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Abstract

Traditional Feature Detectors and Trackers use informa-

tion aggregation in 2D patches to detect and match discrim-

inative patches. However, this information does not remain

the same at object boundaries when there is object motion

against a significantly varying background. In this paper,

we propose a new approach for feature detection, tracking

and re-detection that gives significantly improved results at

the object boundaries. We utilize level lines or iso-intensity

curves that often remain stable and can be reliably detected

even at the object boundaries, which they often trace. Sta-

ble portions of long level lines are detected and points of

high curvature are detected on such curves for corner de-

tection. Further, this level line is used to separate the por-

tions belonging to the two objects, which is then used for

robust matching of such points. While such CoMaL (Cor-

ners on Maximally-stable Level Line Segments) points were

found to be much more reliable at the object boundary re-

gions, they perform comparably at the interior regions as

well. This is illustrated in exhaustive experiments on real-

world datasets.

1. Introduction

Feature points in an image are points that have a distinc-

tive image structure around them and have been used in sev-

eral applications such as point tracking [25, 15, 31], Visual

Odometry (for Automotive Applications, for instance) [32,

11, 43], Optical Flow [22, 2], Stereo [17, 13, 18, 41], Struc-

ture from Motion (SfM) from video [41, 49], and Simulta-

neous Localization and Mapping (SLAM) [21] among oth-

ers. Most of the popular feature detectors (Harris [16],

Shi and Tomasi [42] SURF [4] and Hessian [28]) utilize

the whole information in a patch surrounding the point to

find feature points. For instance, the Harris detects points

that have significant aggregated gradients in orthogonal di-

rections in a surrounding patch. Many recent detectors
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Figure 1. A car moving against a varying background. Nearly half

of the patch centered on a Harris corner at the object boundary is

part of the background.

(AGAST [26], FAST [38] and FAST-ER [39]) use intensity

comparisons in different directions and use machine learn-

ing techniques to significantly speed up the computation.

These features have been matched using a variety of tech-

niques. The simple Sum-of-Squared-Distance(SSD), with

some local optimization [10, 23, 2, 25], is still typically

the method of choice when there are only small changes in

the illumination or viewpoint (for e.g. point tracking, flow

and stereo applications) while more complicated descriptors

such as SIFT [24] have been utilized where there are more

such variations. Many modern variants output a binary

descriptor for extremely efficient matching (BRIEF [6],

ORB [40], Daisy [45], FREAK [1] and NSD [5]).

While these Feature Detection and Matching approaches

perform reasonably in the interior of objects, they perform

quite poorly on the object boundaries [49]. This can be at-

tributed to two reasons. First, the detectors rely on fixed

(scalable) image patches which may straddle object bound-

aries and depth discontinuities and a change in these can

lead to a change in the detected object. Second, even if a

boundary point is detected at the same location w.r.t. one of

the objects, matching is very difficult as the part in the patch

belonging to the other object changes. (Fig. 1).

In this paper, we try to address these problems by propos-

ing an approach for Feature Detection and Matching that

can detect points accurately even in the presence of a chang-

ing background. At the same time, the support region is

automatically segmented into two parts which often corre-

spond to the regions belonging to the two objects. This en-

ables independent matching of these two parts and by con-

sidering only the matching part, the point can be matched
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accurately even in the presence of a changing background.

We utilize level lines (curves connecting points with the

same intensity) for this purpose by noting that the bound-

aries of objects are typically traced by such level lines,

which often move with the object (Fig 2). By detect-

ing turns/corners on level lines that do not change much

with intensity variations (stability property), discriminative

points can be found. We refer to such points as Corners on

Maximally-stable Level Line Segments (CoMaL). Further-

more, this level line itself typically separates the two ob-

jects in the case of object boundaries and thus, we match the

portions on either side of this curve separately and take the

higher score of the two. This makes the matching method

robust even in the boundary regions.

Several detectors have used level lines in the past [7],

the most popular among them being the Maximally Sta-

ble Extremal Regions(MSER) detector [27]. MSERs are

stable, closed level lines that were shown to return high

Repeatability and Matching scores in image matching ex-

periments [29]. They have also been used in hand and

object tracking [9], where the object is typically homoge-

neous and has little interior texture, causing the other detec-

tors to underperform. However, since MSER considers only

small closed level lines and throws away the information in

longer level lines in order to preserve the locality of a fea-

ture, it typically returns very few points and is not a popular

choice for many other detection and matching applications

where one needs to obtain a sufficient number of points

(Fig. 2(a)). In this work, we detect corners along long level

lines (Fig. 2(b)), which in fact are more stable than small

level lines in many cases such as blur [34, 36]. Such long

level lines have been used in the past by some detectors such

as LAF [34] and SAF [36], that build affine-invariant detec-

tors using some key tangent points on the curve. However,

they rely on very few particular key points on the curves to

compute the features, which makes them quite noisy. Also,

their affine-invariant property makes them less suitable for

the basic task of feature detection, where such methods un-

derperform [29]. Edges, which are closely related to level

lines, have been used to detect corners [47]. However,

edge-based feature detection is prone to a higher error as

edges can often be fragmented. In this paper, we restrict

ourselves to the problem of basic feature detection (with-

out any scale or affine invariance) that also allows us to use

much more robust measures for corner detection on such

level lines.

