CoMaL: Good Features to Match on Object Boundaries

Swarna K Ravindran∗ and Anurag Mittal
Indian Institute of Technology Madras
Chennai INDIA - 600036
swarnakr@cs.duke.edu, amittal@cse.iitm.ac.in

Abstract

Traditional Feature Detectors and Trackers use information aggregation in 2D patches to detect and match discriminative patches. However, this information does not remain the same at object boundaries when there is object motion against a significantly varying background. In this paper, we propose a new approach for feature detection, tracking and re-detection that gives significantly improved results at the object boundaries. We utilize level lines or iso-intensity curves that often remain stable and can be reliably detected even at the object boundaries, which they often trace. Stable portions of long level lines are detected and points of high curvature are detected on such curves for corner detection. Further, this level line is used to separate the portions belonging to the two objects, which is then used for robust matching of such points. While such CoMaL (Corners on Maximally-stable Level Line Segments) points were found to be much more reliable at the object boundary regions, they perform comparably at the interior regions as well. This is illustrated in exhaustive experiments on real-world datasets.

1. Introduction

Feature points in an image are points that have a distinctive image structure around them and have been used in several applications such as point tracking [25, 15, 31], Visual Odometry (for Automotive Applications, for instance) [32, 11, 43], Optical Flow [22, 2], Stereo [17, 13, 18, 41], Structure from Motion (SfM) from video [41, 49], and Simultaneous Localization and Mapping (SLAM) [21] among others. Most of the popular feature detectors (Harris [16], Shi and Tomasi [42] SURF [4] and Hessian [28]) utilize the whole information in a patch surrounding the point to find feature points. For instance, the Harris detects points that have significant aggregated gradients in orthogonal directions in a surrounding patch. Many recent detectors (AGAST [26], FAST [38] and FAST-ER [39]) use intensity comparisons in different directions and use machine learning techniques to significantly speed up the computation. These features have been matched using a variety of techniques. The simple Sum-of-Squared-Distance(SSD), with some local optimization [10, 23, 2, 25], is still typically the method of choice when there are only small changes in the illumination or viewpoint (for e.g. point tracking, flow and stereo applications) while more complicated descriptors such as SIFT [24] have been utilized where there are more such variations. Many modern variants output a binary descriptor for extremely efficient matching (BRIEF [6], ORB [40], Daisy [45], FREAK [1] and NSD [5]).

While these Feature Detection and Matching approaches perform reasonably in the interior of objects, they perform quite poorly on the object boundaries [49]. This can be attributed to two reasons. First, the detectors rely on fixed (scalable) image patches which may straddle object boundaries and depth discontinuities and a change in these can lead to a change in the detected object. Second, even if a boundary point is detected at the same location w.r.t. one of the objects, matching is very difficult as the part in the patch belonging to the other object changes. (Fig. 1).

In this paper, we try to address these problems by proposing an approach for Feature Detection and Matching that can detect points accurately even in the presence of a changing background. At the same time, the support region is automatically segmented into two parts which often correspond to the regions belonging to the two objects. This enables independent matching of these two parts and by considering only the matching part, the point can be matched

∗The author is currently at Duke University
accurately even in the presence of a changing background.

We utilize level lines (curves connecting points with the same intensity) for this purpose by noting that the boundaries of objects are typically traced by such level lines, which often move with the object (Fig. 2). By detecting turns/corners on level lines that do not change much with intensity variations (stability property), discriminative points can be found. We refer to such points as Corners on Maximally-stable Level Line Segments (CoMaL). Furthermore, this level line itself typically separates the two objects in the case of object boundaries and thus, we match the portions on either side of this curve separately and take the higher score of the two. This makes the matching method robust even in the boundary regions.

