
Learning Action Maps of Large Environments via First-Person Vision

Nicholas Rhinehart, Kris M. Kitani

The Robotics Institute

Carnegie Mellon University

{nrhineha, kkitani}@cs.cmu.edu

Abstract

When people observe and interact with physical spaces,

they are able to associate functionality to regions in the

environment. Our goal is to automate dense functional

understanding of large spaces by leveraging sparse activ-

ity demonstrations recorded from an ego-centric viewpoint.

The method we describe enables functionality estimation

in large scenes where people have behaved, as well as

novel scenes where no behaviors are observed. Our method

learns and predicts “Action Maps”, which encode the abil-

ity for a user to perform activities at various locations. With

the usage of an egocentric camera to observe human activi-

ties, our method scales with the size of the scene without the

need for mounting multiple static surveillance cameras and

is well-suited to the task of observing activities up-close. We

demonstrate that by capturing appearance-based attributes

of the environment and associating these attributes with ac-

tivity demonstrations, our proposed mathematical frame-

work allows for the prediction of Action Maps in new envi-

ronments. Additionally, we offer a preliminary glance of the

applicability of Action Maps by demonstrating a proof-of-

concept application in which they are used in concert with

activity detections to perform localization.

1. Introduction

The goal of this work is to endow intelligent systems

with the ability to understand the functional attributes of

their environment. Such functional understanding of spaces

is a crucial component of holistic understanding and deci-

sion making by any agent, human or robotic. Functional

understanding of a scene can range from the immediate en-

vironment to the distant. For example, at the scale of a sin-

gle room, a person can perceive the arrangement of tables,

chairs, and computers in an office environment, and reason

that they could sit down and type at the computer. People

can also reason about the functionality about nearby rooms,

for example, the presence of a kitchen down the hall from

the office is useful functional and spatial information for

when the person decides to prepare a meal. The goal of this

Figure 1: Action Map prediction for the sit activity by using

our method to combine appearance data and activity observations.

Activity and appearance information from the top scene in combi-

nation with only appearance information (no activity observations)

from the bottom scene is used to model the relationship between

activities, scene information, and object information to make pre-

dictions for both scenes. Areas in the scenes where a person can

sit are estimated by our method, such as the chairs and couches in

both views.

work is to learn a computational model of the functionality

of large environments, called Action Maps (AMs), by ob-

serving human interactions and the visual context of those
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action within a large environment.

There has been significant work in the area of automat-

ing the functional understanding of an environment, though

much has focused on single scenes [9, 4, 11, 10, 2, 5]. In

this work, we aim to extend automated functional under-

standing to very large spaces (e.g., an entire office building

or home). This presents two key technical challenges:

• How can we capture observations of activity across

large environments?

• How can we generalize functional understanding to

handle the inevitable data sparsity of less explored or

new areas?

In order to address the first challenge of observing ac-

tivity across large environments, we take a departure from

the fixed surveillance camera paradigm, and propose an ap-

proach that uses a first-person point-of-view camera. By

virtue of its placement, its view of the wearer’s interac-

tions with the environment is usually unobstructed by the

wearer’s body and other elements in the scene. An egocen-

tric camera is portable across multiple rooms, whereas fixed

cameras are not. An egocentric camera allows for the ob-

servation of hand-based activities, such typing or opening

doors, as well as the observation of some ego-motion based

activities, such as sitting down or standing. The first-person

paradigm is well suited for large-scale sensing and allows

observation of interactions with many environments.

Although we can capture a large number of observations

of activity across large environments with wearable cam-

eras, it is still not practical to wait to observe all possible

actions in all possible locations. This leads to the second

technical challenge of generalizing functional understand-

ing from a sparse set of action observations, which requires

generalization to new locations. Our method generalizes

by using another source of visual observation – which we

call side-information – that encodes per-location cues rele-

vant to activities. In particular, we propose to extract visual

side-information using scene classification [22] and object

detection [6] techniques. With this information, our method

learns to model the relationship between actions, scenes,

and objects. In a scene with no actions, we use scene and

object information, coupled with actions in a separate scene,

to infer possible actions. We propose to solve the problem

of generalizing functional understanding (i.e., generating

dense AMs) by formulating the problem as matrix comple-

tion. Our method constructs a matrix where each row repre-

sents a location and each column represents an action type

(e.g., read, sit, type, write, open, wash). The goal of matrix

completion is to use the observed entries to fill the missing

entries. In this work, we make use of Regularized Weighted

Non-Negative Matrix Factorization (RWNMF) [7], allow-

ing us to elegantly leverage side-information to model the

relationship between activities, scenes, and objects, and pre-

dict missing activity affordances.

