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Abstract

Matching between two sets of objects is typically ap-
proached by finding the object pairs that collectively maxi-
mize the joint matching score. In this paper, we argue that
this single solution does not necessarily lead to the opti-
mal matching accuracy and that general one-to-one assign-
ment problems can be improved by considering multiple hy-
potheses before computing the final similarity measure. To
that end, we propose to utilize the marginal distributions for
each entity. Previously, this idea has been neglected mainly
because exact marginalization is intractable due to a com-
binatorial number of all possible matching permutations.
Here, we propose a generic approach to efficiently approx-
imate the marginal distributions by exploiting the m-best
solutions of the original problem. This approach not only
improves the matching solution, but also provides more ac-
curate ranking of the results, because of the extra informa-
tion included in the marginal distribution. We validate our
claim on two distinct objectives: (i) person re-identification
and temporal matching modeled as an integer linear pro-
gram, and (ii) feature point matching using a quadratic cost
function. Our experiments confirm that marginalization in-
deed leads to superior performance compared to the single
(nearly) optimal solution, yielding state-of-the-art results in
both applications on standard benchmarks.

1. Introduction

Graph matching is a challenging problem that arises
in many areas of computer vision including feature point
matching [35], action recognition [3], multi-target tracking
[31], and person re-identification (Re-ID) [26]. Whether the
task is to find two different images that correspond to the
same location, to associate each target to the correct mea-
surement, or to identify the same person in two separate
camera viewpoints, in its most general form it can be con-
sidered as a one-to-one assignment problem, where each el-
ement from one sct should be uniquely assigned to another
clement in the second set. Typically, the criterion for as-

t+1

Figure 1: An example illustrating matching two objects in
frame t to four objects in frame t +1. Each box color corre-
sponds to a unique target ID, such that (S1,D1) and (S2,D2)
are the correct matching pairs. However, the optimal as-
signment as determined by the highest joint matching score
confuses the objects S1 with D2 and S2 with D1 due to their
similar appearance. Here, the very strong visual similarity
between S1 and D2 dominates the overall score, but ignores
the fact that S2 is left without a suitable candidate. Our pro-
posed approach makes a collective decision to compute the
final matching criterion, leading to the correct match.

sessing an assignment is given by a predefined distance or
cost. This cost or objective is application specific. In the
case of person Re-ID or multi-target tracking, for instance,
the individual connections are assumed independent, lead-
ing to a linear optimization problem which can be solved
optimally, e.g. using the Munkres (Hungarian) algorithm.
When matching two sets of interest points, it is beneficial
to include certain geometrical priors and consider pairwise
terms within the objective function. However, solving ar-
bitrary quadratic binary problems is NP-hard and one must
resort to approximate solutions. Higher-order formulations
are also possible, but are even harder to optimize.
Interestingly, most existing work focuses on either de-
signing a more suitable pairwise cost, e.g. by learning ap-
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propriate features [17, 18, 20], or on developing better
solvers [4, 44] in order to find a solution that is closer to
the global optimum. What is mostly ignored, however, is
the fact that the cost for each pairwise match is based solely
on the two points being matched, and ignores the rest of the
underlying distribution. Intuitively, this can be regarded as
a “selfish” cost computation as it does not consider compet-
ing matches among other data points.

It may seem somewhat surprising, but even the globally
optimal matching solution using this pairwise cost does not
guarantee the best matching accuracy (see also [32]). To
achieve best agreement among all candidates, it is desir-
able to follow a more “altruistic” approach and take into
account all possible matching combinations for all other ob-
jects when calculating the distance (or similarity) between
one particular pair of objects. This can be achieved by tak-
ing the maximum of the marginal distribution of the joint
space for each object. An example illustrating this relation-
ship is depicted in Fig. 2. Unfortunately, the joint match-
ing space contains an exponential number of valid combi-
nations, making exact marginalization intractable.