Several detectors have used level lines in the past [7], the most popular among them being the Maximally Stable Extremal Regions (MSER) detector [27]. MSERs are stable, closed level lines that were shown to return high Repeatability and Matching scores in image matching experiments [29]. They have also been used in hand and object tracking [9], where the object is typically homogeneous and has little interior texture, causing the other detectors to underperform. However, since MSER considers only small closed level lines and throws away the information in longer level lines in order to preserve the locality of a feature, it typically returns very few points and is not a popular choice for many other detection and matching applications where one needs to obtain a sufficient number of points (Fig. 2(a)). In this work, we detect corners along long level lines (Fig. 2(b)), which in fact are more stable than small level lines in many cases such as blur [34, 36]. Such long level lines have been used in the past by some detectors such as LAF [34] and SAF [36], that build affine-invariant detectors using some key tangent points on the curve. However, they rely on very few particular key points on the curves to compute the features, which makes them quite noisy. Also, their affine-invariant property makes them less suitable for the basic task of feature detection, where such methods underperform [29]. Edges, which are closely related to level lines, have been used to detect corners [47]. However, edge-based feature detection is prone to a higher error as edges can often be fragmented. In this paper, we restrict ourselves to the problem of basic feature detection (without any scale or affine invariance) that also allows us to use much more robust measures for corner detection on such level lines.

Our detection and matching technique gave superior results compared to other state-of-the-art algorithms on the KITTI Vehicle dataset [14] with real-world sequences, with significantly improved results on the object boundaries. Although our method is applicable in many scenarios, results are illustrated for two applications from this dataset: Point Tracking and Optical Flow.

1.1. Related Work on Handling Boundary Regions

Several algorithms have been tried to address varying backgrounds in boundary regions. The dominant edge is used to separate the two regions at the object boundary for the problem of Object Recognition in [30]. In object tracking, SegTrack [3], Chen et al. [8] and Oron et al. [35] iteratively build probabilistic appearance models for the foreground and background in order to separate them for superior object tracking. In stereo, Kanade and Okutomi [20] and DAISY (Tola et al.) [45] adaptively determine the window/mask to use while matching each point. Almost all of the above approaches for different problems utilize smoothness constraints in a large region in an iterative manner to disambiguate the possible matches at the object boundaries. Thus, they have limitation when the object boundaries dominate the object appearance (for e.g. thin objects). Furthermore, they need a good initialization. Our algorithm can match points without such smoothness restrictions and on objects having very little internal texture and can also be used to provide some good matches as initializers for these algorithms.

2. Corners on Maximally Stable Level Lines

We define our corners on level lines, which are lines connecting points having the same intensity. If the intensity variation across the image is smooth or has been sufficiently smoothed by a smoothing operation, then such level lines form smooth curves in an image with nearby level lines having close intensities (Fig. 3). Thus, by varying the intensity of the level line, one can move these curves in space. Portions on these level lines that do not move much when the intensity is varied are portions with good perpendicular gradients on the level line and are called stable in this work. When additionally, such level lines turn, then such corner points can be discriminated from other points in the neighborhood and detected as feature points. We first consider the stability of a level line segment extending on either side
of a given candidate point \(p \) on a given level line, the extent of the segment being determined by the scale at which points are to be detected.

2.1. Stability of a Level Line Segment

The first condition we desire for a corner point is that it should lie in a region of high gradients. A level line that has a high gradient on it is thus desirable. Although we can compute this directly, a more robust approach is to consider neighboring level lines and compute the distance between these. We define a level line that is a neighbor of \(\mathcal{L}(I) \) and is detected at an intensity of \(I + \delta \) as \(\mathcal{L}_N(\mathcal{L}(I), \delta) \). A high value of the gradient on \(\mathcal{L} \) (which is always perpendicular to it) is characterized by close \(\mathcal{L}_N \)'s for small \(\delta \)’s. The stability of a level line \(\varrho(\mathcal{L}(I)) \) can then be defined by considering the distance between \(\mathcal{L}_N(\mathcal{L}(I), +\delta) \) and \(\mathcal{L}_N(\mathcal{L}(I), -\delta) \) for some given small value \(\delta \). This is illustrated in Figure 3.

The Distance Measure The distance between neighboring level lines may be calculated using a variety of measures. A straightforward measure is to establish explicit correspondences between the two curves by considering the nearest points and then summing the distances between the corresponding points. While this can be speeded up using the Distance Transform, the corresponding points may not be unique and may not cover all the points, especially in the case of concave and convex curves, leading to noisy results.

Stable Affine Frames (SAF) [36] uses the maximum of the distances between three particular pairs of corresponding points instead of all the corresponding points. These are two adjacent bi-tangent points on a level line and a central high-curvature point. However, the detection of these points, especially the bi-tangent, is known to be noisy. Further, relying on just 3 points is not very robust.