Estimated opendoor Action Map Estimated sit Action Map

Estimated typing Action Map Estimated wash Action Map

Figure 2: Projected Action Map examples learned by our method.

With global estimates of large Action Maps produced by our

method, we use localized images within the scene to show visu-

alizations of the Action Maps by projecting them to the images.

1.1. Contributions

To the best of our knowledge, this is the first work to

generate Action Maps, such as those in Figures 1 and 2, over

large spaces using a wearable camera. The first-person vi-

sion paradigm is an essential tool for this problem, as it can

capture a wide range of visual information across a large en-

vironment. Our approach unifies scene functionality infor-

mation via a regularized matrix completion framework that

appropriately addresses the issue of sparse observations and

provides a vehicle to leverage visual side information.

We demonstrate the efficacy of our proposed approach

on five different multi-room scenes: one home and four of-

fice environments. Our experiments in real large-scale en-

vironments show how first-person sensing can be used to

efficiently observe human activity along with visual side-

information across large spaces. 1) We show that our

method can be used to model visual information from both

single and multiple scenes simultaneously, and makes ef-

ficient use of all available activity information. 2) We

show that our method’s power increases as the set of per-

formed activity increases. 3) Furthermore, we demonstrate

how our proposed matrix factorization framework can be

used to leverage sparse observations of human actions along

with visual side-information to perform functionality esti-

mation of large novel scenes in which no activities have

been demonstrated. We compare our proposed method

against natural baselines such as object-detection-based Ac-

tion Maps and scene classification, and show that our ap-

proach outperforms them in nearly all of our experiments.

4) Additionally, as a proof-of-concept application of the rich

information in an Action Map, we present an application of

our Action Maps as priors for localization.

1.2. Background

Human actions are deeply connected to the scene. Scene

context (e.g., a chair or common room) can be a strong in-
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dicator of actions (e.g., sitting). Likewise, observing an ac-

tion like sitting, is a strong indicator that there must be a

sittable surface in the scene. In the context of time lapse

video, Fouhey et al. [4] used detection of sitting, standing,

and walking actions to obtain better estimates of 3D geom-

etry for a single densely explored room. Gupta et al. [9]

addressed the inverse problem of inferring actions from es-

timated 3D scene geometry using a single image of a room.

Their approach synthetically inserted skeleton models into

the 3D scene to reason about possible functional attributes

of the scene. Delaitre et al. [2] also used time lapse video

of human actions to learn the functional attributes of objects

in a single scene. The work of Savva et al. [16] obtains a

dense 3D representation of small workspace (e.g. desk and

chair space) and learns the functional attributes of the scene

by observing human interactions. Similar to previous work,

this work seeks to understand the functionality of scenes.

However, limitations of previous work include the reduced

size of the physical space and the presumed density of in-

teractions. In contrast, our approach attempts to infers the

dense functionality over an entire building (e.g., office floor

or house), and reasons about multiple large scenes simulta-

neously by modeling the relationship between scene infor-

mation, object information, and sparse activities.

Another flavor of approaches reason in the joint space of

activities and objects. In Moore et al. [13], human actions

are recognized by using information about objects in the

scene. Gall et al. [5] uses human interaction information to

perform unsupervised categorization of objects. Other ap-

proaches have capitalized on the interplay between actions

and objects: Gupta et al. [8] demonstrate an approach to use

object information for pose detection, and Yao et al. [20]

jointly model objects and poses to perform recognition of

both objects and actions. The approach of [14] performs ob-

ject recognition by observing human activities, and notes an

important idea that our approach also uses: whereas object

information may sometimes be too small in detail, human

activities usually are not. We capitalize on this observation

close-up observation capability of an egocentric camera.