Our detection and matching technique gave superior re-

sults compared to other state-of-the-art algorithms on the

KITTI Vehicle dataset [14] with real-world sequences, with

significantly improved results on the object boundaries. Al-

though our method is applicable in many scenarios, results

are illustrated for two applications from this dataset: Point

Tracking and Optical Flow.

(a) (b)

Figure 2. (a) A long level line that forms the boundary of an ob-

ject. The information present along such level lines is discarded

by MSER. (b) A few corners (marked in red) detected by us on

locally stable portions of the level lines .

1.1. Related Work on Handling Boundary Regions

Several algorithms have been tried to address varying

backgrounds in boundary regions. The dominant edge is

used to separate the two regions at the object boundary for

the problem of Object Recognition in [30]. In object track-

ing, SegTrack [3], Chen et al. [8] and Oron et al. [35] iter-

atively build probabilistic appearance models for the fore-

ground and background in order to separate them for su-

perior object tracking.In stereo, Kanade and Okutomi [20]

and DAISY (Tola et al.) [45] adaptively determine the win-

dow/mask to use while matching each point. Almost all of

the above approaches for different problems utilize smooth-

ness constraints in a large region in an iterative manner to

disambiguate the possible matches at the object boundaries.

Thus, they have limitation when the object boundaries dom-

inate the object appearance (for e.g. thin objects). Further-

more, they need a good initialization. Our algorithm can

match points without such smoothness restrictions and on

objects having very little internal texture and can also be

used to provide some good matches as initializers for these

algorithms.

2. Corners on Maximally Stable Level Lines

We define our corners on level lines, which are lines con-

necting points having the same intensity. If the intensity

variation across the image is smooth or has been sufficiently

smoothed by a smoothing operation, then such level lines

form smooth curves in an image with nearby level lines hav-

ing close intensities (Fig. 3). Thus, by varying the intensity

of the level line, one can move these curves in space. Por-

tions on these level lines that do not move much when the

intensity is varied are portions with good perpendicular gra-

dients on the level line and are called stable in this work.

When additionally, such level lines turn, then such corner

points can be discriminated from other points in the neigh-

borhood and detected as feature points. We first consider

the stability of a level line segment extending on either side
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Figure 3. Stable and Unstable level lines in brown (top right) and

blue (bottom right) boxes respectively. The Green level line LL is

tested by considering LLN(LL, δ) and LLN(LL,−δ) level lines

in red and purple respectively. Note that the lines are very close in

the brown box due to which they mostly overlap in the illustration.

of a given candidate point p on a given level line, the ex-

tent of the segment being determined by the scale at which

points are to being detected.

2.1. Stability of a Level Line Segment

The first condition we desire for a corner point is that it

should lie in a region of high gradients. A level line that

has a high gradient on it is thus desirable. Although we can

compute this directly, a more robust approach is to consider

neighboring level lines and compute the distance between

these. We define a level line that is a neighbor of LL(I) and

is detected at an intensity of I + δ as LLN(LL(I), δ). A

high value of the gradient on LL (which is always perpen-

dicular to it) is characterized by close LLN’s for small δ’s.

The stability of a level line ρ(LL(I)) can then be defined

by considering the distance between LLN(LL(I),+δ) and

LLN(LL(I),−δ) for some given small value δ. This is

illustrated in Figure 3.

The Distance Measure The distance between neighbor-

ing level lines may be calculated using a variety of mea-

sures. A straightforward measure is to establish explicit

correspondences between the two curves by considering the

nearest points and then summing the distances between the

corresponding points. While this can be speeded up using

the Distance Transform, the corresponding points may not

be unique and may not cover all the points, especially in the

case of concave and convex curves, leading to noisy results.

Stable Affine Frames (SAF) [36] uses the maximum of

the distances between three particular pairs of correspond-

ing points instead of all the corresponding points. These

are two adjacent bi-tangent points on a level line and a cen-

tral high-curvature point. However, the detection of these

points, especially the bi-tangent, is known to be noisy. Fur-

ther, relying on just 3 points is not very robust.

In this work, we use the area between the two level lines

(a) (b)
Figure 4. (a) The Gaussian weight centered on point p (yellow) on

a level line LL. (b) The vectors connecting the points (in green) on

the level line segment to their mean (x̄, ȳ) (in red). The distribution

of these vectors is used to determine the cornerness of this level

line segment.

LLN(LL(I),+δ) and LLN(LL(I),−δ), normalized by

the length of the level line, as the distance measure. This

measure, based on the number of points between the two

curves, is more robust to noise in the curves. It is inspired

by MSER [27], which has been shown to be a robust detec-

tor in many evaluations [29].

Weighting the Points in the Patch We make a modifica-

tion to this measure in order to make it more robust. Essen-

tially, the points closer to the candidate corner p are more

important than points far from p. To achieve this effect,

while computing the area between the curves and the seg-

ment length of the level line, the points in the image patch

centered at the point p are weighed using a 2D Gaussian

GI(p, σ
low
I , σhigh

I , θ) centered at the candidate corner point

p. The Gaussian is aligned along the direction θ of the tan-

gent to the level line at the point p such that a high sigma

σhigh
I is used in the direction perpendicular to θ and a low

sigma σlow
I is used in the direction of the tangent (Fig 4(a)).

