT
1 |cN1 , tN1 )

}

. (2)

Note that the division by p(xT
1 ) has been dropped in Equa-

tion (2) as it does not affect the maximizing arguments. The

formulation induces a model consisting of three compo-

nents. The first one, p(cN1 ), is a context or language model,

providing probabilities for the sequence of action labels as-

signed to each video segment. We stick to the term lan-

guage model as this type of model has been developed in

the context of natural language processing in order to deter-

mine the likelihood of word sequences.

The second component, p(tN1 |cN1 ), determines the end-

ing points of the segments. Note that our model does not

allow gaps, i.e. a sequence ending at tn starts at tn−1 + 1,

exactly one frame after the previous segment ends. This is

no restriction if background is also modeled as an action

class. Hence, tN1 specifies the length of each segment and

we call this component the length model.

The third component is the action model, providing the

actual probability of a feature sequence xT
1 being generated

by the given segmentation tN1 and class labeling cN1 .
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3.1.1 Language Model

As language model, we use an m-gram,

p(cN1 ) =

N
∏

n=1

p(cn|cn−1
1 ) =

N
∏

n=1

p(cn|cn−1
n−m), (3)

where the action class cn is assumed to depend only on the

m preceding action classes. At the beginning of a sequence,

the preceding classes are assumed to be virtual sequence

start classes, i.e. ck = c$ for k ≤ 0. Maximum likelihood

estimation leads to the concrete model

p(c|h) = N(h, c)

N(h, ·) , (4)

where h is a sequence of m preceding classes, e.g. cn−1
n−m

for c = cn, and N(h, c) is the count of occurrences of class

c with the history h in the training data. Note that partic-

ularly for larger histories, N(h, c) may be zero and such a

sequence of action classes could never be detected. In order

to deal with these unseen events, we use linear discounting

with backing-off [15], i.e.

p(c|h) =







(1− λ) · N(h,c)
N(h,·) , if N(h, c) > 0,

λ · p(c|h′)∑
c′:N(h,c′)=0 p(c′|h′) , otherwise.

(5)

The parameter λ assigns a certain amount of probability

mass to unseen events and is obtained using maximum like-

lihood estimation in combination with leaving-one-out, see

[15] for details. For unseen events, we back-off to p(c|h′),
an m-gram of lower order, e.g. a bigram (m = 1) if p(c|h)
is a trigram (m = 2). The renormalization is required for a

proper probability distribution.

3.1.2 Length Model

For the length model, we assume a first-order dependence

on the ending times, i.e.

p(tN1 |cN1 ) =

N
∏

n=1

p(tn|cN1 , tn−1
1 ) =

N
∏

n=1

p(tn|cn, tn−1).

(6)

Note that we also simplified the distribution to be dependent

on the class cn of segment n only rather than on all classes

cN1 . Further, we assume that the ending time tn does not

depend on the actual position but only on the distance to

tn−1. Thus,

p(tN1 |cN1 ) =

N
∏

n=1

p(ln|cn) (7)

where ln = tn − tn−1 is the length of the segment. The

distribution p(l|c) can be modeled with any discrete proba-

bility distribution defined on the natural numbers. We inves-

tigate a class-dependent and class-independent Poisson dis-

tribution as well as a class-independent length model based

on the average length µ of all actions,

p(l|c) ∝
{

1, if l ≤ µ,

αl−µ, otherwise,
(8)

where α is a decay factor. In the following, this model

is referred to as mean length model. While the Poisson

model prefers segments with lengths that are more likely

according to the training data, the mean length model only

ensures that no unreasonably long action segments are hy-

pothesized. Without any restriction of the length, the system

would tend to hypothesize a small number of long segments

in order to avoid the penalty induced by the language model

each time a new segment is hypothesized.

3.1.3 Action Model

In action classification, discriminative models such as sup-

port vector machines or convolutional neural networks

achieve good performance [28, 22, 10]. These kinds of

models can be viewed as a class posterior distribution

p(c|xT
1 ), or p(c|xtn

tn−1+1) for action segments in the do-

main of temporal action detection, respectively. Particularly

when using Fisher vectors of improved dense trajectories, a

linear classifier such as a support vector machine performs

well [28]. We stick to this finding but replace the support

vector machine with a log-linear model of the form

p(c|xtn
tn−1+1) = softmax(WT f(xtn

tn−1+1) + b), (9)

where W is a weight matrix, b the bias, and f(xtn
tn−1+1) the

Fisher vector computed on the video segment [tn−1+1, tn].
The log-linear model is also a linear classifier but in contrast

to support vector machines, it directly models a class poste-

rior distribution. The parameters W and b can be estimated

from the pre-segmented training data using gradient based

optimization.

