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Abstract

Most existing dictionary learning algorithms consider a

linear sparse model, which often cannot effectively char-

acterize the nonlinear properties present in many types

of visual data, e.g. dynamic texture (DT). Such nonlinear

properties can be exploited by the so-called kernel sparse

coding. This paper proposed an equiangular kernel dic-

tionary learning method with optimal mutual coherence

to exploit the nonlinear sparsity of high-dimensional vi-

sual data. Two main issues are addressed in the pro-

posed method: (1) coding stability for redundant dictionary

of infinite-dimensional space; and (2) computational effi-

ciency for computing kernel matrix of training samples of

high-dimensional data. The proposed kernel sparse coding

method is applied to dynamic texture analysis with both lo-

cal DT pattern extraction and global DT pattern character-

ization. The experimental results showed its performance

gain over existing methods.

1. Introduction

In recent years, sparse dictionary learning has become

one important tool in computer vision. Most existing meth-

ods for sparse dictionary learning consider a sparse linear

model, which assumes that most local or global patterns

of data, can be represented by the linear combinations of

a small number of atoms from a dictionary. In other words,

the underlying assumption of these linear model based dic-

tionary learning methods is that the data for processing is

dominated by the stationary patterns generated by some lin-

ear process. Clearly, such approaches will be less efficient

when processing the data whose main structures are driven

by nonlinear stochastic systems.

Indeed, there are many types of visual data, especially

those high-dimensional ones, showing strong nonlinear be-

haviors in terms of visual features. One such representative

data is dynamic texture (DT). DTs are referred to as the se-

quences of moving textures with certain stationary temporal

changes in pixel intensities. The spatio-temporal behaviors

of DTs are nonlinear in general. For instance, various dis-

tinguishable shapes may be observed from flickering fires

with changes in wind, which implies multiple modalities

of spatio-temporal appearance. Likewise, turbulent water

exhibits chaotic behaviors with non-smooth motion, where

pixel intensities do not change smoothly. Moreover, cam-

era motion is likely to further aggregate the nonlinearities

of correlations among the frames of a DT sequence.

In order to exploit the nonlinear properties existing in

high-dimensional visual data, the so-called kernel sparse

coding has been proposed in the literature which considers

a nonlinear sparse model; see e.g. [12, 12, 44, 37, 11, 18,

25].The basic idea of kernel sparse coding is linearizing the

nonlinear patterns existing in data in some implicit space

and then studying the resultant linear structures by sparse

coding under an implicit kernel dictionary.

1.1. Motivations

By considering a linear sparse model in implicit infinite-

dimensional feature space, this paper aims at developing

a nonlinear sparse model for high-dimensional visual data

and investigating its applications in DT analysis and recog-

nition. The motivations of applying kernel sparse coding

to processing high-dimensional visual data are three-fold.

Firstly, sparse coding is able to automatically discover the

multiple modalities of patterns and distinguish the mixture

of linear subspaces [1]. Secondly, sparse coding with dic-

tionary learning adapts to the data and thus can better en-

code the stationary behaviors of data than the handcrafted

features [39]. Thirdly, the nonlinearity of local structures

could be partially linearized in a proper feature space in-

duced by certain kernels, which improves both the accuracy

and discriminability of sparse coding; see e.g. Fig. 2.

A direct call of existing kernel sparse coding approaches

is not suitable for the tasks of processing high-dimensional

visual data, such as DT analysis and recognition. Most ex-

isting kernel sparse coding methods do not consider the is-
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sue of coding stability, i.e., the optimal sparse code is not

unique and stable when using a general redundant dictio-

nary. The performance hit caused by such coding stability

has been observed in various sparse coding based recog-

nition tasks, including both kernel sparse coding (e.g. [31,

13]) and regular sparse coding e.g. [29, 3]). Such ambigui-

ties and instabilities become worse when the dimensionality

of data increases. Considering the fact that the dimensional-

ity is very high or even infinite in the implicit space induced

by kernel, how to stabilize the code in the implicit space

becomes an important problem.