In this paper, we propose an accurate and efficient way
for estimating the marginal distributions using only a tiny
fraction of the entire space. To that end, we rely on the (ap-
proximate) m-best solutions. Empirically, this is sufficient
to capture the majority of the mass within the joint proba-
bility distribution. We demonstrate our findings on the tasks
of person re-identification, sequential target matching, and
feature point matching. The first two tasks are reformulated
as a binary linear program and solved using binary tree par-
titioning [27]. The latter involves a quadratic cost function
such that only a local optimum can be achieved. Nonethe-
less, we show that a simple exclusion scheme is sufficient to
obtain a good approximation of the underlying distribution
and subsequently of the marginal distributions.

Building on existing methods, we outperform the re-
ported results by a large margin with little computational
overhead, achieving state-of-the-art performance on several
tasks. It is interesting to note that marginalization not only
increases the matching accuracy in the case of finding best
pairs of feature points, but also improves the matching rank,
as shown by examples of person re-identification.

2. Related Work

Graph matching is a fundamental problem in mathemat-
ics and computer science and has been explored in the con-
text of various applications in computer vision [8, 35, 45].
In this section, we will review some of the approaches most
relevant to our work.

Feature point matching is perhaps the most prominent ex-
ample for graph matching in computer vision. It aims to
find corresponding point pairs in two images, which can be
used for estimating homographies in static scenes, or act as

a pre-processing step for non-rigid structure from motion.
In most cases, the problem is formulated as a quadratic as-
signment problem (QAP), which is known to be NP-hard.
Therefore, the majority of the work is concerned with de-
veloping more efficient approaches to find a better approxi-
mation of the global optimum.

Early work by Gold and Rangarajan [ | | ] combines spar-
sity and soft assignment constraints to escape local min-
ima of the relaxed version of the problem. Leordeanu and
Hebert [15] proposed a spectral technique to find an ap-
proximate solution to QAP. Edge weights on the matching
graph model the likelihood that two objects correspond to
one another. This method is highly efficient because the
final assignment is recovered as the largest eigenvector of
the adjacency matrix of the graph. It has been later ex-
tended to incorporate affine constraints [5], leading to bet-
ter accuracy. Further, probabilistic formulations [4, 28, 36]
as well as matrix factorization in combination with path-
following algorithms for both undirected [45] and directed
[44] graphs have been explored. Recently, hypergraph tech-
niques [25, 34] have become popular for feature matching
due to their ability to incorporate higher-order dependencies
to capture the complexity of the problem more accurately.

Person re-identification, which aims to match people ob-
served at different times by different cameras, is another
example of a task that can be addressed via graph matching.
Typically, a transform function that describes the photomet-
ric, geometric or other sort of transformation between cam-
eras, needs to be established to find a pair of images that
belong to the same individual. The main differences of var-
ious approaches lie in the features used and the learning al-
gorithm. A comprehensive review and detailed discussions
of many recent approaches can be found in [29].

Mignon and Jurie [24] propose a pairwise constrained
component analysis (PCCA) specifically developed for
dealing with high-dimensional input spaces. A projec-
tion into low-dimensional space yields good generaliza-
tion while at the same time preserves desired pairwise con-
straints between data points. Li et al. [18] employ a deep
neural network to learn filter pairs that encode the photo-
metric transform between different views. Zheng et al. [43]
learn a probabilistic relative distance comparison (PRDC)
measure (0 discriminate true matches from wrong ones in
a maximum likelihood framework. Zhao et al. [40] con-
sider learning mid-level filters that strike a balance between
generalization and discriminative power, without requiring
tedious manual part annotations. Similarly, Liu ef al. [20]
investigate the importance of various features and propose
an unsupervised learning approach to learn the correspond-
ing weights. In their following work [21], a one-shot Post-
rank optimization (POP) enables weak supervision to refine
aresult manually. A symmetric decision function for image
pairs is learned in [ 1 9] and acts as both a distance metric and
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an adaptive thresholding rule to classify the input pair as be-
longing to the same or to two different instances. Xiong et
al. [30] provide a comprehensive analysis of various feature
and metric learning methods. In a recent work, an effective
distance learning based approach has been proposed to learn
ranking of the assignments using the Cumulative Match-
ing Characteristic (CMC) curve, a commonly used evalua-
tion measure in person re-identification [26]. Somewhat re-
lated to our work is the network consistent re-identification
(NCR) framework proposed by Das et al. [0]. A binary lin-
ear program is used to enforce consistent matching across
the network, which at the same time improves pairwise re-
identification performance between all camera pairs.

