
Dense Monocular Depth Estimation in Complex Dynamic Scenes
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Abstract

We present an approach to dense depth estimation from

a single monocular camera that is moving through a dy-

namic scene. The approach produces a dense depth map

from two consecutive frames. Moving objects are recon-

structed along with the surrounding environment. We pro-

vide a novel motion segmentation algorithm that segments

the optical flow field into a set of motion models, each with

its own epipolar geometry. We then show that the scene

can be reconstructed based on these motion models by opti-

mizing a convex program. The optimization jointly reasons

about the scales of different objects and assembles the scene

in a common coordinate frame, determined up to a global

scale. Experimental results demonstrate that the presented

approach outperforms prior methods for monocular depth

estimation in dynamic scenes.

1. Introduction

Can mobile monocular systems densely estimate the spa-

tial layout of complex dynamic scenes? Can a mobile robot,

UAV, or wearable device equipped with a single video cam-

era see complex dynamic environments in three dimen-

sions? In static scenes, dense depth can be recovered from

a single video captured by a moving camera using the es-

tablished theory of multiple view geometry [35, 9]. Can

this theory be extended to reconstruct complex scenes from

monocular video when both the camera and the scene are in

motion?

To support challenging field applications, a monocular

depth reconstruction approach should have a number of

characteristics. It must provide complete dense reconstruc-

tions, in order to support dense mapping and detailed geo-

metric reasoning. It must natively handle complex scenes,

with dozens of objects moving independently in a complex

environment. It must accommodate non-rigid motion, so as

to properly perceive people, animals, and articulated struc-

Figure 1: Given two frames from a monocular video of a

dynamic scene captured by a single moving camera, our ap-

proach computes a dense depth map that reproduces the spa-

tial layout of the scene, including the moving objects. Top:

input frames. The white vehicle is approaching the camera,

while the camera itself undergoes forward translation and

in-plane rotation. Bottom: the estimated depth map.

tures. And it must accommodate realistic camera models,

including perspective projection.

In this paper, we present a monocular depth estimation

approach that has all of these characteristics. The approach

densely estimates depth throughout the visual field, includ-

ing both static and dynamic parts of the environment. Mul-

tiple moving objects, complex geometry, and non-rigid mo-

tion are accommodated. The approach works with perspec-

tive cameras and yields metric reconstructions.

Our approach comprises two stages. The first stage per-

forms motion segmentation. This stage segments the dy-

namic scene into a set of motion models, each described

by its own epipolar geometry. This enables reconstruction

of each component of the scene up to an unknown scale.

We propose a novel motion segmentation algorithm that is

based on a convex relaxation of the Potts model [5]. Our al-

gorithm supports dense segmentation of complex dynamic

scenes into possibly dozens of independently moving com-

ponents.

The second stage assembles the scene in a common met-
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ric frame by jointly reasoning about the scales of different

components and their location relative to the camera. The

main insight is that moving objects do not exist in a vac-

uum, but fulfill intrinsic occluder-ocludee relationships with

respect to each other and the static environment. This can

be used to reason about the placement of different objects in

the scene. We formulate this reconstruction problem as con-

tinuous optimization over scales and depths and introduce

ordering and connectivity constraints to assemble the scene.

The result is a reconstruction of the dynamic scene from

only two frames, determined up to a single global scale.

We evaluate the presented approach on complex dy-

namic sequences from the challenging Sintel and KITTI

datasets [4, 13]. In all cases, the input is monocular video:

we do not use stereo or depth input. Our approach out-

performs prior depth estimation techniques by a significant

margin. Figure 1 shows a reconstruction produced by the

presented approach on a dynamic scene from the KITTI

dataset.

2. Prior Work

Three significant families of approaches have been pro-

posed for estimating dynamic scene geometry from monoc-

ular video: multibody structure-from-motion, non-rigid

structure-from-motion, and non-parametric depth transfer.

We briefly review each approach in turn.