These σ’s are multiplied by the scale s at which the point

is to be detected. GI is truncated at 2 σI for efficiency pur-

poses.

Given such a weighting for the points in the surrounding

patch, the weighted length lenw is computed for the level

line segment LL(I, p, s) at intensity I centered along the

level line at the point p at scale s. Further, the weighted

area ∆Aw is calculated from the weighted points between

LLN(LL(I, p, s), δ) and LLN(LL(I, p, s),−δ). Then,

the stability ρ of the level line segment LL(I, p, s) using

the variation parameter δ is defined as:

1

ρ(LL(I, p, s), δ)
=

∆Aw(LL(I, p, s))

lenw(LL(I, p, s))
(1)

Essentially, 1/ρ measures the average weighted motion

of a point on LL(I, p, s) when the intensity I is varied. This

stability measure is computationally simple, symmetric and

more stable compared to many other alternatives since it
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relies on the characteristics of the entire curve and not just

a few points on it which can be noisy.

Given the stability of the level line segments, a non-

maximal suppression is finally done by picking only

those segments LL(I, p, s) that have a higher ρ than

their immediate neighbors: LLN(LL(I, p, s), 1) and

LLN(LL(I, p, s),−1). Such maximally stable level line

segments are denoted as MLL(I, p, s) in this work.

Such MLL’s are distinctive in their neighborhoods from

neighboring level lines. However, points on such level lines

are distinctive from each other only where the curve turns.

Such turns or corners on such level lines are detected using

the following approach:

2.2. Corners on MLL’s

The turn points or corners on maximally stable level line

segments MLL are distinctive and can be differentiated

from other points in the neighborhood. Thus, such points

will be detected as corner points in this work.

A popular and straightforward approach to find corners

on curves is by using the curvature [36, 7] which measures

the rate of change in the curve direction at any given point

of the curve (second derivative). Local maxima of such cur-

vature along the curve can be used as corner points. How-

ever, this measure can be somewhat noisy due to the use of

the second derivative. To make it less sensitive to noise, one

must use a fairly high precision which increases the running

time of the algorithm. We use a more robust and computa-

tionally much more efficient approach as it does not require

a high precision while computation.

The distribution of points on the curve centered at the

candidate corner point p is determined (Fig. 4(b)). The Co-

variance matrix Σs of such points at scale s is:

Σs = G(p, σs)⊗
[

(x− x̄)2 (x− x̄)(y − ȳ)
(x− x̄)(y − ȳ) (y − ȳ)2

]

(2)

where x̄ and ȳ are the x and y means of points and a 1D

Gaussian G(p, σs) is used to weigh the points on the level

line such that σs is proportional to the scale s.

The eigenvalues of Σs reflect the distribution of the

points along two principal orthogonal directions and high

values of both indicate a corner. Shi and Tomasi [42] and

Tsai et al. [46] use the minimum of the two eigenvalues as a

measure for cornerness, arguing that it better represents the

corner. However, computing the eigenvalues explicitly is

slow, due to which the original Harris Corner detector [16]

works on the second moment matrix of the image gradients

directly, defining cornerness as: det(Σs)− k · trace(Σs)
2.

Forstner et al [12] and Lowe et al. [24] use:

κ(s) = det(Σs)/trace(Σs)
2 =

(λ1 · λ2)

(λ1 + λ2)2
(3)

Due to the normalization, it is scale invariant and since

eigenvalues themselves are rotation invariant [16], this mea-

sure is also rotation invariant. This measure was found to be

suitable for our purposes and can also be computed fast and

is thus used in this work.

A threshold is applied on the cornerness κ(s) in order

to find points of high cornerness at scale s. Furthermore, a

non-maximal suppression is employed along the MLL’s to

yield corners that are well localized along the level line.

Finally, corner points are defined as:

Definition: A point p is a feature point at scale s if

LL(I(p), p, s) is maximally stable according to the sta-

bility measure ρ and the cornerness κ(s) of p is the local

maxima along LL(I(p)) at scale s.

The important point to note here is that all the tests above

have to be done by centering the curve and the patch at the

point p. Calculation of such stability for every point on ev-

ery level line is prohibitively slow. We next discuss an iter-

ative approach to search for such corner points efficiently.

3. Algorithm: Iterative Feature Detection

In order to perform this search efficiently, we note that

the maximally stable segments do not shift much when the

scale is varied. This allows us to run an initialization step

at a slightly higher scale (we use 2 times the scale of the

final detection) in overlapping blocks for an initial estimate

of the points. Furthermore, no weighting is used in this

step which allows it to be fast. Each of such initial cor-

ners is passed through an iterative refinement step where

the full constraints of patch centering at the detection point

and point weighting are applied for stability and cornerness

computations.

3.1. Initialization

The first step in the Initialization is to divide the image

into overlapping blocks of size 2Bs × 2Bs, where B is a

multiplying factor specifying the support region to be used

for corner detection and s is the scale at which we want to

detect the final corners. Maximally stable level line seg-

ments at scale 2s, MLL(2s), are detected in each image

block using a modified-MSER algorithm described next.