In the following, we show how to incorporate such a

segment-based posterior distribution into our action model.

We start with a simple factorization of p(xT
1 |cN1 , tN1 ). As-

suming independence of the video frames, we can rewrite

the action model as a product of action segments,

p(xT
1 |cN1 , tN1 ) =

N
∏

n=1

p(xtn
tn−1+1|cN1 , tN1 ) (10)

=

N
∏

n=1

tn
∏

t=tn−1+1

p(xt|ct, tnn−1). (11)
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Using Bayes’ Theorem, Equation (11) can be transformed

to contain a class posterior distribution,

p(xT
1 |cN1 , tN1 ) =

N
∏

n=1

tn
∏

t=tn−1+1

p(ct|xt, t
n
n−1)

p(xt|tnn−1)

p(ct|tnn−1)
.

(12)

Due to the dependence on the segment start and end posi-

tion, we assume that the class posterior has the same proba-

bility for each frame within the segment, i.e.

tn
∏

t=tn−1+1

p(ct|xt, t
n
n−1) = p(cn|xtn

tn−1+1)
ln , (13)

where ln = tn − tn−1 is again the length of segment n.

Coming back to Equation (12), we further assume that nei-

ther the frame prior nor the class prior depend on the seg-

ment start and end positions. Together with Equation (13),

this leads to

p(xT
1 |cN1 , tN1 ) =

N
∏

n=1

(p(cn|xtn
tn−1+1)

p(cn)

)ln
T
∏

t=1

p(xt). (14)

In practice, we found that a uniform class prior p(c) works

well, so that factor can be omitted. Moreover, the product

over the frame priors p(xt) is independent of the arguments

we maximize over and can thus also be omitted in the max-

imization.

Inserting all these results into Equation (2) leads to the

final model

max
N,cN1 ,tN1

{

N
∏

n=1

p(cn|cn−1
n−m) · p(ln|cn) · p(cn|xtn

tn−1+1)
ln
}

.

(15)

3.2. Inference

We use dynamic programming to efficiently solve the

maximization problem from Equation (15). For terms of

simplicity, we derive the recursion equations for a bigram

language model (m = 1) only. The modifications that are

required for higher order language models are straightfor-

ward.

In order to enable dynamic programming over the time

frames 1, . . . , T , we transform the product from Equation

(15) to run over the time rather than over the number of

segments. To simplify notation, let s(t) be a function that

maps frame t onto its corresponding segment number, i.e.

s(t) = n ⇔ tn−1 < t ≤ tn. (16)

Then, Equation (15) can be rewritten as

max
N,cN1 ,tN1

{

T
∏

t=1

[

p(cs(t)|cs(t)−1) · p(ls(t)|cs(t))

· p(cs(t)|x
ts(t)
ts(t)−1+1)

ls(t)
]δ(t,ts(t))

}

, (17)

where δ(t, ts(t)) is the Kronecker delta function and is one

if and only if t is the ending time of segment s(t). This

way, the N factors from Equation (15) are sustained and

the factors for the times t that are not a segment end time

are one.

We now define an auxiliary function Q(τ, c) that spec-

ifies the best segmentation of the video up to time τ with

class c ending at τ . Enforcing cn = c and tn = τ , we

obtain

Q(τ, c) = max
n,cn−1

1 ,tn−1
1

{

τ
∏

t=1

[

p(cs(t)|cs(t)−1) · p(ls(t)|cs(t))

· p(cs(t)|x
ts(t)
ts(t)−1+1)

ls(t)
]δ(t,ts(t))

}

.