Multibody structure-from-motion is the most direct ex-

tension of classical multi-view geometry to dynamic envi-

ronments [10, 24, 21, 38, 26, 29]. This approach is based

on the assumption that the environment consists of multiple

rigidly moving objects. The basic idea is to cluster feature

tracks and fit rigid motion models to each cluster. Since

each cluster is assumed to be rigid, traditional multi-view

techniques can be applied to estimate its motion, assuming

proper segmentation and a sufficient number of tracks. This

approach typically assumes a small set of rigid objects in

the scene and has not produced detailed reconstructions of

complex scenes with non-rigidly moving objects. We con-

tribute new robust formulations that accommodate signifi-

cantly more general objects and environments.

The second family of approaches for three-dimensional

reconstruction of dynamic scenes from monocular video is

non-rigid structure-from-motion [33, 1, 28, 31]. The elegant

mathematical formulations employed by these approaches

hinge on strong assumptions: typically, object shape or mo-

tion trajectory matrices are assumed to be low-rank and the

camera model is assumed to be orthographic. This severely

restricts the applicability of these techniques. While re-

cent work has sought to relax some of the constraints of

earlier formulations [12, 27, 11], significant limitations re-

main. For example, Garg et al. [12] reconstruct a sin-

gle foreground object that is assumed to be manually pre-

segmented. Russell et al. [27] deal with scenes dominated

by a single foreground object and demonstrate reconstruc-

tion results qualitatively on three videos. Fragkiadaki et

al. [11] produce non-metric reconstructions of track clusters

in separate coordinate systems and do not estimate the lay-

out of the scene. In contrast, our approach estimates dense

depth for complex dynamic scenes over the entire visual

field. All objects are reconstructed jointly, yielding con-

sistent reconstructions of complete scenes.

The third family of approaches for monocular depth es-

timation in dynamic scenes is non-parametric depth trans-

fer [19, 20]. This approach relies on the availability of a

dataset of color-depth image pairs at test time. The dataset

is assumed to contain scenes that have a similar geometric

layout and similar appearance to the test scene. For a given

test video, similar images are retrieved from the dataset for

every frame, corresponding depth images are warped to fit

the test frames, and the resulting depth estimates are spatio-

temporally regularized. This approach requires the avail-

ability of an appropriate dataset with ground-truth depth

data at test time. It is limited to environments that are

compatible with the available training data. In contrast, we

present a geometric method that does not require a training

dataset and naturally applies to novel environments.

Motion and epipolar models can also be used to improve

optical flow estimation. Hornacek et al. [17] used an over-

parametrization approach to estimate optical flow, which

also explicitly reasons about the depth and rigid body mo-

tion at each pixel in the image. They recover depth only up

to an unknown scale for each rigid object, since their main

goal is to use epipolar models to guide optical flow estima-

tion.

3. Overview and Preliminaries

The proposed pipeline consists of two major stages.

First, the scene is segmented into a set of epipolar motion

models. The segmentation is performed on optical flow and

is formulated as a variational labeling problem. (Note that

segmentation of the optical flow field has been explored in

the past [36, 30, 37].) The second stage performs triangula-

tion and joint reconstruction of all objects. The key assump-

tion in the second stage is that the scene consists of objects

that are connected in space. In particular, we assume that

dynamic objects are connected to the surrounding environ-

ment. This assumption is true for many scenes likely to be

encountered by a mobile vision system, such as a robot or

a wearable device. In particular, vehicles and people are

generally supported by surrounding structures. Note that

we do not make narrow assumptions about the supporting

structures, say by estimating the ground plane, but infer the

point of attachment flexibly by reasoning about the scene as

a whole.

Let M be the number of pixels in the image. We index

integer positions on the image grid using the superscript
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i: for example, (xi, yi) refers to the x and y coordinates

of the pixel indexed by i. We use the standard operator

∇ : RM → R
2M to denote the linear operator correspond-

ing to the discrete forward differences in the x and y direc-

tions. We denote the standard Euclidean norm by ‖·‖ and

use subscripts whenever a different norm is used. Specifi-

cally, we will make use of the following norm:

‖p‖2,1 =

M
∑

i=1

√

(pi)2 + (pi+M )2, p ∈ R
2M . (1)