We have seen two examples of tasks that aim to find cor-
responding pairs in two disjoint sets. The majority of the
feature point matching literature concerns the optimization,
while re-identification focuses on learning better features.
In this paper, we address both from a different direction.
Building on any existing method, we are able to improve its
performance by considering multiple solutions and using a
modified similarity measure that arises from marginaliza-
tion.

3. One-to-One Graph Matching

In one-to-one graph matching problems, the aim is to
find the best unique match for a set of nodes, representing a
set of features or objects indexed by i € [A] = {1,--- , M}
in a graph G4, to another set of nodes indexed by j €
[B]o = {0,1,---, N} in graph G, using a joint matching
probability p(-) or objective cost f(-). Here, O is a place-
holder for a ‘dummy’ node in G to allow solutions where
a node from G 4 does not have a correspondence in Gj.

One-to-one matching can be represented by a bipartite
graph! (Fig. 1) and forms a discrete combinatorial problem
over the permutation space (Fig. 2). By definition, the one-
to-one matching space A" consists of all permutations where
each node in G 4 is uniquely assigned to a node in Gp. This
space can be defined by a set of binary vectors as follows:

= {X - (xz)ie[A],jE[B]g ‘ defon, M

vieB: > al<i, (a)
i€[A]
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where X € X C BM*(N+1D i a binary vector repre-
senting a possible solution to the entire matching problem
and rf = 1 means that node ¢ is matched to node j. To

10r, more generally, by a multipartite graph when more than two sets
of nodes are involved.

model the situation that more than one object cannot find its
counterpart, the uniqueness constraint does not hold for the
dummy node, allowing multiple object-to-dummy assign-
ments. Therefore, the one-to-one matching problem can be
solved by maximizing the probability of this binary vector
over the matching space X (MAP inference):

X* = argmax  p(X), 2
XeXx

or equivalently by minimizing the binary objective:

X* =argmin f(X), 3)
Xex
where p(X) or f(X) represent a joint matching distribution
or cost over the binary variables x7, respectively.

The exact definition of p(X) or f(X) is application de-
pendent and can in general take on any form. In some
applications such as multi-target tracking [37] and person
re-identification in surveillance cameras [6], p(X) can be
assumed to be statistically independent over each match-
ing variable 7, i.e. p(X) [Ivi; p(z])*7. In this case,
f(X) = CTX forms a binary linear program. In other
problems like stereo matching [23] or iterative closest point
algorithms [38], higher-order constraints, such as e.g. global
geometric transformation consistency, can be employed.

Depending on the exact formulation of f, the globally
optimal solution may or may not be easily achieved. More-
over, it turns out that in practice, even the optimal solution
does not necessarily yield the correct matching assignment.
This may sound counterintuitive, but we believe that this is
mainly due to the dramatic simplification of the objective to
unary or pairwise terms, which is necessary to keep the opti-
mization tractable. Incorporating all possible combinations
into the cost computation would exploit all available infor-
mation. This naive approach, however, would lead to fully
connected, high-order graphs that are impractical. In the
next sections we first introduce a probabilistic view on the
problem in the context of marginalizing the joint hypothe-
sis space and motivate how marginalization leads to an im-
proved matching probability (or matching cost) for a given
problem. We then propose a framework to approximate the
computationally prohibitive problem by considering only a
fraction of the entire solution space and show its validity on
challenging real-world applications.