(18)

Isolating the factors of the last segment and renaming

cn−1 = c̃ and ln = l leads to the recursive equation

Q(τ, c) = max
n,cn−1

1 ,tn−1
1

{

τ−l
∏

t=1

[

p(cs(t)|cs(t)−1) · p(ls(t)|cs(t))

· p(cs(t)|x
ts(t)
ts(t)−1+1)

ls(t)
]δ(t,ts(t))

· p(c|c̃) · p(l|c) · p(c|xτ
τ−l+1)

l
}

= max
l,c̃

{

Q(τ − l, c̃)

· p(c|c̃) · p(l|c) · p(c|xτ
τ−l+1)

l
}

. (19)

The score of the best segmentation in the sense of Equation

(15) is now given by maxc Q(T, c). In order to reconstruct

the best action segmentation, two additional traceback ar-

rays need to be stored:

A(τ, c) = argmax
l

{

max
c̃

Q(τ − l, c̃)

· p(c|c̃) · p(l|c) · p(c|xτ
τ−l+1)

l
}

(20)

is the best-scoring length of the segment with class c ending

at time τ and

B(τ, c) = argmax
c̃

{

max
l

Q(τ − l, c̃)

· p(c|c̃) · p(l|c) · p(c|xτ
τ−l+1)

l
}

(21)

is the best predecessor class of the segment ranging from

[τ −A(τ, c) + 1, τ ] with class c. The optimal segmentation

can then be reconstructed using Algorithm 1. Starting at the

last frame T and the best ending class c at this frame, the

best hypothesized segment start frame can be obtained as

T−A(T, c)+1. The ending frame of the preceding segment

is then T −A(T, c) and the best hypothesized class is stored

in B(T, c). The optimal segmentation is reconstructed by

iterating this scheme until the first frame is reached.
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Algorithm 1 Reconstruction of the best segmentation

1: segments← []

2: (τ, c)← (T,maxc̃ Q(T, c̃))
3: while τ > 0 do

4: ts ← τ −A(τ, c) + 1
5: te ← τ

6: segments← [(ts, te, c), segments]
7: (τ, c)← (τ −A(τ, c), B(τ, c))
8: end while

9: return segments

3.3. Runtime

Since for each frame each possible action length needs to

be evaluated, and for each class each predecessor class has

to be considered, inference is quadratic in the number of

frames classes, i.e. O(C2T 2). However, limiting the max-

imal action length to a constant L, it can easily be reduced

to O(C2LT ), allowing to process long videos. For higher

order language models, predecessor classes also need to be

stored. For a trigram language model, for instance, a func-

tion Q(τ, c, c̃) needs to be computed, which increases the

runtime to O(C3LT ). In practice, however, the runtime is

dominated by the computation of the action model, which is

not affected by an increased history in the language model.

Thus, the difference of using a bigram or a trigram language

model does hardly affect the runtime at all.

4. Experiments

Datasets. We evaluate our method on three datasets. A

detailed analysis is provided on Thumos 14 [8], a large

dataset for action recognition and temporal action detec-

tion. The dataset offers a vast amount of training data,

i.e. the videos from UCF101 [23], a set of 2, 500 back-

ground videos, and a validation set with 1, 010 temporally

untrimmed videos of which 200 are temporally annotated

with the 20 classes relevant for the detection task. For train-

ing, we only use these 200 videos from the validation set

and the videos from UCF101 corresponding to the relevant

20 classes. The test set comprises 212 temporally annotated

videos.

MPII-Cooking [19] is a large dataset for fine grained ac-

tion detection of cooking activities. It contains more than 8
hours of video with recordings of 12 different persons per-

forming 65 different cooking related actions, including a

class for background activity. We follow the protocol of

[19] and use leave-one-person-out cross-validation, result-

ing in seven splits.

Finally, we conduct experiments on 50 Salads [24], a

dataset originally designed for hierarchical activity recog-

nition. There are three high level activities and a set of 17
low level activities of finer granularity. Since our method

is not designed for hierarchical activity detection, we report

detection results on the low level only.

Setup. The action model is trained by segmenting the

training data according to the ground truth and computing

a Fisher vector of improved dense trajectories [28] for each

segment. The ground truth annotation of the training data is

also used to estimate the length- and language model.

For detection, we extract unnormalized Fisher vectors of

improved dense trajectories for each video frame and store

the result as an integral image. This way, the Fisher vector

for an arbitrary hypothesized segment can be computed ef-

ficiently by looking up the segment start and end time in the

integral image and applying the normalization.

We compare our method to a sliding window baseline

similar to the one used in [19]. Starting with a window size

of 30 frames and a step size of 10 frames, both values are

increased by a factor of
√
2 until the window size exceeds

1, 000 frames. Non-maximum suppression is then applied

to remove all overlapping windows. As classifier, we use

the log-linear model from Equation (9) that is also used in

our method.