4. Motion Segmentation

The task of the motion segmentation stage is to decom-

pose the dynamic scene into a set of independent rigid mo-

tions, each described by a fundamental matrix, together

with a per-pixel assignment to these motion models. Note

that this approach automatically oversegments non-rigid ob-

jects into approximately rigid parts. We estimate the num-

ber of independent rigid motions as part of the global opti-

mization to ensure that non-rigid motions are approximated

well. To generate metric reconstructions, we assume that

the intrinsic camera parameters are known. In this form,

the motion segmentation problem is an instance of the more

general multiple-model fitting problem. Existing state-of-

the-art approaches typically assume sparse correspondences

[18, 22, 27] and are thus unable to process dense correspon-

dence fields in reasonable time. We propose a new approach

that efficiently handles dense correspondence fields, as pro-

duced by dense optical flow estimation. Our approach is

most closely related to the discrete energy-based multiple-

model fitting approach of Isack and Boykov [18], but op-

erates on soft assignments and models the data association

as a continuous convex problem. This allows us to leverage

recent advances in convex optimization [6] and enables an

efficient GPU-based implementation.

The motion segmentation takes as input a dense optical

flow field f = (fx, fy) : fx, fy ∈ R
M between images I1

and I2, and produces a soft assignment ul ∈ [0, 1]M of each

pixel to either one of L distinct motion models Fl or an ad-

ditional outlier label L + 1. We formulate this as a joint

labeling and estimation problem, where we additionally ex-

ploit the fact that nearby pixels are likely to belong to the

same motion model:

(u∗
l , F

∗
l ) = arg min

ul,Fl

L+1
∑

l=1

ul · g(Fl) + ‖Wl∇ul‖2,1 (2)

subject to

L+1
∑

l=1

ui
l = 1, ui

l ≥ 0 (SPX)

∀l. rank(Fl) = 2. (EPI)

To measure the fitting error of the motion models with re-

spect to the observed correspondences, we compute the

symmetric distance to the epipolar lines [16] for each model

l ∈ {1 . . . L}:

gi(Fl) = d(xi
1, Fl x

i
2)

2 + d(xi
2, F

⊤
l xi

1)
2, (3)

where xi
1 = [xi, yi, 1]⊤ are homogeneous coordinates in

the first image, xi
2 = [xi − f i

x, y
i − f i

y, 1]
⊤ denote their

corresponding homogeneous coordinates in the second im-

age, and d denotes the Euclidean point-to-line distance.

With a slight abuse of notation, we assign a fixed cost

g(FL+1) = γ to the outlier label. We further estimate oc-

clusions and gross errors in the optical flow using a forward-

backward consistency check and fix the assignment of oc-

cluded pixels to the outlier label. The smoothness term

‖Wl∇ul‖2,1 reflects the fact that nearby correspondences

are likely to belong to the same motion model. We use a di-

agonal weighting matrix Wl to enable edge-preserving reg-

ularization based on the reference image I1:

Wl = diag
(

exp
(

− β ‖∇I1‖
2 )

)

. (4)

The simplex constraint (SPX) ensures that the soft assign-

ments sum to one at each pixel, thus ui
l ∈ [0, 1] can be inter-

preted as the probability that pixel i belongs to the motion

model Fl. The matrices Fl ∈ R
3×3 encapsulate the epipo-

lar geometry of the pixels belonging to segment l. The rank

constraints (EPI) ensure that each Fl is a fundamental ma-

trix [16].

Energy (2) is a joint optimization problem in the un-

known motion models Fl and the pixel-to-motion-model as-

signments ul. The energy is non-convex due to the complex

dependence on the fundamental matrices Fl. Even worse,

the number of independent motion models, L, is unknown

a priori. For a fixed set of motion models, however, energy

(2) is convex [5]. We will exploit this property to derive an

iterative algorithm to approximately minimize (2).

Let us first consider a simplified example, where the

number of independent motions is known a priori. Thus the

number of labels (L+1) is fixed. Energy (2) can be approx-

imately optimized using a block coordinate descent strategy

that iterates over the following two steps. First, fix the mo-

tion models Fl and optimize for the assignment probabili-

ties u. Second, fix the assignment probabilities u and opti-

mize Fl. We use a recently proposed variant of the primal-

dual algorithm [6] that employs entropy proximal terms to

implicitly represent the simplex constraints (SPX) in order

to efficiently solve for the labeling. The re-estimation of

the fundamental matrices Fl can be decomposed over the

individual models and solved for all L models in parallel.