There have been extensive studies on the design of dic-

tionaries to ensure stable and optimal sparse coding in the

context of compressed sensing. One important property of-

ten considered in designing dictionaries is the so-called mu-

tual coherence of dictionary, which is defined by the max-

imal absolute value of correlations of dictionary atoms. It

is shown that the sparse code is unique and can be stably

computed as long as the mutual coherence of the dictionary

is sufficiently small; see e.g. [36, 33]. Learning an inco-

herent dictionary has seen its applications in various vision

tasks with good performance (e.g. [29, 24, 3, 38]). How-

ever, how to learn an incoherent dictionary in the implicit

space induced by kernel is still a question, as the space can

be infinite-dimensional, which prohibits explicit constraints

on the mutual coherence of dictionary. This inspired us to

study new computational methods for learning an optimal

incoherent dictionary in the implicit space.

1.2. Main Contributions

The contribution of this paper is two-fold. Firstly, a new

kernel sparse coding method is proposed, which aims at ad-

dressing two main issues, i.e. coding stability and compu-

tational efficiency, existing in current sparse coding meth-

ods when processing high-dimensional visual data. More

specifically, we proposed to learn an equiangular kernel dic-

tionary, i.e., the inner products of all pairs of normalized

dictionary atoms are the same. Based on the observation

that equiangular unit-norm atoms in the original space re-

main equiangular in the implicit space induced by Gaussian

kernels or polynomial kernels, we proposed a new optimiza-

tion model for learning an equiangular dictionary in the im-

plicit space, as well as a convergent numerical solver.

Secondly, the potential of the proposed kernel sparse

coding method in practical applications is investigated in

DT analysis and recognition. A new kernel sparse coding

based DT descriptor is presented, in which the capability

of kernel sparse coding to extract nonlinear stationary pat-

terns is utilized in both the low-level feature extraction and

the high-level feature representation. The proposed descrip-

tor was applied to DT recognition and it shows noticeable

improvement over several state-of-the-art methods on some

benchmark datasets.

2. Related Works and Preliminaries

2.1. Sparse Coding and Kernel Sparse Coding

By assuming signals can be represented by a sparse lin-

ear combination of atoms from some dictionary, regular

sparse coding aims at finding the coefficients of the combi-

nation as well as the dictionary. Such a technique has been

successful in many vision tasks; see e.g. [29, 1, 22]. How-

ever, regular sparse coding assumes that signals are in linear

Euclidean spaces and thus it is not effective when dealing

with signals in nonlinear low-dimensional manifolds.

To generalize the concept of sparse coding to handle the

signals lying in nonlinear manifolds, kernel sparse coding

(e.g. [12, 12, 20, 25, 37]) performs sparse coding in some

higher-dimensional feature space which is the map of the

original Euclidean space under some kernel function. With

an appropriate nonlinear mapping, a more efficient linear

representation is expected for signals in nonlinear mani-

folds (e.g. [12, 44, 11]), since the nonlinear structures of sig-

nals in the lower-dimensional Euclidean space can be trans-

formed into linear structures in the higher-dimensional Eu-

clidean space. Moreover, by some tricks in the formulation

of kernel sparse coding, it can avoid the explicit computa-

tion in high-dimensional Euclidean space, which in general

is very computationally expensive and sometimes is even

impossible when the implicit space is infinite-dimensional.

The dictionary for kernel sparse coding is also learned

to be adaptive to input data. In [12], the dictionary is di-

rectly learned with Gaussian kernel by gradient descent over

the dictionary atoms in the original space. The kernel dic-

tionary learning is conducted on the manifold of symmet-

ric positive definite matrices by using Stein kernel in [20]

and Log-Euclidean kernel in [23]. Instead of being directly

learned, in [18, 25, 37], the dictionary atoms in feature

space are expressed as the linear combination of the input

signals in feature space.

All existing sparse coding problems require solving non-

convex optimization problems. Therefore, both the stability

and the optimality of the computed sparse code are in ques-

tion when the dictionary has no additional specific proper-

ties. In recent years, learning an incoherent dictionary for

better sparse coding performance has drawn a lot of atten-

tion in compressed sensing and computer vision; see e.g.

[29, 24, 3, 38]). The basic idea is from the theoretical work

in compressed sensing which states that sparse coding prob-

lem can be well-defined and effectively computed when the

mutual coherence of dictionary is sufficiently low. In exist-

ing incoherent dictionary learning methods, the constraints

on mutual coherence is explicitly expressed in terms of the

inner products of all pairs of atoms, which is not compu-

tationally feasible when the dimension of atoms is infinite.