For our approach, the maximal action length is limited

to 1, 000 frames and we increment t by 10 instead of 1 in

Equation (17), i.e. we only evaluate every 10th frame to re-

duce runtime. If not mentioned otherwise, we use the mean

length model from Equation (8). With these settings, our al-

gorithm needs 7.5h on a CPU with eight 1.2GHz cores for

inference on Thumos 14. The code is available online.1 2

Evaluation Protocol. For the evaluation on Thumos 14,

we use the official evaluation script provided by the au-

thors of [8]. The script computes mean average precision

(mAP) over the detections. A detection is marked as correct

if its intersection over union ratio is larger than some over-

lap threshold. Since we find this evaluation method very

useful as it also gives insight in how a method performs for

various overlap ratios, we also apply it to MPII-Cooking

and 50 Salads. For MPII-Cooking, we additionally report

precision and recall as well as single class mAP based on

the midpoint hit criterion as proposed in [19] to be able to

compare to other methods using this dataset.

Language Model. In this section, we evaluate the effect

of the language model on the performance of the system. To

this end, we trained different kinds of language models on

the temporally annotated validation set and compared their

strength and their effect on the detection.

The strength of a language model can be measured using

the perplexity [1, 15]. For a single sequence with N action

classes, it is defined as

PP =
(

N
∏

n=1

p(cn|cn−1
n−m)

)− 1
N

. (22)

1https://github.com/alexanderrichard/squirrel
2We appreciate the permission to reuse the matrix classes from [31].
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Perplexity Overlap

m-gram validation test 0.1 0.2 0.3 0.4 0.5

no LM - - 0.285 0.266 0.222 0.170 0.106
unigram (m = 0) 7.999 8.401 0.195 0.178 0.150 0.118 0.086
bigram (m = 1) 3.484 4.204 0.366 0.334 0.277 0.219 0.152
trigram (m = 2) 1.176 1.203 0.397 0.357 0.300 0.232 0.152

Table 1. Effect of the language model order on Thumos 14. Language model perplexities are reported on the validation

and test set for unigram, bigram, and trigram language models. Results are reported as mAP for different overlap ratios as

proposed in [8].

The perplexity for a dataset consisting of multiple se-

quences is the product of the language model probabilities

for each sequence where N is replaced by the total number

of segments in the dataset. Intuitively, the perplexity can

be seen as the number of possible choices per position. A

small perplexity corresponds to a strong language model.

Table 1 shows the results on Thumos. Note that the per-

plexities on the training data (i.e. the validation set) and on

the test data are very similar, indicating that the learned lan-

guage model works well for the action context on the test

set. Further, the perplexity decreases with increasing m-

gram order, making the language model stronger.

The system with the unigram language model performs

clearly worse than the system without a language model.

Since 50% of the classes in Thumos are background, the

model has a strong bias towards background. Moreover,

background usually gets a high classification score for any

segment, so the model tends to predict multiple consecutive

background segments. This can be prevented by taking con-

text into account. A bigram already leads to a huge gain in

performance. Using more context, e.g. with a trigram, can

still boost the performance, although the gain is not as in-

tense as for the bigram. For the remainder of the paper, we

use a trigram language model as it produces the best results.

Model Components. In Table 2, the impact of each com-

ponent is analyzed. In addition to the results at each of the

five overlap ratios, we also report the average length of the

detected segments in frames. The detection result of a video

from the Thumos 14 test set in Figure 1 serves as an exam-

ple for the cases discussed in the table.

We start with an analysis of the action model. In Section

3.1.3, we argue that a uniform prior p(c) in Equation (14)

works well in practice. If we use a non-uniform class prior

(Table 2 (b)), the performance is far below the performance

of the uniform prior (Table 2 (a)) and the average segment

length is shorter. This is due to the fact that the division by

the prior emphasizes infrequent classes. Hence, longer ac-

tions are more likely to be split into multiple short segments

of rare classes which are then sometimes falsely classified,

see Figure 1 (b).

Due to the interplay between the action, length, and lan-

guage model, the impact of the power factor is a little bit

more complex. Without the length and language model, the

power factor ln penalizes long segments, cf . (f) and (g) in

Table 2. However, when length and language model are in-

cluded, ln has another effect: It enhances the action model

compared to the language- and length model. So, omit-

ting ln increases the impact of the length model. Thus, se-

quences that are longer than µ (see Equation (8)), typically

background, are more likely to be split. The language model

strongly penalizes consecutive background segments, what

explains the short action artifacts in Figure 1(c).