In particular, we exploit the soft assignments ui to reweigh
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(a) (b) (c)

Figure 2: Example result of the motion segmentation stage. (a)-(b) The input image and the input optical flow [25].

(c) Segmentation result. Black pixels are assigned to the outlier label.

individual correspondences:

F ∗
l = argmin

Fl

M
∑

i=1

ui
l

(

(xi
1)

⊤Fl(x
i
2)
)2

subject to rank(Fl) = 2. (5)

These subproblems can be approximately solved using

a reweighted version of the normalized 8-point algo-

rithm [16, 39]. It is important to note that we do not perform

a hard assignment of correspondences to models. Instead,

each correspondence (xi
1, x

i
2) contributes to the estimation

of every model Fl according to its inlier probability ui
l .

In order to discover the number of motion models we opt

for a simple greedy bootstrapping strategy, where we make

extensive use of the outlier label to mine potential funda-

Algorithm 1 Motion Segmentation

1: Add all correspondences to set O
2: Let F = {∅}
3: repeat ⊲ Initialization

4: Find F using LMedS on all (x1, x2) ∈ O
5: Remove all points which are inliers to F from O
6: F ← F ∪ {F}
7: until |O| ≤ 7
8:

9: repeat ⊲ Motion Segmentation

10: Let L = |F|
11: repeat ⊲ Data association

12: Minimize (2) for ul to get (ul)
n+1

13: Update Fl by solving (5)

14: until no decrease in energy (2)

15:

16: Recover hard assignment ûl using (6)

17: for each l = 1 . . . L+ 1 do ⊲ Model discovery

18: Split ûl into connected components Cj
19: for each j = {1 . . . J} with |Cj | > T do

20: Find F using LMedS on (x1, x2) ∈ Cj
21: F ← F ∪ {F}
22: end for

23: end for

24: until

mental matrices from the data. We start by mining a small

set of candidate motions by iteratively applying the normal-

ized 8-point algorithm in a robust least-median-of-squares

(LMedS) framework [32]. Based on this initialization, we

solve energy (2) using the previously described alternating

minimization approach until no further decrease in energy

can be made. We then expand the pool of candidate mo-

tions. New models are added by robustly estimating motion

models from pixels that have the outlier label as their most

probable assignment. Specifically, we robustly fit a motion

model to each connected component of the pixels assigned

to the outlier label. We further expand the pool by splitting

labels with disconnected regions and fitting motion mod-

els to these regions if the size of the region is larger than

a threshold T . (Note that we do not remove the original

models from the set of models.) We again perform alter-

nating minimization based on this new label set and repeat

this process until no further decrease in energy can be made.

We found that this strategy is generally able to discover the

number of models, the models themselves, and their per-

pixel assignments within 10 iterations. A summary of the

algorithm can be found in Algorithm 1.

The result of the motion segmentation stage is a set of

epipolar geometries F ∗
l as well as membership probabili-

ties u∗
l for each pixel. We obtain the final pixel-to-model

associations by extracting the label with maximum proba-

bility from u∗
l to get ûl:

ûi
l =

{

1 if l = maxl∈{1,...,L+1}(u
∗
l )

i

0 else.
(6)

Figure 2 shows an example result of the motion segmenta-

tion stage.

5. Reconstruction

While the results of modern optical flow algorithms are

reliable for many scenes, they still exhibit artifacts in most

cases. The optical flow may be noisy due to properties of the

model (e.g., staircasing artifacts in models leveraging first-

order smoothness assumptions), motion boundaries are of-

ten badly localized (edge bleeding), and some regions might

be completely wrong. A reconstruction pipeline that relies
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on optical flow needs to be robust to these errors. We use

a superpixel-based formulation in order to robustly recon-

struct the dynamic scene from optical flow correspondences

and the epipolar models estimated in Section 4.