In this work, we use the area between the two level lines \(\mathcal{L}_N(\mathcal{L}(I), +\delta) \) and \(\mathcal{L}_N(\mathcal{L}(I), -\delta) \), normalized by the length of the level line, as the distance measure. This measure, based on the number of points between the two curves, is more robust to noise in the curves. It is inspired by MSER [27], which has been shown to be a robust detector in many evaluations [29].

Weighting the Points in the Patch We make a modification to this measure in order to make it more robust. Essentially, the points closer to the candidate corner \(p \) are more important than points far from \(p \). To achieve this effect, while computing the area between the curves and the segment length of the level line, the points in the image patch centered at the point \(p \) are weighted using a 2D Gaussian \(G_I(p, \sigma_I^{low}, \sigma_I^{high}, \theta) \) centered at the candidate corner point \(p \). The Gaussian is aligned along the direction \(\theta \) of the tangent to the level line at the point \(p \) such that a high sigma \(\sigma_I^{high} \) is used in the direction perpendicular to \(\theta \) and a low sigma \(\sigma_I^{low} \) is used in the direction of the tangent (Fig 4(a)). These \(\sigma \)'s are multiplied by the scale \(s \) at which the point is to be detected. \(G_I \) is truncated at 2 \(\sigma_I \) for efficiency purposes.

figure 4. (a) The Gaussian weight centered on point \(p \) (yellow) on a level line \(\mathcal{L} \). (b) The vectors connecting the points (in green) on the level line segment to their mean \((\bar{x}, \bar{y})\) (in red). The distribution of these vectors is used to determine the cornerness of this level line segment.

Given such a weighting for the points in the surrounding patch, the weighted length \(\text{len}_w \) is computed for the level line segment \(\mathcal{L}(I, p, s) \) at intensity \(I \) centered along the level line at the point \(p \) at scale \(s \). Further, the weighted area \(\Delta A_w \) is calculated from the weighted points between \(\mathcal{L}_N(\mathcal{L}(I, p, s), \delta) \) and \(\mathcal{L}_N(\mathcal{L}(I, p, s), -\delta) \). Then, the stability \(\varrho \) of the level line segment \(\mathcal{L}(I, p, s) \) using the variation parameter \(\delta \) is defined as:

\[
\frac{1}{\varrho(\mathcal{L}(I, p, s), \delta)} = \frac{\Delta A_w(\mathcal{L}(I, p, s))}{\text{len}_w(\mathcal{L}(I, p, s))}
\]
relies on the characteristics of the entire curve and not just a few points on it which can be noisy.

Given the stability of the level line segments, a non-maximal suppression is finally done by picking only those segments \(\mathcal{LL}(I, p, s) \) that have a higher \(\rho \) than their immediate neighbors: \(\mathcal{LL}(\mathcal{LL}(I, p, s), 1) \) and \(\mathcal{LL}(\mathcal{LL}(I, p, s), -1) \). Such maximally stable level line segments are denoted as \(\mathcal{MLL}(I, p, s) \) in this work.

Such \(\mathcal{MLL} \)'s are distinctive in their neighborhoods from neighboring level lines. However, points on such level lines are distinctive from each other only where the curve turns. Such turns or corners on such level lines are detected using the following approach:

2.2. Corners on \(\mathcal{MLL} \)'s

The turn points or corners on maximally stable level line segments \(\mathcal{MLL} \) are distinctive and can be differentiated from other points in the neighborhood. Thus, such points will be detected as corner points in this work.

A popular and straightforward approach to find corners on curves is by using the curvature [36, 7] which measures the rate of change in the curve direction at any given point of the curve (second derivative). Local maxima of such curvature along the curve can be used as corner points. However, this measure can be somewhat noisy due to the use of the second derivative. To make it less sensitive to noise, one must use a fairly high precision which increases the running time of the algorithm. We use a more robust and computationally much more efficient approach as it does not require a high precision while computation.