No weight scaling as described in the previous section is

applied. On such MLL
′s, an initial set of corners Cinit

s

is determined using Eq 3. The cornerness threshold is also

lowered a bit compared to the final detection threshold in

order to not miss any final corners.

Efficient MLL Detection using a Modified MSER Algo-

rithm: We modify the MSER algorithm to efficiently de-

tect maximally stable level line segments since the MSER
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detector efficiently maintains the set of level lines and the

area of the associated regions by the union-find algorithm.

We replace the MSER’s stability formulation with our for-

mulation in Eq. 1, which involves a division by the weighted

length of the level curve LL, which is an open curve, rather

than a division by the area of the closed level line, which

may not be the best thing to do in these blocks which often

truncate such level lines and extremal regions. This modi-

fied MSER algorithm is run on each image block to get an

initial set of stable level line segments MLL. Note that no

point weighting as proposed in Section 2.1 is applied here.

Approximations in Corner Computation Corner com-

putation is run on such detected MLL’s from each block.

The time consuming step is the convolution with a Gaus-

sian weight filter (Eq. 2) for the point contributions for each

test point. This step can be made efficient by using the Cen-

tral Limit Theorem to replace the Gaussian with an average

filter that can be applied multiple times to approximate the

effect of a Gaussian (The average filter is run 3 times for the

results in this work). The averaging operation is extremely

fast due to the applicability of Dynamic Programming. The

idea is similar in spirit to the approximate 2D Gaussians

implemented in SURF [4]. Such an approximation is pos-

sible in our approach since our cornerness measure is quite

robust to weight errors compared to other measures such

as the curvature which require more precise computations.

Note that there is no need to run this step at scale 2s and we

run this corner detection step at scale s itself.

Running Time A maximum init window stride of 2Bs/2
ensures that each of the points is captured in at least one

of the init windows. Since the MSER is a linear-time algo-

rithm [33], the computation of the MLL’s takes around 4

times the amount of time the MSER algorithm would take

on the entire image. The computation of the corners on such

MLL’s is again linear in the number of pixels on the level

lines, which is actually much lower than the number of pix-

els in the image and is thus extremely fast.

3.2. Iterative Point Refinement

Given an initial set of approximate corner locations ob-

tained from the initialization stage, we run an iterative re-

finement algorithm for each point so that in the end, the

level line is locally maximally stable with the detected point

p as its center, and the stability measure is computed with

the appropriate point weighting as specified in Section 2.1.

The first step in the refinement is to recompute the max-

imal level line MLL when the patch is centered at the cur-

rent estimate of p. A block of size of Bs×Bs is used as the

support region for point detection. The modified-MSER al-

gorithm as described in the previous section is used. Among

the many maximal level lines that may be found in this

Figure 5. (a) An Image divided into overlapping blocks of size

2Bs. Different blocks are shown in different colors for clarity

purposes. (b) A sample MLL in one sample block (top) and a

corner found on it (bottom). (c) The set of initial corners detected.

(d & e) The iterative procedure for point refinement. The MLL

and the initial point (pink) detected in the initial stage with a block

window of size 2Bs are used to center a block (yellow) of size Bs

in the first step of the iteration. This point moves to the red point.

When the window is now centered at this (red) point, it remains

the same and is thus detected as the final corner.

block, the one that is closest in terms of shape and distance

to the current one is taken as the new MLL. Appropriate

Gaussian weighting of the points is used, which also en-

sures that blocking causes minimal errors as the points near

the block boundaries will have very low weights. Corners

are re-detected on the new MLL at scale s and the one clos-

est to the previous one is taken as the updated corner point.

This process is repeated till the point stops moving. At

this stage, the point p satisfies both the conditions for our

feature point and is output as a corner point at scale s.

Typically, the initial level line remains fixed or moves to

only a nearby level line during the iterations and the max-

imum number of iterations was found to be only around 3
or 4 in our experiments. Each iteration is an order (Bs)2

operation where most of the time is taken by the linear-time

MSER algorithm running on the block of size Bs × Bs. It

is also important to note that the algorithm is trivially paral-

lelized, for example, by the use of GPUs. The whole itera-

tive procedure is illustrated in Fig. 5.

4. Point Matching

While one can use simple strategies, such as the SSD for

point tracking or descriptors such as SIFT to handle more

variations, they don’t work very well for the points on the

boundary of two objects as the surrounding patch may con-

tain regions from two relatively moving objects (an object
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(a) (b)
Figure 6. (a) +ve region (side with higher intensities) and (b) -

ve region (side with lower intensities) separated by the level line

shown in yellow. They are matched separately for better matching.

vs. its background). To handle such cases, we propose to

use the maximal level line on which the point was detected

as a separation boundary between two regions of the patch

and match the two regions separately (Fig. 6(b)). The basic

idea is that the boundary between two objects is typically

traced by a maximal level line which moves along with the

object and thus an MLL is a good separation boundary be-

tween two moving objects. By using such an approach, one

can correctly match boundary points on many objects, even

if the objects themselves are homogenous and textureless

and do not yield any corner points in the interior.

The SSD is used as the distance measure between the two

patches in our work, although more complicated descriptors

such as the SIFT can also be considered for many applica-

tions. A gradient descent is applied to the (half) patch be-

fore computing the SSD in order to deal with small shifts

and errors in point localization. The SSD values are com-

puted in the common(intersection) region of the masks of

the two patches being matched and are normalized by the

size of this region.