In other words, the existing incoherent dictionary learning

methods are not applicable to kernel sparse coding.
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2.2. Dynamic Texture Analysis

The analysis and recognition on dynamic textures pro-

vide useful cues for understanding dynamic data, which

has seen their applications in video registration, surveil-

lance, facial expression recognition, motion analysis, and

many others; see e.g. [17, 46, 26].By assuming the un-

derlying dynamics of DT sequences is linear, many gen-

erative methods characterize the local behaviors of DTs

with linear models, which include the linear dynamical sys-

tem (LDS) [32, 40, 16] and its hierarchical extension [19],

the autoregressive model [35, 39] and its multi-scale ex-

tension [9], etc. These methods are vulnerable to the DT

sequences with camera motions like zooming and panning

or with chaotic motions driven by nonlinear stochastic dy-

namic systems (e.g. flapping flags and turbulent waters).

To characterize the nonlinearities of DTs, some nonlin-

ear generative models [5, 14] have been proposed, which

is done by imposing priors on the form of possible non-

linearities. In [14], Fourier phase is used for modeling the

global motion patterns of DTs. In [5], LDS is extended to a

nonlinear system using kernel tricks. Such approaches are

vulnerable to the DTs that do not satisfy the imposed spe-

cific priors [42]. A promising alternative to the generative

approach is viewing each of DT sequences as a bag of local

features. By treating DTs as 3D volume data, a promising

alternative to the generative approach is the discriminative

one, which directly extracts local DT features and organizes

them into global features by some statistical measurements,

e.g. histograms [46, 6] and fractal spectra [42, 43]. Most

existing DT features are the spatio-temporal extension from

the traditional ones in images or videos, e.g. spatio-temporal

filters [42, 21], volume local binary patterns [46, 19], and

histograms of orientations [6, 7]. Despite these attempts, it

remains an open question how to effectively extract impor-

tant nonlinear patterns that exist in both local low-level DT

features and global high-level organizations.

Considering the fact that the above hand-crafted features

do not adapt to the structures of DT data, dictionary learning

based methods are proposed for better performance. In [39],

LDS is learned as a dictionary from each class of DT se-

quences. In [30], the parameters of LDS are used as local

features from which a cookbook is learned for generating

feature codes. In [28], an orthogonal tensor dictionary is

proposed for computational efficiency when using dictio-

nary learning for DT recognition. All these methods use

linear models for characterizing local DT structures without

considering the nonlinearities. In [19], dictionary learning

is applied to encoding the nonlinearities among global DT

features instead of learning local features, which does not

fully exploit the essential local property of DTs for recog-

nition. In comparison with these approaches, our method

considers the nonlinear stationary properties of DTs as well

as the nonlinearities existing among global DT features.

3. Equiangular Kernel Dictionary Learning

In this section, we propose an equiangular kernel dictio-

nary learning method for kernel sparse coding, which learns

a dictionary with optimal mutual coherence has computa-

tional feasibility.

3.1. Problem Formulation

Given N training samples {Yi}
N
i=1 ⊂ M ⊂ R

m, where

M is a Riemannian manifold which also can be a subspace.

Denote Φ : M → H to be a nonlinear mapping from M
into a high-dimensional or infinite-dimensional dot prod-

uct space H. This mapping is associated with some kernel

k(x, y) = 〈Φ(x),Φ(y)〉 = Φ(x)⊤Φ(y), where x, y ∈ M.

Accordingly, denote Φ(Y ) = [Φ(Y1), . . . ,Φ(YN )] and de-

fine K(X,Y ) = Φ(X)⊤Φ(Y ).
Kernel sparse coding aims at finding a dictionary A ∈ H

such that Φ(Y ) ≈ AC and columns of C are sparse. Reg-

ular sparse coding cannot be directly called to solve this

problem, as Φ is implicit and it maps finite vectors into an

infinite-dimensional space in most cases. In this paper, we

propose to learn a dictionary A = Φ(D) in feature space

with D ∈ R
m×n. The mutual coherence of such a dictio-

nary in feature space is then given by

µ(Φ(D)) = max
i 6=j

|〈Φ(Di),Φ(Dj)〉|

‖Φ(Di)‖‖Φ(Dj)‖
.