4. Marginalizing the Joint Distribution

As discussed above, p(X) is a joint distribution defined
on the matching space X'. More formally, p(-) can be seen
as M -dimensional, discrete distribution over the permuta-
tions space (Fig. 2), containing M N+! elements, where the
entry (i,j) corresponds to the probability (or a similarity
score in the unnormalized case) that i € [A] and j € [B]o
should be matched. In real-world applications, p(X) often
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Figure 2: The joint hypothesis space from the matching ex-
ample in Fig. 1. The marginals for the objects S1 and S2
(dashed) are computed by summing over the joint space,
thereby gathering all relevant evidence to resolve ambigui-
ties and produce “smoother” distributions with less noise.

contains numerous solutions that are close to the global op-
timum in terms of their objective value, for instance due to
visual similarity or other ambiguities in the matching space.
In other words, we usually have a number of competing so-
Iutions which are almost equally likely, but finally, MAP es-
timation forces us to pick only one of them as the sole win-
ner. However, this choice is often not the correct matching
configuration (cf. red and blue solutions in Fig. 2). Includ-
ing other competing candidates provides valuable informa-
tion for a final collective decision.

An alternative approach is thus to marginalize p(X) over
all matching solutions. If the value p(X},) forall X, € X' is
known, a marginalized probability distribution p (2] =1) for
assigning the node 7 in G4 to the node j in Gg is calculated
by marginalizing p(X) over all permutations that include
xl =1:

7

plal =1) = p(X). )

>

{(Xex|zi=1}

Similarly, a joint matching cost cg is obtained as

2

{(Xex|zi=1}

¢/ = —log e F(X), )

Let us briefly motivate this approach. From a probabilis-
tic perspective, the marginalized distribution is computed
using the entire, possibly highly complex, joint probability
distribution, whereas the MAP estimate from Eq. (2) only
returns one single value of that distribution, oblivious of the
complexity of the problem. Another way of interpreting
our approach is to consider it as a Bayesian approximation
of the underlying distribution, as opposed to solely relying
on the maximum a-posteriori estimation. In our example

of matching, the marginals for one particular object contain
all possible matching permutations and thus encode all the
relevant information required to untangle potential ambigu-
ities.

Another advantage of marginalization is its averaging
or “smoothing” property that arises from summation (or
integration in the continuous case). This typically leads
to a less noisy approximation of the original joint space,
which in turn means a more informative distribution with
fewer matching ambiguities. This property can be dircctly
exploited to extract a more reliable candidate ranking for
matching. Finally, it is important to note that, under the
assumption that the original objective is linked to the true
matching accuracy, i.e. that a lower cost generally corre-
sponds to a better result, the max-marginal solution will
never be worse than the MAP estimate of the original cost.
If the joint distribution is unimodal or contains one single
strong peak, then marginalization will yield the exact same
solution as the MAP one. However, the exact shape of the
joint distribution is typically not known a priori, but is in-
deed rather complex in real-world applications. Hence, we
argue that relying on the marginal distribution is always the
safer choice.”

Despite the obvious benefits of marginalization, to the
best of our knowledge it has not yet been applied to
matching-related problems. We believe that this is mainly
due to the computational complexity required to obtain
the marginal distributions over a complex joint hypothe-
sis space. In the following, we present a well-founded ap-
proach to approximate it by considering not all, but only
few strongest matching hypotheses.

4.1. Approximation Using m-Best Solutions

The marginalized distribution p(z7 = 1) (or the cost ¢/)
can be approximated by considering a fraction of the entire
matching space that includes the m-highest joint probabil-
ities p(X) (or the m-lowest values for f(X)). Therefore,
p(z] = 1) and ¢ are respectively approximated by

paf=1)~ > pXp), ©)
{X;|Vke[m],zi=1}
and ' *
C‘Z ~ - log Z e_f(Xk)’ (7)

{X7|Vke[m],a!=1}

where X is the k-th optimal solution for Eq. (2) and (3),
respectively. Note that approximating p with only one so-
Iution (m=1) will yield the exact same final result as the
MAP estimate. By increasing m, we collect more and
more important samples from the joint distributions, which

2The marginalization in this case resembles Bayesian estimates of a
distribution (with uniform prior) which has superior performance to MAP
inference in the case of a multi-modal distribution.
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improves upon this approximation and consequently the
matching results®. Tt remains to clarify how we compute
the next-best solution, given the current one.