In case no external information is available, one can uti-

lize the above two-region matching approach for all the

points. However, if it is possible to classify the points as in-

terior and boundary points, perhaps in an iterative way, then

one can apply the two-region matching only to the boundary

points as considering only a part of the patch for matching

for the interior points does reduce the discriminability of the

matcher due to utilization of lesser information.

5. Experiments and Results

While scale and affine-invariant features have been de-

veloped for many applications, in this work, we have de-

veloped a basic feature detector that does not handle scale

or affine variations. Hence, we compare against basic fea-

ture detectors (Harris, Hessian, FAST) which are useful in

applications such as point detection and tracking in videos.

Thus, we evaluate for these applications only.

Harris, Hessian and FAST have been found to be the

best basic detectors in many evaluations [39, 48]. More

recent ones such as FAST-ER and AGAST improve the

speed of detection but their performance is quite similar to

FAST [26, 39] and thus only FAST was compared against.

All the scale and affine-invariant detectors [28, 29] includ-

ing level line based methods such as SAF [36] and LAF [34]

performed significantly worse than the basic point detec-

tors for these applications and are not shown, due to lack

of space.We include results for MSER since our method is

closely related to theirs.

Dataset: The dataset that we choose for evaluation is the

publicly available KITTI dataset [14]. The dataset has re-

alistic, challenging outdoor sequences with good ground-

truths. We evaluate our method on 11 video sequences for

Point Tracking and 194 image pairs for Optical Flow from

this dataset. Each vehicle in the tracking sequence moves

through roads against different backgrounds and the Opti-

cal Flow sequences consist of vehicles and other real-world

structures with significant depth discontinuities.

5.1. Vehicle tracking

We first consider a vehicle tracking application which

uses interest point tracking [11, 44, 43, 37, 41, 32, 19]. The

seminal KLT algorithm [25] is still quite popular for such

an application [43, 44, 32] along with its variants [11, 37].

In this application, interest points are detected and matched

in subsequent frames. While simple tracking might work

for a few frames, the tracks eventually get lost and have to

be re-detected and matched to the original ones for longer

term tracking.

11 challenging sequences from the KITTI dataset that

have significant variations in the background were selected

and we compare results for point matching at a gap of 1 and

5 frames to test the efficacy of the detectors and matchers

for shorter and longer range point matching respectively.

While matching, an appropriate neighborhood was set as

the search region in order to restrict the amount of motion

that each point can undergo.

Since the dataset contains only car tracking bounding

boxes, the ground truth for point matches was generated

from the annotated bounding boxes by assuming that the

relative location of a point w.r.t. to the bounding box re-

mains the same across frames. A small amount of error is

allowed, as the object is not rigid in 2D and there might be

some errors in the bounding box annotations. A 10-pixel

allowance was found to be sufficient for this dataset.

For a fair comparison, we equalize the average number

of detected features detected by a detector as far as possible.

For detectors that return very few points (e.g MSER), the

threshold is lowered as much as reasonably possible. For

CoMaL, the threshold used to vary the number of points is
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Seq CoMaL+SSD
SSD NSD SIFT

Harris Hessian MSER FAST Harris Hessian MSER FAST Harris Hessian MSER FAST

Gap of 1

CarA 165.7/0.7 99.9/0.7 150.3/0.7 25.5/0.6 84.3/0.7 105.8/0.6 150.5/0.7 25.8/0.6 103.7/0.6 95.5/0.6 126.2/0.6 26.0/0.6 105.7/0.7

CarB 159.4/0.7 53.9/0.7 126.9/0.7 20.4/0.5 108.1/0.7 57.9/0.6 130.3/0.7 19.8/0.6 140.0/0.7 55.1/0.7 125.5/0.7 20.3/0.6 115.4/0.7

CarC 111.4/0.7 46.3/0.7 88.2/0.7 14.1/0.6 82.7/0.7 41.1/0.7 93.3/0.7 12.2/0.6 92.3/0.7 43.6/0.7 99.2/0.7 14.2/0.6 96.2/0.7

CarD 162.8/0.7 39.7/0.7 125.0/0.7 16.5/0.6 95.0/0.7 50.9/0.7 141.0/0.7 17.8/0.7 140.5/0.7 52.0/0.7 142.8/0.6 19.2/0.6 137.2/0.7

CarE 134.4/0.8 36.4/0.7 115.6/0.8 13.2/0.7 109.5/0.8 39.2/0.8 120.8/0.8 14.6/0.8 127.1/0.8 39.9/0.8 123.4/0.8 14.8/0.8 127.0/0.8

CarF 95.1/0.8 45.7/0.7 79.1/0.7 14.0/0.6 51.5/0.7 37.3/0.8 83.1/0.8 11.5/0.8 52.4/0.8 43.0/0.7 74.3/0.7 13.2/0.7 61.8/0.7

CarG 66.5/0.8 26.0/0.8 57.3/0.8 6.9/0.7 48.4/0.8 25.3/0.8 48.0/0.8 7.0/0.8 53.9/0.8 27.0/0.8 51.1/0.8 7.5/0.8 55.4/0.8