A dictionary optimized in terms of mutual coherence is

closely related to the so-called equiangular tight frame

(Grassmannian frame) [34]. It is shown in [34] that for a

complete system D with for Rm with n unit-norm atoms,

the lowest bound of mutual coherence is
√

n−m
m(n−1) and

such a bound is achieved if and only if the dictionary is an

equiangular tight frame such that

|〈Di, Dj〉| = c0, ∀i 6= j (1)

for some constant c0 which equals to the mutual coher-

ence of unit-norm atoms. Thus, in this paper, we consider

learning an equiangular dictionary for obtaining a dictio-

nary with optimal mutual coherence.

However, using the constraints of the form (1) for de-

signing the dictionary Φ(D) is challenging. The follow-

ing proposition solves such a problem by showing that the

equiangular constraints on the atoms of Φ(D) can be trans-

fered to that of D in a finite-dimensional space for certain

types of kernel functions.

Proposition 3.1. Let Φ : M → H to be a mapping from

M ⊂ R
m into a dot product space H with its associ-

ated kernel k of the form k(x, y) = ψ(‖x − y‖22). Let

D = {D1, D2, . . . , Dn} ⊂ M be an equiangular dictio-

nary such that ‖Di‖2 = ‖Dj‖2 and 〈Di, Dj〉 = µ0, for
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all i, j and some constant µ0. Then, Φ(D) also forms an

equiangular dictionary in H such that

‖Φ(Di)‖2 = c0, ∀i and 〈Φ(Di),Φ(Dj)〉 = η, ∀i 6= j,

for some constants c0 and η.

Proof. See the proof in supplementary materials.

It can be seen that the kernel matrix K = Φ(D)⊤Φ(D)
used in computation has the structure

Ki,j = k(Di, Dj) = 〈Φ(Di),Φ(Dj)〉 = η, ∀ i 6= j.

Based on Prop. 3.1, we formulate the problem of equiangu-

lar kernel sparse coding as follows,

min
D,C

1
2‖Φ(Y )− Φ(D)C‖2F

s.t. ‖Cz‖0 ≤ T, ∀z,

‖Di‖2 = 1, 〈Di, Dj〉 = µ, ∀i 6= j,

(2)

where T is the predefined sparsity level, µ is the predefined

incoherence level, and Φ is the nonlinear mapping with its

associated kernel function k satisfying

k(x, y) = ψ(‖x− y‖22). (3)

Remark 3.2. Both Gaussian function and polynomial func-

tion can be used as ψ in (3). When using Gaussian function,

it becomes the Gaussian kernel which is often seen in appli-

cations.

To further simplify the computation when dealing with

volume data like DTs, we set µ = 0 in (2) in the application

of DT recognition. In other words, we consider an orthogo-

nal dictionary D. It is noted that Ψ(D) is not an orthogonal

dictionary in feature space. More concretely, the model (2)

for DT analysis is in the following form:

min
D,C

1
2‖Φ(Y )− Φ(D)C‖2F

s.t. ‖Cz‖0 ≤ T, ∀z, D⊤D = I, ‖C‖∞ ≤M.
(4)

The last constraint in (4) is mainly for the stability in nu-

merical solvers, where M can be set sufficiently large so as

to keep the accuracy of sparse approximation.

3.2. Numerical Algorithm

To avoid direct computation in the implicit space induced

by kernel, the model (4) is reformulated as follows,

‖Φ(Y )−Φ(D)C‖2F = Tr(C⊤K(D,D)C)

− 2Tr(K(D,Y )⊤C) + Tr(K(Y, Y )),
(5)

which is based on the fact that ‖X‖2F = Tr(X⊤X) and

the kernel trick K(X,Y ) = Φ(X)⊤Φ(Y ). Substituting (5)

into (4), we rewrite (4) as

min
D∈D,C∈C

1
2Tr(C

⊤QC − 2K(D,Y )⊤C), (6)

where C = {C : ‖C‖∞ ≤M, ‖Cz‖0 ≤ T, ∀z}, D = {D :
D⊤D = I}, and Q = K(D,D). It is easy to verify that Q
is fixed for D ∈ D given the kernel k satisfying (3). When

k is the Gaussian kernel, Q is positive definite.