The egocentric paradigm is an excellent method for un-

derstanding human activities at close range [18, 3, 15, 12].

Our work builds on such egocentric action recognition tech-

niques by associating actions with physical locations in a

single holistic framework. By bringing together ideas from

single image functional scene understanding, object func-

tionality understanding and egocentric action analysis, we

propose a computational model that enables cross-building

level functional understanding of scenes.

2. Constructing Action Maps

Our goal is to build Action Maps that associate possi-

ble actions for every spatial location on a map over a large

environment. We decompose the process into three steps.

We first build a physical map of the environment by using

egocentric videos to obtain a 3D reconstruction of the scene

using structure from motion. Second, we use a collection of

recorded human activity videos recorded with an egocentric

camera to detect and spatially localize actions. This col-

lection of videos is also used to learn the visual context of

actions (i.e., scene appearance and object detections) which

is later used as a source of side information for modeling

and inference. Third, we aggregate the localized action de-

tection and visual context data using a matrix completion

framework to generate the final Action Map. The focus of

our method is the third step, which we describe next. We

mention how we obtain the visual context in Section 2.1.1,

and describe the first two steps in detail in Section 3.2.

2.1. Action Map Prediction as Matrix Factorization

We now describe our method for integrating the sparse

set of localized actions and visual side-information to gen-

erate a dense Action Map (AM) using regularized matrix

completion. Our goal is to recover an AM in matrix form

R ∈ R
M×A
+ , where M is the number of locations on the

discretized ground plane and A is the number of possible

actions. Each row of the AM matrix R contains the ac-

tion scores rm, where m is a location index, and each entry

rma describes the extent to which an activity a can be per-

formed at location m. To complete the missing entries of

R, we design a similarity metric for our side-information,

enabling the method to model the relationship between ac-

tivities, scenes, and objects.

We impose structure on the rows and columns of the

AM matrix by computing similarity scores with the side-

information. Examples of this side information are shown

in Figure 3, where two features from scene classification,

plus one feature from object detection are shown in the same

physical space as the AM. Figure 3 serves to further mo-

tivate the idea of exploiting scene and object information

between two different scenes to relate the functionality of

the scenes. We define three kernel functions based on scene

appearance, object detections and spatial continuity. This

structure is integrated as regularization in the RWNMF ob-

jective function (Equation 2).

2.1.1 Integrating Side-Information

To integrate side-information into our formulation, we build

two weighted graphs that describe the cross-location (row)

similarities, and cross-action (column) similarities. We are

primarily interested in the cross-location similarities, and

discuss how we handle the cross-action similarities in Sec-

tion 2.2. To build the cross-location graph, we aggregate the

spatial proximity, scene-classification, and object detection

information as a linear combination of kernel-based simi-

larities, as shown in Equation 1.

For every location a in the AM, we compute the scene

classification score pa = [p1a . . . pCa] for each image as
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(a) Office Flr. A Features (b) Office Flr. B Features

Figure 3: Several Office Flr. A and Office Flr. B Features. The “office” and “corridor” layers correspond to the features from the scene

classification CNN, and the “sit” layer corresponds to the object detection CNN features aggregated across all sit-able objects, which

is also one of the baselines as described in Section 3.2. This figure demonstrates our idea that object information and scene information

can be used to relate scenes to each other. This relationship is the basis for transferring and sharing activity functionality between scenes.

Heatmaps from several layers are shown projected into localized images from the scene. Note that the “office” portion of Office Flr. A also

contains sittable regions, and that the much larger “office” area in Office Flr. B contains a select few sittable regions. The corridors in both

scenes are described well by the features, and these areas strongly correlate with an an absence of functionality, as scene in Figure 1.

the average of the C-dimensional outputs from the Places-

CNN of images within a small radius.