CarH 98.4/0.8 42.3/0.7 58.8/0.8 9.3/0.6 43.9/0.8 31.6/0.8 79.6/0.8 7.5/0.8 56.1/0.9 33.5/0.8 74.6/0.8 8.9/0.8 60.4/0.8

CarI 370.6/0.7 171.5/0.6 280.3/0.6 54.0/0.5 262.5/0.6 185.9/0.6 339.0/0.6 57.1/0.6 324.5/0.6 179.6/0.6 342.7/0.6 58.1/0.6 345.0/0.6

CarJ 360.8/0.7 117.3/0.6 248.6/0.6 31.7/0.5 231.0/0.6 146.1/0.7 325.7/0.7 35.7/0.6 315.0/0.7 129.5/0.6 316.8/0.6 33.9/0.6 323.9/0.7

CarK 364.1/0.7 195.8/0.5 296.8/0.5 54.5/0.5 289.3/0.5 202.9/0.6 329.5/0.6 55.5/0.6 320.3/0.6 189.9/0.5 333.5/0.5 56.5/0.5 342.1/0.6

Gap of 5

CarA 84.6/0.7 55.7/0.7 60.6/0.6 15.9/0.6 30.3/0.6 45.6/0.7 74.7/0.7 11.5/0.7 42.5/0.7 30.7/0.7 53.5/0.7 8.7/0.7 25.1/0.7

CarB 120.2/0.7 49.7/0.7 102.8/0.7 21.1/0.6 91.2/0.7 48.1/0.7 71.2/0.7 18.7/0.7 63.4/0.7 31.4/0.7 89.2/0.7 15.0/0.7 80.9/0.7

CarC 78.8/0.7 32.5/0.7 49.6/0.7 11.1/0.6 49.4/0.7 18.6/0.7 51.2/0.7 6.8/0.7 47.6/0.7 19.2/0.7 59.8/0.7 7.4/0.7 54.9/0.7

CarD 57.4/0.8 10.6/0.7 36.2/0.8 4.6/0.7 33.7/0.8 15.7/0.8 47.4/0.8 6.0/0.7 45.6/0.8 9.7/0.8 38.6/0.8 3.8/0.7 40.3/0.8

CarE 91.2/0.8 20.1/0.8 80.1/0.8 7.9/0.8 83.7/0.8 23.9/0.8 83.4/0.8 8.8/0.8 82.8/0.8 17.5/0.8 76.5/0.8 6.7/0.8 85.8/0.8

CarF 62.7/0.7 36.1/0.7 44.6/0.7 8.9/0.7 31.1/0.7 16.6/0.7 40.1/0.7 5.1/0.7 26.6/0.7 15.2/0.7 40.1/0.7 5.5/0.7 27.5/0.7

CarG 57.4/0.8 21.1/0.8 39.5/0.8 6.2/0.8 36.6/0.8 21.0/0.8 52.8/0.8 5.8/0.8 50.0/0.8 17.8/0.8 53.8/0.8 5.2/0.8 56.5/0.8

CarH 52.4/0.8 27.0/0.8 43.9/0.8 6.9/0.8 37.1/0.8 27.2/0.8 43.3/0.8 6.7/0.8 40.6/0.8 20.9/0.8 48.1/0.8 6.0/0.8 40.0/0.8

CarI 275.7/0.7 112.9/0.7 191.6/0.7 40.0/0.6 193.6/0.7 110.8/0.7 215.2/0.7 37.8/0.7 202.8/0.7 85.8/0.7 184.5/0.7 31.8/0.7 191.3/0.7

CarJ 232.5/0.7 94.2/0.6 212.1/0.6 26.1/0.5 214.5/0.6 106.8/0.7 183.5/0.7 30.6/0.7 194.3/0.7 82.7/0.7 198.5/0.6 22.8/0.7 201.3/0.7

CarK 237.2/0.7 95.1/0.7 154.7/0.7 31.2/0.6 162.8/0.7 127.4/0.7 163.2/0.7 35.2/0.7 184.0/0.7 112.4/0.7 200.9/0.7 25.5/0.7 170.8/0.7

Total 122.7 50.4 91.9 15.3 87.6 51.0 93.2 15.7 89.1 40.3 94.8 12.5 88.6

Table 1. Number of Correct Matches Mcor for 11 video sequences from the KITTI Vehicle Tracking dataset averaged over all the frames

in the sequence. The second number is the Matching accuracy Macc for the method. The top rows show the results at a gap of 1 frame

(consecutive frames) while the bottom rows show results at a gap of 5 frames. The best result is highlighted in bold while the second best

is underlined.

Region CoMaL+SSD
SSD NSD SIFT

Haris Hessian MSER FAST Harris Hessian MSER FAST Harris Hessian MSER FAST

B 37.4/0.9 18.2/0.7 26.3/0.8 4.0/0.4 23.9/0.9 23.3/0.9 22.3/0.9 2.2/0.7 23.2/0.9 24.8/0.9 30.5/0.9 3.1/0.8 23.7/0.9

N-B 90.6/0.9 75.6/0.6 87.4/0.8 14.6/0.2 60.8/0.8 82.5/0.9 90.1/0.8 15.6/0.6 68.8/0.9 88.9/0.9 91.7/0.9 11.2/0.7 75.9/0.9

Table 2. Average number of correct matches Mcor for 194 pairs from the KITTI Flow dataset with the corresponding Matching accuracy

Macc in the B (Boundary), and N-B (Non-Boundary Regions). The best is in bold and the second best is underlined.