We begin by triangulating each correspondence that was

not labeled an outlier by the motion segmentation stage us-

ing its associated motion model F ∗
l . This yields a set of

depth estimates zl ∈ R
M . Note that each depth estimate is

only valid for pixel i with ûi
l = 1. We set pixels that belong

to the segment with largest support as environment pixels

and fix their scales to 1.

We now estimate the relative scales between all seg-

ments. This cannot be done without additional prior as-

sumptions as the problem is ill-posed in general. For ex-

ample, when a plane is seen in the sky, it is generally im-

possible to tell how large it is or how far it is: it could be a

Boeing 737 at a certain distance or a larger 747 that is far-

ther away. To resolve scale ambiguities and assemble the

scene, we use a prior assumption that is often appropriate

in daily life: objects are supported by their environment.

We model this assumption using a combination of two con-

straints:

1. An ordering constraint, which captures the assumption

that dynamic objects occlude the static environment.

This can be expressed by requiring the inverse depth

of segments belonging to the dynamic objects to be

larger or equal to the inverse depth of the environment

in their immediate vicinity.

2. A smoothness constraint, which states that jumps in in-

verse depth between dynamic objects and segments be-

longing to the environment should be minimized. This

constraint connects the dynamic objects with the envi-

ronment, subject to the ordering constraint.

In order to be robust to outliers in the input data, we for-

mulate these constraints as an energy minimization problem

defined on a superpixel graph. Consider a superpixel seg-

mentation of the reference image into K segments. That

is, each pixel i is assigned to one of K superpixels. We

formally write i ∈ Pk for the set of pixels belonging to su-

perpixel k and denote the edges in the superpixel graph by

E . We use Quickshift [34] to produce a superpixel segmen-

tation and break up superpixels that straddle boundaries in

the motion segmentation.

Our goal is to estimate a plane for each super-

pixel k with parameters θk = [θ1k, θ
2
k, θ

3
k]

⊤ and scales

s = [1, s2, . . . , sL]
⊤ ∈ R

L
+ for all independently moving

objects, subject to the previously described constraints.

This is formulated as a convex optimization problem with

the following objective:

E(s, θ) = Eord(θ) + Esm(θ) + Efit(s, θ). (7)

The following paragraphs define the three terms in this ob-

jective.

Ordering constraint. Let Ed ⊂ E denote all pairs of

edges in the superpixel graph that connect the static envi-

ronment to dynamic objects. That is, (k, h) ∈ Ed if k is part

of the environment and h is part of a dynamic object. Let

APk
∈ R

|Pk|×3 be the matrix that results from vertically

stacking all (xi
1)

⊤ belonging to segment k. We enforce a

hard constraint on the planar reconstructions of these pixels

that encapsulates the desired ordering:

Eord(θ) =
∑

(k,h)∈Ed

Eloc(θ, k, h)

Eloc(θ, k, h) =

{

0 if max(APk
θk) ≤ APh

θh

∞ else.
(8)

Note that this term is convex as it can be represented as a

set of linear inequality constraints of the form

θ⊤k x
i
1 ≤ APh

θh, ∀i ∈ Pk (9)

Smoothness term. We impose smoothness by requiring

that planes of neighboring superpixels coincide at their

boundary B:

Esm(θ) =
λ

2

∑

(k,h)∈E

∑

(i,j)∈Bk,h

wkh

(

θ⊤k x
i
1 − θ⊤h x

j
1

)2

.

(10)

The parameter λ > 0 controls the overall smoothness of

the solution and wk,h steers the smoothness according to

superpixel appearance:

wk,h = exp
(

−κ ‖mk −mh‖
2
)

, (11)

where mk and mh denote the average color of superpixels

k and h, respectively.