We use Structure-from-Motion (SFM) keypoints inside

each detection to estimate the back-projected 3D location

of the detected object in the environment by taking the

mean of their 3D locations, which are then projected to

the ground plane to form a set Df for each object cate-

gory f ∈ [1 . . . F ]. The SFM reconstruction is also used

to localize images and described further in Section 3.2. We

calculate the object detection scores oa = [o1a . . . oFa] for

each location a as the max score of object detection of the

nearby back-projected object detections d ∈ Df within a

r =
√
2 grid-cell radius, exponentially weighted by its dis-

tance along the floor from the object zd:

ofa = max
d∈Df

1√
2r2π

exp
−z2d
2r2

.

We wish to enforce similarity of activities between

nearby locations, as well as between locations that have

similar object detections and scene classification descrip-

tion. Between any two locations a, b, and given as-

sociated scene classification scores pa,pb, object detec-

tion scores oa,ob, and 2D grid locations xa,xb the kernel

is of the form:

k(a, b) = (1− α)ks(xa,xb)+
α

2
kp(pa,pb) +

α

2
ko(oa,o

′
b),

(1)

where ks is an RBF kernel between the spatial coordinates

of each location, kp and ko as χ2 kernels on scene clas-

sification scores and object detection scores, and ko has 0

similarity between locations with no object score.

Thus, there is a tradeoff between the ks, kp and ko ker-

nels, controlled by α. When α = 0, only spatial smooth-

ness is considered, and when α = 1, only scene classifi-

cation and object detection terms are considered, ignoring

spatial smoothness. When a location in one scene is com-

pared to a location in a new scene or the same scene, k(·, ·)
returns higher scores for locations with similar objects and

places, and as shown Section 2.2, places more regulariza-

tion constraint on the objective function, rewarding solu-

tions that predict similar functionalities for both locations.

2.2. Completing the Action Map Matrix

To build our model, we seek to minimize the RWNMF

objective function in Equation 2:

J(U,V) =
∥

∥

∥
W ◦ (R−UVT )

∥

∥

∥

2

F
+

λ

2

M
∑

i,j

‖ui − uj‖KU
ij

+
µ

2

A
∑

i,j

∥

∥vi − vj

∥

∥KV
ij

(2)

where U ∈ R
M×D
+ , V ∈ R

A×D
+ , together form the de-

composition, W ∈ R
M×A
+ is the weight matrix with 0s for

unexplored locations, and KU the kernel Gram matrix of

the side information defined by its elements: KU
ij = k(i, j).

The squared-loss term penalizes decompositions with val-

ues different from the observed values in R. The term

involving KU penalizes decompositions in which highly

similar locations have different decompositions in the rows

(uT
i ) of U. Roughly, locations with high similarity in scene

appearance, object presence, or position impose penalty on

the resulting decomposition for predicting different affor-

dance values in the AM. The term involving KV corre-

sponds to the cross-action smoothing, which we take as the
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# GT locs. # Actions Length re ra

Office Flr. A 40 90 53.3 min. 0.59 0.03

Office Flr. D 15 44 32.8 min. 0.23 0.03

Office Flr. C 44 14 12.2 min. 0.16 0.01

Office Flr. B 50 13 3.3 min. 0.67 0.04

Home A 15 17 13.4 min. 0.75 0.04

Table 1: Scene stats. The number of GT locations is the num-

ber of distinct places a specific activity can be performed. The

number of activity demonstrations is the total number of demon-

strations collected in each environment. re =
#cells explored

#total cells
, ra =

#cells with non-empty actions

#total cells
.

identity matrix, enforcing no penalty for differences across

per-location action labels.

To minimize the objective function, we use the regu-

larized multiplicative update rules following [7]. Multi-

plicative update schemes for NMF are generally constructed

such that their iterative application yields a non-increasing

update to the objective function; [7] showed that these

update rules yield non-increasing updates to the objective

function. Thus, after enough iterations, a local minima in

the objective function is found, and the resulting decompo-

sition and its predictions are returned.

Values in W are set to counteract class imbalance. The

number of observed values for each activity is computed

as nc, and assigned to each nonempty location i’s corre-

sponding entry as wic = 1/nc, and the zeros from observed

cameras associated with no activities as w = 1/nz .

3. Experiments

Our dataset consists of 5 large, multi-room scenes from

various locations. Three scenes, Office Flr. A, Office Flr.