Figure 7. Frame numbers 88 and 93 in the sequence Car-B from

the KITTI dataset showing CoMaL + SSD matches in the first row

followed by next performing combination: Hessian + SIFT and

FAST + NSD in the 2nd and 3rd rows respectively. CoMaL points

are matched more numerously and accurately at the object bound-

ary regions in spite of a significant change in the background.

the threshold on the stability value ρ. For a fair compari-

son, we use a typical scale value of 8.4 for all the detectors

and all the other parameters for the detectors and descriptors

are kept at their default values used in standard implementa-

tions. Comparative results for other scale settings were sim-

ilar. While CoMaL is combined with only the SSD matcher,

the other detectors are combined with SSD, NSD [5] and

SIFT. CoMaL doesn’t work very well with SIFT or NSD as

the regions on either side of the level line are often homo-

geneous and not suitable for these descriptors.

We define the matching accuracy or precision Macc as

the ratio of the number of correct matches Mcor to the total

number of matches M found: Macc = Mcor/M . Equaliz-

ing this for the different algorithms by varying the matching

thresholds, one can compare the number of correct matches

generated by the algorithm averaged over all frames.

Fig 7 and videos in the supplementary section show

some qualitative results of the approach, while Table 1

shows the quantitative results. It is clear from the re-

sults that CoMaL yields a much higher number of correctly

matched points compared to other approaches at a similar

or higher accuracy. Generally, Hessian performs second,

closely followed by FAST. The superior performance of our

approach can be attributed to a much better performance

and resilience in the boundary regions that are quite signif-

icant for these vehicle objects, while the interior points are

correctly matched by most methods.
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Type Seq CoMaL+SSD
SSD NSD SIFT

Harris Hessian MSER FAST Harris Hessian MSER FAST Harris Hessian MSER FAST

Textured

Pens 27.6/0.9 12.6/0.8 8.5/0.9 0.2/0.2 3.2/0.8 14.8/0.9 17.0/0.9 0.3/0.3 15.1/0.9 12.1/0.8 20.8/0.9 0.5/0.4 12.3/0.9

Doll 39.0/0.9 14.8/0.8 11.7/0.8 0.6/0.3 9.0/0.8 21.4/0.9 29.4/0.9 0.4/0.5 31.1/0.9 16.2/0.8 22.3/0.9 0.7/0.6 24.7/0.9

Toy 31.2/0.8 9.0/0.7 13.6/0.8 0.7/0.4 12.3/0.8 13.1/0.8 11.9/0.8 0.3/0.3 11.7/0.8 10.4/0.7 12.8/0.8 0.4/0.4 13.6/0.8

Hero 47.4/0.9 16.4/0.9 17.8/0.9 1.2/0.5 16.7 /0.9 18.2/0.8 29.6/0.9 1.1/0.6 30.0/0.9 15.9/0.8 24.0/0.9 1.3/0.7 25.1/0.9

Race-car 52.5/0.9 17.0/0.8 18.6/0.8 0.7/0.5 12.4/0.9 20.7/0.9 30.6/0.9 0.4/0.4 27.9/0.9 16.5/0.8 31.0/0.9 0.6/0.5 28.3/0.9

Homogeneous

Box 37.5/0.9 14.5/0.9 21.8/0.9 0.5/0.2 19.3/0.9 19.4/0.9 19.2/0.9 0.3/0.4 18.8/0.8 16.3/0.9 25.3/0.9 0.5/0.4 24.5/0.9

Tape-Box 39.1/0.9 15.9/0.9 16.0/0.9 0.8/0.5 16.5/0.9 18.9/0.9 25.2/0.9 0.5/0.3 26.2/0.9 16.3/0.9 21.3/0.9 0.6/0.4 26.3/0.9

House 32.9/0.9 13.2/0.9 21.0/0.9 0.6/0.4 22.4/0.9 17.7/0.8 25.0/0.9 0.5/0.5 27.5/0.9 13.9/0.8 25.7/0.9 0.7/0.6 28.8/0.9

Average 38.4 14.2 16.1 0.7 14.0 18.0 23.5 0.5 23.6 14.7 22.9 0.7 23.0

Table 3. Number of Correct Matches Mcor on the boundary regions for sequences in the CoMaL dataset averaged over all the frames in

the sequence. The second number is the Matching accuracy Macc for the method. The best is in bold and the second best is underlined.

Figure 8. Top Row: Matches on a Homogenous object - Box. Bot-

tom Row: Matches on a Textured Object. CoMaL + SSD matches

are shown in the first two images while Hessian + SIFT matches

are shown in the last two.

5.2. Optical Flow

Optical flow is a dense point tracking problem and many

optical flow techniques use point feature tracking as an in-

put to the computation of flow for the entire scene [22, 2].

We evaluate our features for this application by matching

points across pairs of images and verifying them using the

ground-truth flow map provided with the dataset.

Since in this dataset, the full flow is available, one can

determine the boundary regions by looking at motion dis-

continuities. This helps us evaluate the detectors separately

at the boundary and non-boundary regions. The evaluation

criteria is chosen to be same as the vehicle tracking appli-

cation and Table 2 shows the average number of correctly

matched points across the given flow pairs on the boundary

and internal/non-boundary points separately.