4.2. Implementation Details

To calculate the m-th solution of Eq. (2) or (3), we follow
one of two approaches: The first is a naive method that is
most general and can thus be applied to any arbitrary prob-
lem and used in conjunction with most available solvers.
The second is a more sophisticated approach recently intro-
duced in [27], only applicable to a certain class of problems.

Naive exclusion strategy. Let us assume that we can ob-
tain one (possibly globally) optimal solution X7, (with k=1)
to the binary minimization problem in Eq. (3) respecting the
constraints in Eq. (1), which corresponds to the MAP esti-
mate. The most straightforward approach to find the next
best solution is to exclude X; from the search space and
to rerun the optimization. This can be done by introducing
an additional inequality constraint (X, X}) < || X}, — 1.
Since X and X} are binary, the above inequality holds if
and only if X # X. This procedure can be repeated itera-
tively for £ = 2,...,m to obtain a more accurate approxi-
mation of the joint distribution. This approach is very gen-
eral and can be applied to any solver that can handle linear
constraints. However, the number of inequality constraints
increases with every iteration, which may render this strat-
egy impractical for large values of m.

Binary Tree Partitioning. If the optimization problem
in Eq. (3) can be solved optimally (or at least near opti-
mally), the binary tree partitioning (BTP) approach intro-
duced in [27] should be used instead. Here, redundant con-
straints are removed and the objective is found as a series of
second-best solutions®. While this strategy turns out to be
more efficient than the naive approach, it cannot be applied
to arbitrary problems, especially when the found solution is
far from the global optimum.

In this work, we rely on BTP for approximating the joint
distribution of a linear objective for person re-identification,
and in conjunction with a belief propagation approach for
quadratic programs [39] for feature matching, as it tends to
find strong optima. However, we turn to the naive approach
in the context of spectral matching [15], where the quality
of returned solutions is not suitable for BTP.

5. Experimental Results

To validate the strengths and generality of our approach,
we perform experiments on three separate applications.
First, we show how marginalization improves the ranking

3 Please refer to the supplemental material for more details.

measure of an already globally optimal solution in the con-
text of person re-identification (Re-ID) across camera view-
points. Second, we show a surprising result of tracking
multiple targets in challenging sequences without relying
on any dynamic cues. Finally, we present our method on
the application of feature point matching with a quadratic
objective function.

5.1. Person Re-Identification

Datasets. We demonstrate our proposed framework on
the task person re-identification on a variety of challeng-
ing public benchmarks that are commonly used in literature:
RAID [6], WARDI[22], iLIDS [42], 3DPES [ 1], VIPeR [ 12],
CUHKO1 [17] and CUHKO3 [10]. Each datasct contains
pairs of images belonging to the same individual, with the
number of pairs ranging from 20 to 485.

Implementation and evaluation. We employ the most
commonly used cumulative matching characteristic (CMC)
criterion [12] as the performance measure for evaluating
person Re-ID. This evaluation measure reports the recog-
nition rate at different ranking scores.

‘We achieve state-of-the-art results on all datasets, based
on the assignment costs of the best reported results to date.
In particular, for the RAiD and WARD datasets, we use
the similarity scores from learned feature transformation
(FT) and the same evaluation protocol used in [0]. For
the other datasets such as iLIDS, 3DPES, VIPeR, CUHKO1
and CUHKO3, we use the same visual features used in [26]
including SIFT/LAB, LBP/RGB, Region covariance and
CNN descriptors, all of which are weighted uniformly to
compute the overall similarity cost. This approach has been
reported as the baseline method (Avg. Feature) in [26].
Again, for consistency, we follow the exact same experi-
mental setup and evaluation protocol.

To apply the concept of marginalization, we first refor-
mulate the assignment problem as the following binary lin-
ear program (BLP)?