Fitting term. The fitting term performs a plane fit to the

scaled inverse depth values:

Efit(s, θ) =

K
∑

k=1

∑

i∈Pk

wi

∣

∣

∣
θ⊤k x

i
1 −

L
∑

l=1

ûi
l

sl
zil

∣

∣

∣

2

. (12)

The interpretation of this term is as follows. For each pixel

i, the inverse depth is scaled by the factor sl. Furthermore,

the indicator variable ûi
l ensures that only a single recon-

struction is active at a given pixel. By summing over all

epipolar models we arrive at a reconstruction over the com-

plete image, where individual parts are scaled by sl. θ
⊤
k x

i
1

provides the inverse depth value at pixel i according to the
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Figure 3: Results on three frames from the KITTI dataset. For each frame, the figure shows the input color image, the

ground-truth depth (GT, inpainted for visualization), results produced by depth transfer (DT) [19], and results produced by

our approach.

plane parameters θk. Note that the fitting term in isola-

tion is underconstrained, since it does not provide any in-

formation on the scales s. Arbitrary scales s can lead to the

same minimal fitting energy, as the parameters θ can just be

scaled accordingly. The weight wi reweighs the contribu-

tion of each pixel according to its residual error:

wi =

{

exp
(

− γ
∑L

l=1 û
i
lg

i
l

)

if ûi
L+1 = 0

0 else.
(13)

Energy (7) is convex and poses an optimization problem

of moderate size. We use CVX for optimization [15, 14],

together with an efficient conic solver [23].

6. Evaluation

We evaluate the presented approach quantitatively and

qualitatively on two datasets that depict complex and re-

alistic dynamic scenes: the MPI Sintel dataset [4] and the

KITTI dataset [13]. To the best of our knowledge, this is the

first quantitative evaluation of monocular reconstruction on

dynamic scenes of this complexity.

The accuracy of the presented approach is compared to

two state-of-the-art techniques for monocular depth estima-

tion from video. The first is the depth transfer approach

of Karsch et al. [19], a nonparametric method that relies

on training data with ground-truth depth. Due to its non-

parametric nature, this approach can be expected to perform

well only if the test images are sufficiently similar to images

in the training database.

The second approach we compare to is the non-

rigid structure-from-motion formulation of Fragkiadaki et

al. [11]. This formulation was shown to outperform prior

non-rigid structure-from-motion techniques. Unlike our ap-

proach, this method produces depth estimates for discon-

nected tracks, rather than for all pixels. The generated point

clouds also lack absolute depth: all depth estimates lie in

[−1, 1]. To maximize the accuracy reported for this ap-

proach, we only measure error along the tracks, rather than

over all pixels in the input images. The generated point

cloud is scaled to the range of the ground-truth depth map

in each frame.

Accuracy is reported using three standard measures. The

first is mean relative error (MRE). Let z be the estimated

depth and let zgt be the ground-truth depth. MRE is defined

as

MRE(z) =
1

M

M
∑

i=1

|zi − zigt|

zigt
. (14)

This measures the relative per-pixel error: an error of

0.1m at a depth of 1m is penalized equally to an error of

1m at a depth of 10m. MRE is closely related to the depth

contrast measure used to evaluate the effectiveness of dif-

ferent depth cues in human vision [8]. For completeness,

we also report the root mean square error (RMSE), de-

fined as
√

∑

i(z
i − zigt)

2/M , and the log10 error, defined

as
∑

i | log10(z
i)− log10(z

i
gt)|. Only pixels with ground-

truth depth within 20 meters are used for evaluation. In or-

der to allow for a comparison in terms of absolute depth, we

fit a global scale for each method and each frame such that

the MRE is minimized.

The runtime of our approach is dominated by the mo-

tion segmentation stage, which is in turn dependent on the
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complexity of the motion in the scene. We implemented the

labeling step on the GPU. All other parts are implemented

in Matlab, which results in an execution time that is on the

order of 1 minute per frame.

KITTI. We first evaluate the presented approach on the

KITTI dataset. Specifically, we use the KITTI odometry

set [13]. The dataset provides sparse ground-truth depth

measurements acquired by a LiDAR scanner. These are

used for quantitative evaluation. We compared the pre-

sented approach to the prior approaches introduced above.

Unfortunately, the implementation of Fragkiadaki et al. [11]

crashes on all sequences in this dataset. We thus report re-

sults for depth transfer (DT) [19]. We make the 11 training

sequences available to DT at test time. Figure 3 shows qual-

itative results. Quantitative results are provided in Table 1.