The distribution of points on the curve centered at the candidate corner point \(p \) is determined (Fig. 4(b)). The Covariance matrix \(\Sigma_s \) of such points at scale \(s \) is:

\[
\Sigma_s = G(p, \sigma_s) \otimes
\begin{bmatrix}
(x - \bar{x})^2 & (x - \bar{x})(y - \bar{y}) \\
(x - \bar{x})(y - \bar{y}) & (y - \bar{y})^2
\end{bmatrix}
\]

(2)

where \(\bar{x} \) and \(\bar{y} \) are the \(x \) and \(y \) means of points and a 1D Gaussian \(G(p, \sigma_s) \) is used to weigh the points on the level line such that \(\sigma_s \) is proportional to the scale \(s \).

The eigenvalues of \(\Sigma_s \) reflect the distribution of the points along two principal orthogonal directions and high values of both indicate a corner. Shi and Tomasi [42] and Tsai et al. [46] use the minimum of the two eigenvalues as a measure for cornerness, arguing that it better represents the corner. However, computing the eigenvalues explicitly is slow, due to which the original Harris Corner detector [16] works on the second moment matrix of the image gradients directly, defining cornerness as: \(\det(\Sigma_s) - k \cdot \text{trace}(\Sigma_s)^2 \). Forstner et al. [12] and Lowe et al. [24] use:

\[
\kappa(s) = \frac{\det(\Sigma_s) - \text{trace}(\Sigma_s)^2}{\lambda_1 \cdot \lambda_2} = \frac{(\lambda_1 \cdot \lambda_2)}{(\lambda_1 + \lambda_2)^2}
\]

(3)

Due to the normalization, it is scale invariant and since eigenvalues themselves are rotation invariant [16], this measure is also rotation invariant. This measure was found to be suitable for our purposes and can also be computed fast and is thus used in this work.

A threshold is applied on the cornerness \(\kappa(s) \) in order to find points of high cornerness at scale \(s \). Furthermore, a non-maximal suppression is employed along the \(\mathcal{MLL} \)'s to yield corners that are well localized along the level line.

Finally, corner points are defined as:

Definition: A point \(p \) is a feature point at scale \(s \) if \(\mathcal{LL}(I(p), p, s) \) is maximally stable according to the stability measure \(\rho \) and the cornerness \(\kappa(s) \) of \(p \) is the local maxima along \(\mathcal{LL}(I(p)) \) at scale \(s \).

The important point to note here is that all the tests above have to be done by centering the curve and the patch at the point \(p \). Calculation of such stability for every point on every level line is prohibitively slow. We next discuss an iterative approach to search for such corner points efficiently.

3. Algorithm: Iterative Feature Detection

In order to perform this search efficiently, we note that the maximally stable segments do not shift much when the scale is varied. This allows us to run an initialization step at a slightly higher scale (we use 2 times the scale of the final detection) in overlapping blocks for an initial estimate of the points. Furthermore, no weighting is used in this step which allows it to be fast. Each of such initial corners is passed through an iterative refinement step where the full constraints of patch centering at the detection point and point weighting are applied for stability and cornerness computations.

3.1. Initialization

The first step in the Initialization is to divide the image into overlapping blocks of size \(2Bs \times 2Bs \), where \(B \) is a multiplying factor specifying the support region to be used for corner detection and \(s \) is the scale at which we want to detect the final corners. Maximally stable level line segments at scale \(2s \), \(\mathcal{MLL}(2s) \), are detected in each image block using a modified-MSER algorithm described next. No weight scaling as described in the previous section is applied. On such \(\mathcal{MLL} \)'s, an initial set of corners \(C_{\text{init}}^s \) is determined using Eq 3. The cornerness threshold is also lowered a bit compared to the final detection threshold in order to not miss any final corners.

Efficient \(\mathcal{MLL} \) Detection using a Modified MSER Algorithm: We modify the MSER algorithm to efficiently detect maximally stable level line segments since the MSER
detector efficiently maintains the set of level lines and the area of the associated regions by the union-find algorithm. We replace the MSER’s stability formulation with our formulation in Eq. 1, which involves a division by the weighted length of the level curve LL, which is an open curve, rather than a division by the area of the closed level line, which may not be the best thing to do in these blocks which often truncate such level lines and extremal regions. This modified MSER algorithm is run on each image block to get an initial set of stable level line segments MLL. Note that no point weighting as proposed in Section 2.1 is applied here.