D, and Office Flr. C, are taken from three distinct office

buildings in the United States, and another scene, Office

Flr. B, comes from an office building in Japan. Each of-

fice scene has standard office rooms, common rooms, and

a small kitchen area. A final scene, Home A, consists a

kitchen, a living room, and a dining room. See Table 1 for

scene activity and sparsity statistics. Our goal is to predict

dense Action Maps from sparse activity demonstrations.

The first experiments (Section 3.3) measure our

method’s performance when supplied with all observed ac-

tion data that covers on average about half of all loca-

tions and some actions (See Table 1 for the coverage statis-

tics). Additionally, this experiments compares against per-

formance of the spatial kernel-only approach, which serves

to illustrate the utility of including side-information. How-

ever, as it takes some time to collect the observations of

each scene, we demonstrate a second set of experiments

(Section 3.4), to showcase our method handling fractions

of the already sparse observation data while still maintain-

ing reasonable performance. In Section 3.5, our third set

of experiments shows that if our method is presented with

novel scenes for which there is zero activity demonstrations,

W. Max F1 W. Mean F1 Max F1 Mean F1

Of. Flr. A S sng 0.73 0.72 ± 0.01 0.44 0.43 ± 0.02

Of. Flr. A SOPD sng 0.63 0.61 ± 0.01 0.34 0.32 ± 0.01

Of. Flr. A SOP sng 0.74 0.69 ± 0.04 0.56 0.5 ± 0.04

Of. Flr. A SOPD all 0.75 0.71 ± 0.02 0.44 0.43 ± 0.01

Of. Flr. A SOP all 0.76 0.73 ± 0.02 0.54 0.51 ± 0.02

Of. Flr. B S sng 0.56 0.55 ± 0.01 0.38 0.38 ± 0.01

Of. Flr. B SOP sng 0.56 0.55 ± 0.01 0.44 0.38 ± 0.03

Of. Flr. B SOPD all 0.58 0.56 ± 0.01 0.39 0.37 ± 0.03

Of. Flr. B SOP all 0.58 0.56 ± 0.01 0.53 0.44 ± 0.04

Of. Flr. C S sng 0.74 0.66 ± 0.1 0.48 0.42 ± 0.06

Of. Flr. C SOPD sng 0.67 0.46 ± 0.08 0.41 0.29 ± 0.05

Of. Flr. C SOP sng 0.68 0.53 ± 0.1 0.53 0.44 ± 0.06

Of. Flr. C SOPD all 0.67 0.55 ± 0.06 0.45 0.38 ± 0.03

Of. Flr. C SOP all 0.77 0.58 ± 0.07 0.56 0.46 ± 0.04

Of. Flr. D S sng 0.68 0.57 ± 0.11 0.57 0.45 ± 0.12

Of. Flr. D SOPD sng 0.56 0.49 ± 0.05 0.37 0.32 ± 0.04

Of. Flr. D SOP sng 0.69 0.55 ± 0.08 0.68 0.54 ± 0.07

Of. Flr. D SOPD all 0.81 0.68 ± 0.07 0.59 0.46 ± 0.08

Of. Flr. D SOP all 0.82 0.73 ± 0.08 0.77 0.61 ± 0.09

Home A S sng 0.57 0.53 ± 0.04 0.35 0.34 ± 0.02

Home A SOPD sng 0.5 0.48 ± 0.01 0.26 0.24 ± 0.02

Home A SOP sng 0.62 0.6 ± 0.01 0.43 0.4 ± 0.02

Home A SOPD all 0.52 0.49 ± 0.03 0.27 0.25 ± 0.02

Home A SOP all 0.62 0.55 ± 0.03 0.45 0.4±0.02

Table 2: Prediction results by using the activity observations for

each scene (“sng”), and, as separate results, by simultaneously fit-

ting data from all scenes (“all”). By using observations from all

scenes, the performance of our method on each scene improves

over using each scene’s observation data alone. Additionally, our

method is able to integrate activity detections without much per-

formance loss: a D suffix indicates activity detection predictions

were used, otherwise, labelled activities were used. “S” stands

for spatial kernel only, and “SOP” stands for “Spatial+Object De-

tection+Scene Classification” kernels. The spatial kernel only is

useful yet outperformed by the full model. Side information from

multiple scenes generally improves the performance.

our method can still make predictions in these new environ-

ments. This final set of experiments also investigates which

side-information is most helpful for our task.