The problem (6) is a challenging non-smooth and non-

convex problem, owing to the terms with l0 norm, the or-

thogonality constraints, and the ambiguity between D and

C. Based on the proximal alternating scheme [2], we

present an efficient numerical solver for (6) with rigorous

convergence analysis. The proposed algorithm is summa-

rized in Alg. 1. In the next, we will detail each step of the

algorithm. To streamline the presentation of our algorithm,

we define

H(C,D) = 1
2Tr(C

⊤QC − 2K(Y,D)⊤C),

F (C) = δC(C), G(D) = δD(C),
(7)

where δC(C) is an indicator function of C, i.e. δC(C) = 0
if C ∈ C and δC(C) = +∞ if C /∈ C, The problem (6) is

equivalent to the unconstrained minimization problem:

min
D,C

F (C) +G(D) +H(C,D). (8)

We alternately update C and D with the following scheme.

Algorithm 1 Equiangular kernel dictionary learning

1: INPUT: Training signals Y and kernel function k.

2: OUTPUT: Learned dictionary D and sparse code C.

3: Initialization: set {γj}
∞
j=1 > 1, λmax(Q) < a < b

and 0 < c < d such that d > Lmax

4: for j = 1, 2, . . . , do

5: Update the sparse code C via (10).

6: Set the step size tj via (15b).

7: Update the dictionary D via (13).

8: Set the step size sj via (15a).

9: end for

1. Kernel sparse coding. When the dictionary D is fixed,

we update the sparse code C via solving:

Cj+1 ∈ argmin
C

F (C) + sj

2 ‖C − U j‖2F , (9)

where U j = Cj − ∇CH(Cj , Dj)/sj and sj is some pos-

itive step size. This subproblem has a closed-form solution

given by the following proposition.

Proposition 3.3. The solution of (9) is given by

Cj+1 = sign(U j)⊙min(HT (|U
j |),M), (10)

where HT (C) keeps only the largest T entries in each col-

umn of C.

Proof. The problem (9) is equivalent to

min
C

‖C − U j‖2F , s.t. ‖Cz‖0 ≤ T, ∀z ‖C‖∞ ≤M. (11)

It is easy to verify that (10) is the solution of (11) .
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2. Dictionary update. When the sparse code C is fixed, we

update the dictionary D by solving

Dj+1 ∈ argmin
D

G(D) + tj

2 ‖D − V j‖2F , (12)

where V j = Dj − ∇DH(Cj+1, Dj)/tj and tj is some

positive step size. This problem has a closed-form solution

given by the following proposition.

Proposition 3.4. The problem (12) has a closed-form solu-

tion which is given by

Dj+1 = UW⊤ (13)

where UΣW = V j is the SVD of V j .

Proof. The problem (12) is equivalent to

min
D

‖D − V j‖2F , s.t. D⊤D = I. (14)

From [47], we conclude that (13) is a solution of (14).

3. Setting step sizes. There are two step sizes sj and tj that

need to be set in Alg 1. Here we give a strategy for setting

these two parameters for the Gaussian kernel. For this pur-

pose, we first show that H(C,D) has Lipschitz gradient in

D × C. Given a function f , we say f is Lipschitz in Ω with

modulus L, if ‖f(x)− f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Ω.

Proposition 3.5. Let H(C,D) to be the function defined in

(7) where k(x, y) = exp
(−‖x−y‖2

2

2σ2

)

is the Gaussian kernel.

Then, we have ∇CH is Lipschitz with modulus λmax(Q),
where λmax(Q) is the maximal eigenvalue ofQ and ∇Dℓ

H
is Lipschitz in Ω := {d : ‖d‖2 = 1} with modulus L(Cℓ),
where L(Cℓ) is defined as

1

σ2

n
∑

i=1

|Cℓi| exp
(

−
(1− ‖Yi‖

2
2)

2

2σ2

)(

1+
1

σ2
(1+ ‖Yi‖

2
2)

2
)

.

Proof. See the proof in supplementary materials.