Approximations in Corner Computation
Corner computation is run on such detected MLL’s from each block. The time consuming step is the convolution with a Gaussian weight filter (Eq. 2) for the point contributions for each test point. This step can be made efficient by using the Central Limit Theorem to replace the Gaussian with an average filter that can be applied multiple times to approximate the effect of a Gaussian (The average filter is run 3 times for the results in this work). The averaging operation is extremely fast due to the applicability of Dynamic Programming. The idea is similar in spirit to the approximate 2D Gaussians implemented in SURF [4]. Such an approximation is possible in our approach since our cornerness measure is quite robust to weight errors compared to other measures such as the curvature which require more precise computations. Note that there is no need to run this step at scale $2s$ and we run this corner detection step at scale s itself.

Running Time
A maximum init window stride of $2Bs/2$ ensures that each of the points is captured in at least one of the init windows. Since the MSER is a linear-time algorithm [33], the computation of the MLL’s takes around 4 times the amount of time the MSER algorithm would take on the entire image. The computation of the corners on such MLL’s is again linear in the number of pixels on the level lines, which is actually much lower than the number of pixels in the image and is thus extremely fast.

3.2. Iterative Point Refinement

Given an initial set of approximate corner locations obtained from the initialization stage, we run an iterative refinement algorithm for each point so that in the end, the level line is locally maximally stable with the detected point p as its center, and the stability measure is computed with the appropriate point weighting as specified in Section 2.1.

The first step in the refinement is to recompute the maximal level line MLL when the patch is centered at the current estimate of p. A block of size $Bs \times Bs$ is used as the support region for point detection. The modified-MSER algorithm as described in the previous section is used. Among the many maximal level lines that may be found in this block, the one that is closest in terms of shape and distance to the current one is taken as the new MLL. Appropriate Gaussian weighting of the points is used, which also ensures that blocking causes minimal errors as the points near the block boundaries will have very low weights. Corners are re-detected on the new MLL at scale s and the one closest to the previous one is taken as the updated corner point.

This process is repeated till the point stops moving. At this stage, the point p satisfies both the conditions for our feature point and is output as a corner point at scale s.

Typically, the initial level line remains fixed or moves to only a nearby level line during the iterations and the maximum number of iterations was found to be only around 3 or 4 in our experiments. Each iteration is an order $(Bs)^2$ operation where most of the time is taken by the linear-time MSER algorithm running on the block of size $Bs \times Bs$. It is also important to note that the algorithm is trivially parallelized, for example, by the use of GPUs. The whole iterative procedure is illustrated in Fig. 5.

4. Point Matching

While one can use simple strategies, such as the SSD for point tracking or descriptors such as SIFT to handle more variations, they don’t work very well for the points on the boundary of two objects as the surrounding patch may contain regions from two relatively moving objects (an object
Harris, Hessian and FAST have been found to be the best basic detectors in many evaluations [39, 48]. More recent ones such as FAST-ER and AGAST improve the speed of detection but their performance is quite similar to FAST [26, 39] and thus only FAST was compared against. All the scale and affine-invariant detectors [28, 29] including level line based methods such as SAF [36] and LAF [34] performed significantly worse than the basic point detectors for these applications and are not shown, due to lack of space. We include results for MSER since our method is closely related to theirs.

Dataset: The dataset that we choose for evaluation is the publicly available KITTI dataset [14]. The dataset has realistic, challenging outdoor sequences with good ground-truths. We evaluate our method on 11 video sequences for Point Tracking and 194 image pairs for Optical Flow from this dataset. Each vehicle in the tracking sequence moves through roads against different backgrounds and the Optical Flow sequences consist of vehicles and other real-world structures with significant depth discontinuities.

5.1. Vehicle tracking

We first consider a vehicle tracking application which uses interest point tracking [11, 44, 43, 37, 41, 32, 19]. The seminal KLT algorithm [25] is still quite popular for such an application [43, 44, 32] along with its variants [11, 37]. In this application, interest points are detected and matched in subsequent frames. While simple tracking might work for a few frames, the tracks eventually get lost and have to be re-detected and matched to the original ones for longer term tracking.

11 challenging sequences from the KITTI dataset that have significant variations in the background were selected and we compare results for point matching at a gap of 1 and 5 frames to test the efficacy of the detectors and matchers for shorter and longer range point matching respectively. While matching, an appropriate neighborhood was set as the search region in order to restrict the amount of motion that each point can undergo.