Without length- and language model, long segments

which include multiple short actions are classified as back-

ground since most of the frames are actually from the back-

ground. Thus, performance drops and the average segment

length increases, cf . (f) in Table 2 and Figure 1.

When using a language model without length model, the

performance is still not satisfying and the average segment

length is quite large, see (e) in Table 2 and Figure 1. The

reason is that each time a new segment is hypothesized, a

language model probability is multiplied to the probabil-

ity score of the system. Thus, there is a clear tendency to-

wards few, long segments in order to avoid language model

penalties. Adding a length model compensates for this ef-

fect since unreasonably long segments are penalized. Note

the interdependence of both models. While the complete

system which includes both performs well, the effect of the

length model is too strong if the language model is omitted,

cf . (d) in Table 2. The hypothesized segments are rather

short in this case and the performance also drops again.

Moreover, false detections occur due to the loss of context

information, see Figure 1 (d).

Length Model. We also evaluate our method on MPII-

Cooking and 50 Salads in addition to Thumos 14, starting

with an investigation of three different kinds of length mod-

els. The choice of the length model depends on the dataset

and the characteristics of the action classes. A strong length

model, such as the class-dependent Poisson model, is supe-

rior on 50 Salads and MPII-Cooking but performs worse on

Thumos 14, cf . Table 4. To analyze this effect, we com-

pare the distribution of the ground truth lengths of each

class with the distribution generated by the Poisson model.

We discretize both distributions as a histogram with 20
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avg. length Overlap

ground truth: 212.5 0.1 0.2 0.3 0.4 0.5

(a) complete system (Eq. (15)) 182.1 0.397 0.357 0.300 0.232 0.152

Action Model

(b) action model with class prior 108.0 0.310 0.295 0.187 0.113 0.066
(c) action model w/o length factor 117.3 0.334 0.298 0.237 0.166 0.108

Length- and Language Model

(d) w/o LM 147.4 0.285 0.266 0.222 0.170 0.106
(e) w/o length model 422.8 0.209 0.166 0.128 0.086 0.049
(f) w/o LM and length model 543.8 0.135 0.111 0.086 0.065 0.041
(g) w/o LM, length, and length factor 643.1 0.104 0.089 0.068 0.053 0.035

Table 2. Effect of the model components. In the second column, the average length of the detected action segments is given.

Evaluation follows the protocol from [8].

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1. Detection result on video test 0001058 of Thumos 14, which contains actions of the class Hammer Throw.

The first row contains the ground truth, the other rows show the detection results for the systems (a)-(g) from Table 2.

Different classes have different colors.

Thumos 14 MPII-Cooking 50 Salads

2.77 1.20 1.31

Table 3. χ2-distance between the ground truth length distribu-

tion and the Poisson model averaged over all classes.

bins with a width of 50 frames each. Then, we compute the

χ2-distance between both distributions and report the mean

distance over all classes in Table 3. While the χ2-distances

for MPII-Cooking and 50 Salads are comparably small, the

value for Thumos 14 is twice as large, indicating that the

Poisson model is a worse representation of the true length

distribution on Thumos 14 than on the other datasets.

The mean length model, which only compensates for the

bias of the language model towards long segments, per-

forms best on Thumos where the Poisson distribution is a

poor model of the underlying distribution as shown in Ta-

ble 3. Even on 50 Salads and MPII-Cooking where explicit

length modeling is superior, the mean length model outper-

forms the sliding window baseline. We also investigated

the decay factor α from Equation (8). For values between

0.5 and 0.9, the results do not change substantially. Only if

α is very close to one, the effect of the length model van-

ishes since long segments are not anymore penalized. In this

case, the performance decreases towards the system without

length model, cf . Table 2 (e).

The class-independent Poisson model is a model in be-

tween, not as strong as the class-dependent model, but more

explicit than the mean length model. Only on Thumos

14, where the true length distribution is hard to fit, it per-

forms better than the class-dependent model. On the other

datasets, the class-dependent model is still superior.

An example detection for each of the three length models

on a video from 50 Salads is illustrated in Figure 2. In con-

trast to the class-dependent model (Figure 2 a), the class-

independent Poisson model (Figure 2 b) tends to avoid short

segments, particularly for the background class. The mean

length model (Figure 2 c) prefers short segments, which re-

sults in an over-segmentation of long actions.