X* =argmin f(X)=CTX, ©)
Xex

subject to constraints in Eq. (1), where C' is the assignment
cost. The binary problem in Eq. (8) can be solved optimally
using LP relaxation [13]. To this end, we use the efficient
binary tree partitioning approach to calculate the m-best so-
lutions of the joint probability distribution. For all datasets,
we chose m = 100, which empirically is enough to approx-
imate the marginalized distribution. In Table 1, we report
the average processing times of our proposed method for
each dataset. Our code is implemented in MATLAB and
the experiments were carried out on a standard desktop PC
(Intel Core 47 — 4790 , 3.60 GHz CPU with 16 GB RAM).
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Dataset Recognition rate % Time
Method
(size) Rank-1 Rank-2  Rank-5 | (Sec.)
RAID FT [6] 74.0 82.0 96.0
(20 x 20) mbst-FT 85.0 99.0 100.0 1.6
WARD FT [6] 50.3 70.9 88.0
(35 x 35) mbst-FT 72.0 81.1 92.6 1.2
iLIDS AvgF [20] 51.9 60.7 72.4
(59 x 59) mbst-AvgF 54.7 63.6 75.4 15.4
3DPeS AvgF [26] 53.6 64.1 76.9
(96 x 96) mbst-AvgF 57.5 67.9 79.5 31.8
VIPeR AvgF [26] 44.9 58.3 76.3
(316 x 316) | mbst-AvgF 50.5 63.0 78.0 201.9
CUHKO1 AvgF [26] 51.9 63.3 75.1
(485 x 485) | mbst-AvgF 62.8 70.9 78.8 485.6
CUHKO3 AvgF [26] 57.4 1.7 85.9
(100 x 100) | mbst-AvgF 74.2 83.1 90.7 33.5

Table 1: Re-ID recognition rate on public datasets at differ-
ent ranks. For each dataset, we show the reported state-of-
the-art result and the improvement due to marginalization
on the original cost using m=100 best solutions as an ap-
proximation. The average processing time of our method
on each dataset is reported on the right.
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Figure 3: Comparison between CMC curves of the original
cost matrix (FT) [6], the network consistent re-identification
(NCR) on FT [6], which is the best known result on these
datasets, and our proposed m-best marginalization (for m =
100) on FT for RAiD (camera pairs 1-2) and WARD (cam-
cra pairs 2-3).

Further we employed the Gurobi ILP solver (version 5.6.3,
64bit).

Results. Table | lists the recognition rates at different
ranks (1, 2 and 5) for state-of-the-art results using the base-
line assignment costs [6, 26] and after applying our m-best
marginalization approach. The results show consistent and
significant improvements with respect to the original cost
for all recognition rates on all datasets reaching 100% at
rank 3 for RAiD.

Figures 3 and 4 show CMC curves on four exemplar
datasets. Our results are plotted with a dashed black line,
while the original assignment cost we used is rendered with
a black solid line. Note that marginalization yields supe-
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Figure 4: Comparison to state-of-the-art results on two chal-
lenging datasets. Our m-best approach (dashed black curve)
is computed based on the Average Features (AvgF) bascline
used in [206].

Figure 5: The results of our sequential re-identification on
frames 60 and 80 of the Seagulls sequence. Note that target
IDs are maintained merely by frame-wise visual matching,
without any dynamic model.

rior results when applied to the original cost compared to
a network consistency constraint (NCR) [0] or a sophis-
ticated feature learning approach (CMC'P) [26]. Fig. 4
additionally shows further recent results including simple
metric learning (KISSME) [14], salience matching [41],
learned mid-level filters [40] and a deep learning approach
(FPNN) [18].

5.2. Sequential Re-Identification.

To further challenge our proposed method, we test it on
a new problem we call sequential re-identification. Here,
the aim is to successfully match visually similar objects in
a video sequence by considering their appearance only and
without using a motion prior. In comparison with the clas-
sical Re-ID problem, all objects are captured from a single
camera and their appearance does not change much from
one time frame to another. However, the main difficulty is
that all objects exhibit strong visual similarity and without
considering motion, tracking becomes extremely challeng-
ing, even for human observers. This application is relevant
for low-framerate surveillance videos, where motion infor-
mation is unreliable.