Given γj > 1, 0 < a < b and 0 < c < d such that

b > λmax(Q) and d > Lmax, where λmax(Q) is the max-

imal eigenvalue of Q and Lmax = max({L(Cℓ) : ℓ =
1, 2, . . . ,m,Cℓ ∈ C)}. According to Prop. 3.5, we set sj

and tj as follows:

sj = max(min(γjλmax(Q), b), a), (15a)

tj = max(min(γjL(C
j+1), d), c), (15b)

where L(Cj+1) = max({L(Cj+1
ℓ ), ℓ = 1, 2, . . . ,m}).

Remark 3.6. Compared with the kernel sparse coding

methods [18, 25, 37], our algorithm avoids the computa-

tion of K(Y, Y ) which is expensive when the Y is large.

3.3. Convergence Analysis

Based on the convergence results of proximal alternat-

ing algorithm for general non-convex and non-smooth min-

imization problems [4], we establish the global convergence

of Alg. 1 in the following theorem.

Theorem 3.7. The sequence, {(Cj , Dj)}, generated by

Alg. 1 converges to a critical point of (6).

Proof. The proof can be done by checking the conditions

of the Thm. 1 in [4], and we sketch the proof as follows.

Firstly, it is easy to verify that all functions H(C,D),F (C)
and G(D) are bounded below and lower semi continuous

and H(C,D) is a C1 function. Secondly, from Prop. 3.5,

∇CH(C,D) and ∇DH(C,D) are Lipschitz continuous

with modulus L1(D) and L2(C), respectively. Moreover,

∇H(C,D) is Lipschitz continuous on any bounded set.

From (15a) and (15b), the two step sizes sj and tj satisfy

sj ∈ [a, b], tj ∈ [c, d], for all j where a, b, c, d > 0. Thirdly,

the function H(C,D) are analytic functions, as polynomial

functions and exponential functions are analytic, and F (C)
and G(D) are semi-algebraic functions, as ℓ0 norm and in-

dicator function over Stiefel manifold are semi-algebraic

[2]. Hence,H(C,D)+F (C)+G(D) satisfies the so-called

K-L property. From the Thm. 1 in [4], we conclude the

global convergence of (Cj , Dj) of Alg. 1.

3.4. Extension to Supervised Case

The proposed kernel dictionary learning method can be

easily applied to supervised sparse coding which utilizes la-

bels of signals for further discrimination. For instance, the

supervised term used in D-KSVD [45] which is defined by

linear prediction error can be incorporated to (4) as follows:

argmin
D∈D,C∈C,W

H(C,D) + β
2 ‖L−WC‖2F + α

2 ‖W‖2F , (16)

where Li is the binary label vector of the i-th sample, W
is a classifier to be learned, and the scalars α and β are

two weights for controlling the contribution of each term in

the model. The algorithm and convergence results for (16)

are detailed in the supplementary materials. Figure 2 com-

pares the coding results of (16) and D-KSVD on 2D spirals,

which demonstrates the capability of our method to capture

nonlinear structures. We also extended (4) by incorporat-

ing the label consistency term developed in LC-KSVD [22].

The recognition test on the AR face dataset shows 3.2% ac-

curacy improvement of our method over LC-KSVD.

4. Constructing DT Descriptor via Two-Layer

Kernel Sparse Coding

To address the DT analysis problem in the presence of

nonlinearities, we apply our kernel sparse coding approach

to extracting DT features in two layers, i.e. the low-level
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feature description layer and the high-level feature repre-

sentation layer. The first layer is to learn a kernel dictionary

from DT patches, which is for characterizing the nonlin-

ear local behaviors of DTs and generating useful local DT

features. Using the dictionary learned in the first layer, the

sparse code of each DT sequence is calculated, and the his-

tograms on sparse code over space and time are used to con-

struct a global feature vector for each DT sequence. Then

the second layer is to obtain better representations from the

global feature vectors, which is done by using kernel sparse

coding to analyze the nonlinear relationships among differ-

ent DT samples. The pipeline of our two-layer scheme is

illustrated in Fig. 1.