A lower bound on the segment lengths is defined by the

subsampling of frames. On 50 Salads, the 0.1 overlap mAP

slightly decreases from 0.391 to 0.379 and 0.376 for 5, 10,

and 20 frame subsampling. For efficiency reasons, we stick

to the 10 frame subsampling for all experiments.

Comparison to State-of-the-art. Our method outper-

forms the sliding window baseline consistently on all

datasets, cf . Table 4. On Thumos 14, our system achieves

3% higher mAP for overlap 0.1 to 0.4 and is still 1% better

for overlap 0.5 compared to the winning submission from

INRIA [17]. Their approach is based on a sliding window

and a model combination of their system from the classifica-
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(a)

(b)

(c)

Figure 2. Detection result on rgb-03-1 of 50 Salads. Each class is encoded by another color, background is white. The

first row contains the ground truth, the other lines show the detection results of our system with (a) a class-dependent Poisson

model, (b) a class-independent Poisson model, and (c) the mean length model.

Overlap

Method 0.1 0.2 0.3 0.4 0.5

Thumos 14

sliding window 0.325 0.279 0.206 0.150 0.086
Univ. of Florence [9] 0.046 0.034 0.024 0.014 0.009
CHUK & SIAT [29] 0.182 0.170 0.140 0.117 0.083
INRIA (challenge winner) [17] 0.367 0.334 0.270 0.208 0.144
ours w/ mean length model 0.397 0.357 0.300 0.232 0.152

ours w/ class-independent Poisson model 0.337 0.307 0.255 0.191 0.127
ours w/ class-dependent Poisson model 0.251 0.234 0.201 0.144 0.088

MPII-Cooking

sliding window 0.222 0.197 0.158 0.126 0.079
ours w/ mean length model 0.220 0.209 0.180 0.135 0.104
ours w/ class-independent Poisson model 0.219 0.200 0.163 0.129 0.098
ours w/ class-dependent Poisson model 0.248 0.239 0.220 0.192 0.140

50 Salads (low level)

sliding window 0.201 0.158 0.126 0.100 0.080
ours w/ mean length model 0.305 0.295 0.260 0.208 0.153
ours w/ class-independent Poisson model 0.375 0.357 0.306 0.237 0.149
ours w/ class-dependent Poisson model 0.379 0.368 0.352 0.312 0.229

Table 4. Comparison of our method to recently published results and the sliding window baseline on the three datasets

Thumos 14, MPII-Cooking, and 50 Salads. We use the evaluation protocol proposed for Thumos [8] and report the results as

mAP for different overlap ratios.

Multi-class per class

Method prec recall mAP

sl. window, holistic [19] 17.7 40.3 44.2
+ pose features [19] 19.8 40.2 45.0

multiple granularity [16] 28.6 48.2 54.3
ours 45.0 25.9 58.3

Table 5. Multi-class precision and recall and single class mAP

on MPII-Cooking. We used the evaluation protocol from [19].

tion challenge and a trajectory based classifier trained on the

data for the detection task. This has been the best published

result on the dataset so far. Our system also outperforms

the other challenge submissions [9, 29] which both use a

sliding window. Wang et al. [29] additionally include CNN

features in their classifier. Table 5 shows multi-class pre-

cision/recall and single class mAP on MPII-Cooking. The

authors of [19] use dense trajectories as features (holistic)

and additional pose features. Ni et al. [16] use dense tra-

jectory features and detect hand-object interactions. While

the existing approaches achieve a high recall at the cost of a

comparably low precision, our approach achieves a higher

precision at the cost of lower recall. In terms of single class

mAP, we are 14% better than [19] and 4% better than [16].

5. Conclusion

In this paper, we proposed a new method for temporal

action detection that jointly models the segmentation and

recognition of actions. Our approach includes a length and

language model in addition to an action classifier. Using

dynamic programming, we can efficiently infer the glob-

ally optimal action segmentation and classification. We

have evaluated our method on three recent datasets and

outperformed the state-of-the-art on Thumos 14 and MPII-

Cooking by 3% and 4%. Moreover, an analysis of the im-

pact of each model component revealed that the combina-

tion of length and language model is crucial for good per-

formance. An investigation of three different length models

on each of the three datasets revealed that a strong length

model, e.g. a class-dependent Poisson model, is beneficial

if it represents the true distribution of the action lengths.
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