To demonstrate the robustness of marginalization for vi-
sual matching, we employ several video sequences with vi-
sually similar objects used in [7]. In their work, Dicle et
al. [7] argue that tracking multiple similarly looking objects
can only be achieved by exploiting the target dynamics.
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Figure 6: An example of our matching results using mbst-
BP for the car dataset. Yellow lines indicate correct matches
and green lines matches between outliers. There are no in-
correct matches in this example.

Here, we show that even in this challenging scenario, a sim-
ple frame-by-frame matching of visual features using the
marginalized score and without relying on motion achieves
compatible, or even superior results.

Figures 5 shows a visual example of the temporal objects
matching. Note how visually similar targets are matched
correctly over long time periods. To quantify the perfor-
mance, we compute the common CLEAR [2] metric MOTA
that consists of identity switches, false positives and false
negatives. Surprisingly, we achieve 5% higher MOTA score
on average compared to the results of [7]. We refer the
reader to the supplemental material for more details and fur-
ther comparisons.

5.3. Feature Matching

As the third application, we apply our approach on the
task of feature point matching which is typically formulated
as a quadratic assignment problem [16]:

X* =argmax J(X)=X"KX, ©)]
Xex
where K is a global affinity matrix. Therefore, J(X) is
a quadratic similarity score. Note that we can obtain an
unnormalized version of the joint distribution p(+) from J(+)
as p(-) oc e”0),

Dataset and implementation. For this application, we use
the popular car and motorbikes dataset for feature point
matching from [16]. This dataset consists of 30 pairs of im-
ages of cars and 20 pairs of images of motorbikes from the
PASCAL VOC 2007 challenge [9] (cf. Fig. 6). Each im-
age pair contains 30-60 ground-truth correspondences be-
tween pairs of interest points, followed by several outlier
points. For the experimental setup and evaluation, we ap-
plied the script used in [44] to reproduce the same set of ex-
periments, following the exact same procedure to randomly
select 0 — 20 outliers for each image pair.

To support our claim that marginalizing using m-best so-
lutions helps to improve performance in this application,
we chose two independent state-of-the-art feature matching

algorithms: Integer Projected Fixed Point (IPFP) [16] and
a customized Belief Propagation (BP) solver [39], specif-
ically developed for matching problems. We applied the
naive exclusion approach to the former, and the binary tree
partitioning (BTP) to BP to calculate their m-best solutions,
respectively. The reasoning behind this choice is as follows:
The solutions found by IPFP are often rather far from the
global optimum. This may have an undesirable effect when
used with BTP because the search may be guided towards
the wrong portion of the solution space. BP, on the other
hand, returns near optimal results at each iteration. We
found in our experiments that the binary tree partitioning
yields better results in this case, despite the fact that global
optimality cannot be guaranteed.

Results. We report the averaged matching accuracy over all
image pairs in each experiment with same number of out-
liers and compare our results against the best solution from
two aforementioned solvers. Furthermore, we show results
from eight other competitive feature matching algorithms
including Graduated Assignment (GA) [!1], Probabilistic
Matching (PM) [36], Spectral Matching (SM) [15], Spectral
Matching with Affine Constraints (SMAC) [5], Reweighted
Random Walks Matching (RRWM) [4], Sequential Monte
Carlo Matching (SMCM) [28], Factorized Graph Matching
(FGM-D) [44] and HyperGraph Matching [25].

Fig. 7 (a) shows the matching results using the IPFP
and BP solvers and their marginalization results over m-
best solutions for two different values of m (m = 5 and
50). We see that marginalization consistently im-
proves both solvers’ matching accuracy. Moreover, increas-
ing the number of solutions does improve the accuracy as
well, which, of course, comes at the cost of higher process-
ing time. We also show that using only few m-best solu-
tions (m = 5) of BP, we can achieve sate-of-the-art results
in this application (Fig. 7 (b)). In Table 2, we also report
the matching accuracy results and processing time" of all
approaches for the experiments without any outliers” .

m =

6. Discussion and Limitations

We have seen in the previous sections that marginaliza-
tion improves one-to-one matching in real-world applica-
tions. Here, we discuss further findings and point to some
known limitations of this approach.