Since the dataset contains only car tracking bounding boxes, the ground truth for point matches was generated from the annotated bounding boxes by assuming that the relative location of a point w.r.t. to the bounding box remains the same across frames. A small amount of error is allowed, as the object is not rigid in 2D and there might be some errors in the bounding box annotations. A 10-pixel allowance was found to be sufficient for this dataset.

For a fair comparison, we equalize the average number of detected features detected by a detector as far as possible. For detectors that return very few points (e.g. MSER), the threshold is lowered as much as reasonably possible. For CoMaL, the threshold used to vary the number of points is

Figure 6. (a) +ve region (side with higher intensities) and (b) -ve region (side with lower intensities) separated by the level line shown in yellow. They are matched separately for better matching.
the threshold on the stability value \(\rho \). For a fair comparison, we use a typical scale value of 8.4 for all the detectors and all the other parameters for the detectors and descriptors are kept at their default values used in standard implementations. Comparative results for other scale settings were similar. While CoMaL is combined with only the SSD matcher, the other detectors are combined with SSD, NSD [5] and SIFT. CoMaL doesn’t work very well with SIFT or NSD as the regions on either side of the level line are often homogeneous and not suitable for these descriptors.

We define the matching accuracy or precision \(M_{acc} \) as the ratio of the number of correct matches \(M_{cor} \) to the total number of matches \(M \) found: \(M_{acc} = M_{cor}/M \). Equalizing this for the different algorithms by varying the matching thresholds, one can compare the number of correct matches generated by the algorithm averaged over all frames.

Fig 7 and videos in the supplementary section show some qualitative results of the approach, while Table 1 shows the quantitative results. It is clear from the results that CoMaL yields a much higher number of correctly matched points compared to other approaches at a similar or higher accuracy. Generally, Hessian performs second, closely followed by FAST. The superior performance of our approach can be attributed to a much better performance and resilience in the boundary regions that are quite significant for these vehicle objects, while the interior points are correctly matched by most methods.

![Image](image.png)

Table 1. Number of Correct Matches \(M_{cor} \) for 11 video sequences from the KITTI Vehicle Tracking dataset averaged over all the frames in the sequence. The second number is the Matching accuracy \(M_{acc} \) for the method. The top rows show the results at a gap of 1 frame (consecutive frames) while the bottom rows show results at a gap of 5 frames. The best result is highlighted in bold while the second best is underlined.

<table>
<thead>
<tr>
<th>Seq</th>
<th>CoMaL+SSD</th>
<th>SSD</th>
<th>NSD</th>
<th>SIFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CarA</td>
<td>165.7/0.7</td>
<td>99.9/0.7</td>
<td>150.3/0.7</td>
<td>25.5/0.6</td>
</tr>
<tr>
<td>CarB</td>
<td>159.4/0.7</td>
<td>73.9/0.7</td>
<td>126.9/0.7</td>
<td>20.4/0.5</td>
</tr>
<tr>
<td>CarC</td>
<td>114.3/0.8</td>
<td>46.3/0.7</td>
<td>88.2/0.7</td>
<td>14.1/0.6</td>
</tr>
<tr>
<td>CarD</td>
<td>162.8/0.7</td>
<td>39.7/0.7</td>
<td>125.0/0.7</td>
<td>16.5/0.6</td>
</tr>
<tr>
<td>CarE</td>
<td>134.4/0.8</td>
<td>36.4/0.7</td>
<td>115.6/0.7</td>
<td>13.2/0.7</td>
</tr>
<tr>
<td>CarF</td>
<td>95.1/0.8</td>
<td>45.7/0.7</td>
<td>79.1/0.7</td>
<td>14.0/0.6</td>
</tr>
<tr>
<td>CarG</td>
<td>66.3/0.8</td>
<td>26.0/0.7</td>
<td>57.3/0.7</td>
<td>8.9/0.7</td>
</tr>
<tr>
<td>CarH</td>
<td>98.4/0.8</td>
<td>42.3/0.7</td>
<td>58.8/0.7</td>
<td>9.3/0.7</td>
</tr>
<tr>
<td>CarI</td>
<td>370.6/0.7</td>
<td>171.5/0.7</td>
<td>280.3/0.7</td>
<td>54.0/0.9</td>
</tr>
<tr>
<td>CarJ</td>
<td>360.8/0.7</td>
<td>117.3/0.7</td>
<td>248.6/0.7</td>
<td>31.7/0.7</td>
</tr>
<tr>
<td>CarK</td>
<td>364.1/0.7</td>
<td>195.8/0.7</td>
<td>296.8/0.7</td>
<td>54.5/0.9</td>
</tr>
</tbody>
</table>