3.1. Performance scoring

To evaluate an AM, we perform binary classification

across all activities and compute mean F1 scores. We col-

lect the ground truth activity classes for every image in the

scene by retrieving them from labelled grid cells, as shown

in Figure 5, in a small triangle in front of each camera,

which represents the viewable space. We collect the pre-

dicted AM scores from the same grid cells and average

the scores to produce per-image AM scores. We used 100

evenly-spaced thresholds to evaluate binary classification

performance by averaging F1 scores across the thresholds.

We report F1 scores as opposed to the overall accuracy, as

the overall accuracy of our method is very high due to the

large amount of space in each scene with no labelled func-

tionality (a large amount of “true negatives”). The activ-

ity classes we use are sit, type, open-door, read,
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(a) Office Flr. A Elapse (b) Office Flr. D Elapse (c) Home A Elapse

Figure 4: Performance improves a function of available data. For each parameter setting, we show the F1 scores for each activity label, as

well as the mean and weighted mean of the F1 scores across all parameter settings and activity labels. Some variations in performance are

observed as new activities are introduced, as the correlations between an established activities and newly introduced activities are initially

sparse. As more data is collected, erroneous correlations are unlearnt, and correct ones are reinforced.

W. Max F1 W. Mean F1 Max F1 Mean F1 W. Max F1 W. Mean F1 Max F1 Mean F1

Office Flr. B

RFC 0.38 0.38 0.62 0.62

Office Flr. D

0.27 0.27 0.41 0.41

Det. 0.59 0.59 0.33 0.33 0.44 0.44 0.28 0.28

NMF 0.35 0.35 0.24 0.24 0.65 0.65 0.40 0.40

SO 0.69 0.67 ± 0.02 0.44 0.42 ± 0.01 0.65 0.51 ± 0.12 0.46 0.36 ± 0.09

SP 0.74 0.69 ± 0.02 0.46 0.43 ± 0.02 0.68 0.55 ± 0.12 0.51 0.38 ± 0.09

SOP 0.57 0.54 ± 0.03 0.28 0.26 ± 0.02 0.42 0.36 ± 0.02 0.28 0.25 ± 0.01

Office Flr. C

RFC 0.24 0.24 0.37 0.37

Home A

0.28 0.28 0.35 0.35

Det. 0.54 0.54 0.31 0.31 0.53 0.53 0.25 0.25

NMF 0.39 0.39 0.27 0.27 0.43 0.43 0.25 0.25

SO 0.67 0.55 ± 0.1 0.47 0.39 ± 0.07 0.59 0.51 ± 0.07 0.41 0.33

SP 0.61 0.56 ± 0.08 0.47 0.39 ± 0.06 0.61 0.58 ± 0.01 0.45 0.42 ± 0.03

SOP 0.74 0.63 ± 0.05 0.64 0.54 ± 0.05 0.54 0.45 ± 0.03 0.3 0.26 ± 0.01

Table 3: Performance of our algorithm by using activity observations from Office Flr. A to make predictions in novel scenes. Each baseline

method is run with a single parameter setting, and thus their maxes and means are equivalent. The baseline methods “RFC”, “Det.”, and

“NMF” correspond to the Random Forest Classification, Object Detection AMs, and non-regularized NMF augmented matrix approaches,

respectively. Variants of our approach, SO, SP, and SOP correspond to using “Spatial+Object Detection” kernels, “Spatial+Scene Classi-

fication” kernels, and “Spatial+Object Detection+Scene Classification” kernels. Multiple metrics are considered to observe the effects of

ground-truth class imbalance, and means are used to quantify performance across a variety of parameter settings.

write-whiteboard and wash. This set of activities pro-

vides good coverage of common activities that a person can

do in an office or home setting. To summarize results, we

compute the unweighted and weighted averages of per-class

F1 scores, where the weighted average is computed by us-

ing the normalized counts of the GT classes in the images.