First, we examine the diversity of the m solution illus-
trated in Fig. 8 by their pairwise Hamming distance. In the
first example, the matching accuracy increases when a new
part of the solution space is discovered after about 40 iter-
ations. However, the example on the right does not show
a particular structure. Overall, we found empirically that
there is no apparent correlation between the similarity of

4Time is reported using the same hardware configuration as in Sec. 5.1.
°The results for Hypergraph method are extracted from the paper [25].
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Figure 7: (a): Matching accuracy for IPFP (yellow) and BP (black) using different values of m (m = 1, 5, 50). (b):
Comparison between different state-of-the-art matching approaches and mbst-BP for m = 5 (black dashed).
GA PM SM SMAC SMCM Hyper RRWM FGM-D TPFP-S BP
Graph m=1 m=5 m=50| m=1 m=5 m=10
Car (Acc) 0.62 057 0.74 0.79 0.72 0.79 0.88 091 0.83 0.88 0.90 0.92 0.94 0.95
Car (Time) 0.02 0.02 0.06 0.05 1.75 - 0.75 10.1 0.02 0.37 9.87 1.02 38.1 87.2
Motor (Acc) 075 0.67 0.78 0.86 0.87 0.88 0.93 0.94 0.86 0.89 0.94 0.97 0.99 0.99
Motor (Time) | 0.02 0.02 0.08 0.06 4.64 - 0.80 9.20 0.02 0.25 8.70 0.25 36.3 70.9

Table 2: Matching accuracy and processing times on car and motorbike datasets for the experiment without outliers.

Objective

o

20 40 0 80
Number of so?utions

20 40 0 80
Number of so?uti ons

Figure 8: Pairwise Hamming distance between m solutions
calculated using IPFP (left) and BP (right) solvers for two
feature points matching examples. Objective values (blue)
and matching accuracy (red) using marginalization for each
solution is shown on the bottom.

discovered solutions and their contribution towards approx-
imating the joint probability distribution.

Second, we would like to draw attention to the optimality
of the found solutions. When dealing with unary potentials
only, matching can be reformulated as a binary linear pro-
gram with an assignment matrix A, which can be solved
exactly. However, a solution of a quadratic program does
not guarantee the global optimum. We have observed in
our experiments, that by simply iterating through succes-
sive solutions, both with the naive exclusion approach and
with binary tree partitioning, a solution with a better objec-
tive value can sometimes be found, which in turn may show
a higher matching accuracy (cf. Fig. 8 (left)). Nonetheless,
this is not always the case and we have found that an addi-
tional marginalization step usually leads to the best outcome

(see Fig. 8 (right)).

One limitation of marginalizing the matching space is
that the one-to-one constraint is no longer guaranteed. This
shortcoming can still be resolved by an additional bipartite
matching step (e.g. using the Hungarian algorithm) on the
newly computed distribution. However, empirically, viola-
tion of the constraint is rare and we prefer to report the result
based on the raw output of our approach.

Finally, obtaining the (approximated) marginal distribu-
tion necessarily requires a computational overhead with re-
spect to the original problem. We believe that this is an
acceptable trade-off for a significant gain in accuracy.

7. Conclusion

We have presented a novel approach to graph matching.
Instead of focusing on optimization or feature learning, we
consider the approximate marginal distributions of the joint
hypothesis space. Our method is generic and can be applied
to any existing technique. The experimental results show a
clear benefit to our approach, yielding state-of-the-art per-
formance on several exemplar tasks. Evidently, consider-
ing the m-best solutions leads to higher accuracy in one-to-
one matching, as well as improving match ranking in the
re-identification case. In future, we plan to explore further
applications with arbitrary cost functions.
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