DT performs well on this dataset. This can be attributed to

the significant resemblance of scenes in the KITTI test set to

images in the training data. In particular, the geometric lay-

out of many frames in the KITTI dataset is almost identical.

Nevertheless, our approach achieves a higher accuracy than

DT on all reported metrics, without relying on any training

data.

MRE log10 RMSE

Depth Transfer [19] 0.171 0.076 2.830

Ours 0.148 0.065 2.408

Table 1: Quantitative evaluation on the KITTI dataset.

MPI Sintel. The MPI Sintel dataset consists of complex

computer graphics sequences. It was constructed for thor-

ough evaluation of optical flow techniques, but has also

been used for evaluating other low-level vision algorithms.

The advantage of using computer graphics is the availabil-

ity of precise ground truth. We use monocular sequences

of color images as input and report results on the challeng-

ing ‘final’ rendering pass of this benchmark. To maximize

the accuracy reported for depth transfer [19], we performed

cross-validation such that for each test sequence all other se-

quences are made available as the training database. We ex-

clude sequences from the evaluation that show no or only in-

significant camera motion (alley 1, bandage 1, bandage 2,

shaman 2).

Table 2 provides the results of a quantitative evaluation

on this dataset. To assess the sensitivity of our approach

to the input optical flow, we have evaluated the approach

when the input flow fields are computed by LDOF [3],

EpicFlow [25], and FlowFields [2], respectively. The re-

sults demonstrate that the presented approach substantially

outperforms the prior work with any of these input flows.

With input flows provided by FlowFields [2], the presented

MRE log10 RMSE

Depth Transfer [19] 0.491 0.227 3.334

NR-SfM [11] 0.422 0.231 3.206

Ours – LDOF 0.341 0.154 2.576

Ours – EpicFlow 0.300 0.148 2.575

Ours – FlowFields 0.297 0.146 2.458

Table 2: Quantitative evaluation on the MPI Sintel dataset.

We evaluate the accuracy of our approach when different

optical flow estimation algorithms are used to produce the

input flow. Results are reported on the challenging ‘final’

rendering pass.

approach reduces the MRE by 40% relative to DT [19] and

by 30% relative to NR-SfM [11]. The poor performance of

DT on this dataset can be explained by the diversity of the

sequences. A qualitative comparison is shown in Figure 5.

Limitations. The presented formulation is motivated in

part by impressive recent advances in optical flow estima-

tion. These advances are ongoing and are expected to con-

tinue [7]. Our method can directly benefit from novel op-

tical flow algorithms. On the other hand, if optical flow

estimation fails, the presented approach will fail. A number

of other limitations are inherent in the purely geometric na-

ture of our approach, which does not use prior information

about object shapes and sizes. In particular, the presented

formulation will not yield accurate results for objects that

are disconnected from their environment, such as birds in

flight. Figure 4 shows two failure cases.

(a) (b)

Figure 4: Failure cases. (a) The flying dragon is pushed to

the background, which overestimates its depth. (b) Failure

due to erroneous input flow.

7. Conclusion

We presented an approach to dense depth estimation

from monocular video. Our approach leverages optical flow

to segment a dynamic scene into a set of independently

moving objects. We reason about the layout of the envi-

ronment and the placement of the moving objects in it. The
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Figure 5: Results on four frames from the MPI Sintel dataset. For each frame, the figure shows the input color image, the

ground-truth depth, and results produced by three techniques: depth transfer (DT) [19], non-rigid SfM (NR) [11], and our

approach. We dilate the results of NR for visualization. For each technique, the estimated depth map is visualized on the

right and per-pixel relative error is visualized on the left.

approach produces dense depth maps of complex dynamic

scenes purely from geometric principles.

An important direction for future work is the incorpo-

ration of additional prior knowledge into our geometric

framework. Nonparametric or learning-based approaches

can be leveraged to improve the reconstruction and can

also be used to estimate the absolute scale of the scene.

We believe that combining these complementary techniques

with our geometric approach can lead to a powerful gen-

eral framework for monocular depth estimation from video.

Other opportunities for future work are to couple the opti-

cal flow estimation and multiple model fitting and to enforce

temporal consistency.
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