3.2. Preprocessing and parameters

The first step to build the AM is to build a physical map

of the environment. We use Structure-From-Motion (SFM)

[19] with egocentric videos of a walk through of the envi-

ronment to obtain a 3D reconstruction of the scene. Next,

we consider two important categories of detectable actions:

(1) those that involve the user’s hands (gesture-based activ-

ities), and (2) those that involve significant motion of the

user’s head, or egomotion-based activities. We used the

deep network architecture inspired by [17] to perform ac-

tivity detection, as the two stream network takes into ac-

count both appearance (e.g., hands and objects) as well as

motion (e.g., optical flow induced by ego-motion and local

hand-object manipulations). When actions are detected by

our action recognition module, we need a method for esti-

mating the location of this action. We use the SFM model

to compute the 3D camera pose of new images.

As we define an AM over a 2D ground plane (floor lay-

out), we project the 3D camera pose associated to an action

to the ground plane. To obtain a ground plane estimate, we

fit a plane to a collection of localized cameras using SFM.

We assume that the egocentric camera lies approximately at

eye level, thus this height plane is tangent to the top of the

camera wearer’s head. We then translate this plane along

its normal, while iteratively refitting planes with RANSAC

to points in the SFM model. Once we have an estimate of

the 2D ground plane in 3D space, we can use it to project
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(a) Office Flr. A GT (b) Office Flr. B GT (c) Office Flr. D GT

(d) Office Flr. C GT (e) Home A GT (f) Legend

Figure 5: Ground truth labels and SFM points in each scene. Dotted lines indicate a doorway, solid lines indicate walls.

the localized actions onto the ground plane. When dealing

with multiple scenes, distances must be calibrated between

them. We use prior knowledge of the user’s height to form

estimates of the absolute scale of each scene. Specifically,

we use the distance between the ground plane and the user

height plane, along with a known user height, to convert dis-

tances in the reconstruction to meters. Finally, we grid each

scene with cells of size 0.25 meters. (we use a radius of 2
grid cells, which is ∼ 0.5 meters after metric estimation).

Since actions are often strongly correlated with the sur-

rounding area and objects, as shown in Figure 3, we also

extract the visual context of each action as a source of

side-information. For every image obtained with the wear-

able camera, we run scene classification and object detec-

tion with [22] and [6]. We use the pre-trained “Places205-

GoogLeNet” model for scene-classification, which yields

205 features per image, one per each scene type, and a

radius of 2 grid cells inside which to average the classifi-

cation scores. For object detection, we use the pretrained

“Bvlc reference rcnn ilsvrc13” model, which performs ob-

ject detection for 205 different object categories, and use

NMS with overlap ratio 0.3, and min detection score 0.5.

We use a small grid of parameters for our method (α ∈
[0, .1, .3, .5, .7, .9, 1], λ ∈ [10−3, 10−2], γ ∈ [100, 1000]),
where each γ is used for the χ2 kernels, and evaluate per-

formance of multiple runs as the cross-run maximum and

cross-run average of each of the various scores. In a sce-

nario with many additional test scenes, a single choice of

parameters could be selected via cross-validation. We also

consider variations of our kernel that use different combi-

nations of side-information: Spatial+object detection (SO),

Spatial+scene classification (SP), and Spatial+object detec-

tion+scene classification (SOP). In the first two cases, the α
2

weight of Equation 1 becomes α for the object detection or

scene classification kernel that is on, and 0 for the other.

3.3. Full observation experiments

When all activity observations are available, our method

is able to perform quite well. The dominant source of error

is that of camera localization, which reduces the spatial pre-

cision of the AM. In Table 2, we evaluate the performance

of our method run on each scene separately, as well as run-

ning once with all of the scenes in a single matrix. When

multiple scenes are used, side-information is crucial: with-

out it, there is no similarity enforced across scenes. In single

scene case, we find that using a spatial kernel only can per-

form well, yet is generally outperformed by using all side

information, especially when side information and activity

demonstrations are present from other scenes. By using the

data from all scenes simultaneously in a global factoriza-

tion, performance increases globally over using each single

scene’s data alone. This is expected and desirable: simulta-

neous understanding of multiple scenes can improve as the

set of available scenes with observation data grows.