Table 2. Average number of correct matches \(M_{cor} \) for 194 pairs from the KITTI Flow dataset with the corresponding Matching accuracy \(M_{acc} \) in the B (Boundary), and N-B (Non-Boundary Regions). The best is in bold and the second best is underlined.

<table>
<thead>
<tr>
<th>Region</th>
<th>CoMaL+SSD</th>
<th>SSD</th>
<th>NSD</th>
<th>SIFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>37.4/0.9</td>
<td>18.2/0.7</td>
<td>26.3/0.8</td>
<td>4.0/0.7</td>
</tr>
<tr>
<td>N-B</td>
<td>90.6/0.9</td>
<td>75.6/0.7</td>
<td>67.4/0.8</td>
<td>14.6/0.2</td>
</tr>
</tbody>
</table>

Figure 7. Frame numbers 88 and 93 in the sequence Car-B from the KITTI dataset showing CoMaL + SSD matches in the first row followed by next performing combination: Hessian + SIFT and FAST + NSD in the 2nd and 3rd rows respectively. CoMaL points are matched more numerously and accurately at the object boundary regions in spite of a significant change in the background.
5.2. Optical Flow

Optical flow is a dense point tracking problem and many optical flow techniques use point feature tracking as an input to the computation of flow for the entire scene [22, 2]. We evaluate our features for this application by matching points across pairs of images and verifying them using the ground-truth flow map provided with the dataset.

Since in this dataset, the full flow is available, one can determine the boundary regions by looking at motion discontinuities. This helps us evaluate the detectors separately at the boundary and non-boundary regions. The evaluation criteria is chosen to be same as the vehicle tracking application and Table 2 shows the average number of correctly matched points across the given flow pairs on the boundary and internal/non-boundary points separately.

In this test, it becomes clear that CoMaL + SSD outperforms the other approaches in the boundary regions while performing close to the best detector and matcher combinations in the non-boundary regions. Slightly lower performance for our method can be expected in the non-boundary portions as others use information from the whole patch for matching while we use only around half of it.

5.3. Own Dataset

Finally, to evaluate the performance of the detectors at the boundary regions and under a varying background, since no suitable dataset exists in the literature, we have developed our own dataset. The background and the camera are kept static that allows the use of background subtraction to separate out the foreground from the background. This also enables detection of the boundary regions between the foreground and background for evaluation purposes.

Ground-truthing is done by extracting foreground blobs and assuming that the relative location of a point with respect to the blob center does not change drastically over the frames. Matches obtained with CoMaL+SSD and Hessian+SIFT (which performs second-best) are shown visually for a homogeneous and textured object in Fig. 8.

Table 3 presents quantitative results at the boundary regions. As can be seen, CoMaL beats all the competing methods by a large margin at the boundaries for both homogeneous and textured objects, with an overall increase of 14.8 correctly matched points on an average over FAST + NSD which performs next best, closely followed by Hessian + NSD. Results at non-boundary regions are comparable to other detectors (shown in supplementary section).

Discussion

For applications with significant boundary portions, our method can be used on its own. For other applications, one could use our method with others such as the Hessian, perhaps in an iterative framework, where the boundary and non-boundary portions are estimated iteratively in order to determine the best algorithm to use for different regions.

6. Conclusion and Future Work

We have presented an algorithm for corner detection and matching that was found to be much more robust in the boundary regions compared to existing approaches. This is accomplished by detecting corners on maximally stable level lines that often trace the object boundaries and by matching the two regions separated by such level lines separately. Results on point tracking on several datasets including the challenging real-world KITTI dataset show that our method is able to extract and correctly match much more points compared to existing approaches in the boundary regions. Future work includes application to other problems where our approach might be useful, such as SfM in video sequences and stereo.
References