In this test, it becomes clear that CoMaL + SSD outper-

forms the other approaches in the boundary regions while

performing close to the best detector and matcher combi-

nations in the non-boundary regions. Slightly lower perfor-

mance for our method can be expected in the non-boundary

portions as others use information from the whole patch for

matching while we use only around half of it.

5.3. Our Own Dataset

Finally, to evaluate the performance of the detectors at

the boundary regions and under a varying background, since

no suitable dataset exists in the literature, we have devel-

oped our own dataset. The background and the camera are

kept static that allows the use of background subtraction to

separate out the foreground from the background. This also

enables detection of the boundary regions between the fore-

ground and background for evaluation purposes.

Ground-truthing is done by extracting foreground blobs

and assuming that the the relative location of a point with

respect to the blob center does not change drastically over

the frames. Matches obtained with CoMaL+SSD and Hes-

sian+SIFT (which performs second-best) are shown visu-

ally for a homogeneous and textured object in Fig. 8.

Table 3 presents quantitative results at the boundary re-

gions. As can be seen, CoMaL beats all the competing

methods by a large margin at the boundaries for both ho-

mogenous and textured objects, with an overall increase of

14.8 correctly matched points on an average over FAST +

NSD which performs next best, closely followed by Hessian

+ NSD. Results at non-boundary regions are comparable to

other detectors (shown in supplementary section).

Discussion For applications with significant boundary

portions, our method can be used on its own. For other

applications, one could use our method with others such

as the Hessian, perhaps in an iterative framework, where

the boundary and non-boundary portions are estimated iter-

atively in order to determine the best algorithm to use for

different regions.

6. Conclusion and Future Work

We have presented an algorithm for corner detection and

matching that was found to be much more robust in the

boundary regions compared to existing approaches. This

is accomplished by detecting corners on maximally stable

level lines that often trace the object boundaries and by

matching the two regions separated by such level lines sep-

arately. Results on point tracking on several datasets includ-

ing the challenging real-world KITTI dataset show that our

method is able to extract and correctly match much more

points compared to existing approaches in the boundary re-

gions. Future work includes application to other problems

where our approach might be useful, such as SfM in video

sequences and stereo.
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[34] Š. Obdržálek and J. Matas. Object recognition using lo-

cal affine frames on maximally stable extremal regions. In

Toward Category-Level Object Recognition, pages 83–104.

Springer, 2006. 2, 6

[35] S. Oron, A. Bar-Hille, and S. Avidan. Extended lucas-kanade

tracking. In ECCV 2014, pages 142–156. Springer, 2014. 2

[36] M. Perdoch, J. Matas, and S. Obdrzalek. Stable affine frames

on isophotes. In ICCV 2007, pages 1–8, 2007. 2, 3, 4, 6

[37] M. Pollefeys, D. Nistér, J.-M. Frahm, A. Akbarzadeh, Mor-

dohai, et al. Detailed real-time urban 3d reconstruction from

video. IJCV, 78(2-3):143–167, 2008. 6

[38] E. Rosten and T. Drummond. Fusing points and lines for

high performance tracking. In ICCV 2005. 1

[39] E. Rosten, R. Porter, and T. Drummond. Faster and better: A

machine learning approach to corner detection. IEEE PAMI,

32:105–119, 2010. 1, 6

[40] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an

efficient alternative to sift or surf. In ICCV 2011. 1

[41] K. Sakurada, T. Okatani, and K. Deguchi. Detecting changes

in 3d structure of a scene from multi-view images captured

by a vehicle-mounted camera. In CVPR 2013, pages 137–

144. IEEE, 2013. 1, 6

[42] J. Shi and C. Tomasi. Good features to track. In CVPR 1994,

pages 593–600, 1994. 1, 4

[43] H. Song, S. Lu, X. Ma, Y. Yang, X. Liu, and P. Zhang. Ve-

hicle behavior analysis using target motion trajectories. In

Vehicular Technology, IEEE Transactions on, 2013. 1, 6

344



[44] S. Tanathong and I. Lee. Translation-based klt tracker under

severe camera rotation using gps/ins data. Geoscience and

Remote Sensing Letters, IEEE, 11(1):64–68, 2014. 6

[45] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense

descriptor applied to wide-baseline stereo. PAMI, 32(5):815–

830, 2010. 1, 2

[46] D.-M. Tsai, H.-T. Hou, and H.-J. Su. Boundary-based corner

detection using eigenvalues of covariance matrices. Pattern

Recognition Letters, 20(1):31–40, Jan. 1999. 4

[47] T. Tuytelaars and L. J. V. Gool. Matching widely separated

views based on affine invariant regions. IJCV, 59(1):61–85,

2004. 2

[48] T. Tuytelaars and K. Mikolajczyk. Local invariant feature

detectors: A survey. FnT Comp. Graphics and Vision, pages

177–280, 2008. 6

[49] G. Zhang, Z. Dong, J. Jia, T.-T. Wong, and H. Bao. Efficient

non-consecutive feature tracking for structure-from-motion.

In ECCV 2010, pages 422–435. Springer, 2010. 1

345