3.4. Partial observation experiments

We expose our algorithm to various fractions of the total

activity demonstrations to simulate an increasing amount of

observed actions. We find that performance is high even

with only a few demonstrations and steadily increases as

the amount of activity demonstrations increases. The Office

Flr. A, Office Flr. D, and Home A scenes have enough ac-

tivity demonstration data to illustrate the performance gains

of our method as a function of the available data. We show

quantitative per-class results for these in Figure 4. Sharp in-

creases can be observed in the per-class trends, which cor-

respond to the increase of coverage of each activity class.

In Figure 6, we show the overhead view of the AM for the

sit and type labels for the Office Flr. A as a function of

the available data, where it can be seen how the AM quali-
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tatively improves over time as observations are collected.

3.5. Novel scene experiments

Another scenario is the task of predicting AMs for

novel scenes containing zero activity observation data. Our

method leverages the appearance and activity observation

data in one scene, and only appearance data in the novel

scene to make predictions. We now introduce three base-

lines we consider. The first baseline is to perform per-image

classification with the object detection and scene classifica-

tion features, which serves to estimate image-wise perfor-

mance of using the object detection and scene classifica-

tion information. This baseline requires observations in a

labelled scene for training. We use Random Forests [1] as

the classification method, trained on images from the source

scene. The second baseline we consider is non-regularized

Weighted Nonnegative Matrix Factorization by augmenting

the target matrix R with the object detection and scene clas-

sification features for each location. This baseline does not

explicitly enforce the similarity that the regularized frame-

work does, thus, we expect it to not perform as well as our

framework. The third baseline we consider is to build AMs

from the back-projected object detections by directly asso-

ciating each detection category with an activity category.

We use the Office Flr. A demonstration and appearance

data as input and evaluate the performance by applying the

learned model to each of the other scenes. These results

(Table 3) illustrate that our method’s AM predictions out-

perform the baselines in 13

16
cases, and that the appearance

information is capitalized upon the most by our method.

We find that scene classification is particularly beneficial

to performance, a phenomenon for which we present two

hypothesized factors: 1) as shown in [21] “object detec-

tors emerge in deep scene CNNs”, suggesting that the Scene

Classification features subsume the cues present in the ob-

ject detector features, and 2) due to localization noise, cor-

relations between localized activities and localized objects

are not as strong, and can serve to introduce noise to the

Spatial+Scene Classification kernel combination when this

object information is integrated.

Overall, we find that our model harnesses the power of

activity observations in concert with the availability of rich

scene classification and object detection information to esti-

mate the functionality of environments both with and with-

out activity observations. See the Supplementary Material

for additional novel scene experiments.

4. Action Maps for Localization

We demonstrate a proof-of-concept application of Ac-

tion Maps to the task of localization. Intuitively, by lever-

aging the “where an activity can be done” functional-spatial

information from Action Maps, along with “what activity

has been done” functional information from activity detec-

tion, the user’s spatial location is constrained to be in one

Figure 6: ’Sit’ (top row) and ’Type’ (bottom row) AMs as the

amount of observed data increases on Office Flr. A. The columns

stand for 10%, 80%, and 100% of the data.
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Figure 7: Localizing with an Action Map and observed activities.

Activities that are more specialized are localized with less guesses.

of several areas. We localize activity sequences in each 2D

map based on the combination of predicted action locations

from the Action Map, and observed actions in each frame.

In Figure 7, we show the spatial discrepancy in grid cells

between the K-best AM location guesses decreases. Thus,

an Action Map can be used to localize a person with obser-

vations of their activity.

5. Conclusion

We have demonstrated a novel method for generating

functional maps of uninstrumented common environments.

Our model jointly considers scene appearance and func-

tionality while consolidating evidence from the natural van-

tage point of the user, and is able to learn from a user’s

demonstrations to make predictions of functionality of less

explored and completely novel areas. Finally, our proof-

of-concept application hints at the breadth of future work

that can exploit the rich spatial and functional information

present in Action Maps.
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