In details, given a set of DT sequences {gi}i with labels

{li}i for training, we sample Z DT patches of sizem×m×
m from each class of DT sequences and stack all of them as

a matrix Y ∈ Rm3×Z by vectorization. Then we apply (4)

to learning a dictionary DL from Y , and each training DT

sequence gi is represented by its sparse code Xi under DL

via calculating Xi = F(P ◦ gi, DL), where

F(Y,D) := argmin
X

‖Φ(Y )− Φ(D)X‖2F , (17)

subject to ‖Xz‖0 ≤ T for all z, and P denotes the opera-

tor that extracts patches from a DT sequences with a sliding

window and stacks them as a matrix. This problem can be

efficiently solved by proximal methods. Due to space limit,

we list the algorithm for solving (17) in the supplementary

materials. Working on Xi, we calculate the histogram over

the whole sequence and three mean histograms along dif-

ferent axes in each coding channel (i.e. the sparse code cor-

responding to the same dictionary atom). See our supple-

mentary materials for the illustration of the above process.

These histograms are concatenated as a feature vector fi.
Collecting all fis from the training sequences as a matrix

F , we further apply (4) to learning a dictionary DH from

F . Using the high-level dictionary DH, we obtain the new

representation of each fi by calculating F(fi, DH). Such

representations can be used to train a classifier or for other

DT analysis problems.

When a unlabeled DT sequence arrives, we calculate its

descriptor using the same process as above, i.e. calculate

its sparse code via (17). More concretely, we compute the

histogram-based feature, and obtain the high-level represen-

tation by using (17) one more time. The feature vector is

input to the trained classifier for classification or for other

DT analysis problems.

5. Experiments

In this section, we present the experimental evaluation

on the proposed methods. In particular, we present the

DT classification results on three widely-used benchmark

datasets for demonstrating the effectiveness the proposed

DT descriptor. Before that, we first use some synthetic data

to examine the performance and computational efficiency

of the proposed equiangular kernel dictionary learning ap-

proach. Throughout the experiments, the Gaussian kernel is

used with careful parameter tuning.

5.1. Experiments on Synthetic Data

To demonstrate the effectiveness of Alg. 1, we generate

the synthetic data as follows. First, a dictionaryD ∈ Rm×n

is sampled from Gaussian random matrices. Then three

sparse matrices C1,C2,C3 ∈ Rn×N are generated such that

each of them has T rows of nonzeros with random values

drawn from the normal distribution, and t rows out of the T
rows share the same row indices among these three matri-

ces while the indices of the remaining T − t rows are totally

different across different matrices. Finally we generate the

signal matrix Y = DC where C = [C1, C2, C3]. As a re-

sult, we obtain three classes of signals. Each class of signals

lies at a T -dimensional subspace, and these three subspaces

have t-dimensional overlap.

The computational efficiency of Alg. 1 is tested by set-

ting T = 10, t = 5, n = 100 and varying N = 3 × 500 :
3×500 : 3×4000. The test was conducted in MATLAB on a

PC with an Intel i5 CPU and 32G memory. For comparison,

we implemented and tested the kernel KSVD method [37]

in the same setting, i.e. with the same iteration number set

to 20 and the same dictionary size set to n. The results are

shown in Fig. 3. Obviously, our method is much faster and

more scalable w.r.t. the amount of data. The reason is kernel

KSVD requires the computation of K(Y, Y ), whose cost is

much more expensive than that in computingK(D,Y ) in it-

erations when the amount of data is much larger than the di-

mension of data. To demonstrate the effectiveness of Alg. 1

in revealing the subspaces of data, we show the coding re-

sults with N = 1500 in Fig. 3. Furthermore, we show two

interesting demos in Fig. 2 using synthetic data on nonlin-

ear manifolds, which demonstrates the capability of Alg. 1

to linearize the nonlinear structures of data, .

5.2. Experiments on Real Datasets

There are mainly three benchmark datasets for evaluat-

ing DT analysis methods: the UCLA-DT dataset [8], the

DynTex dataset [27] and the DynTex++ dataset [15]. Due

to the expensive cost in gathering DT data, the first two

datasets have been rearranged in previous studies to ob-

tain multiple datasets with different setting for evaluation.1

Throughout all these three datasets, we converted all frames

to gray-scale images for removing the benefits from color.

A support vector machine (SVM) with the RBF kernel is

trained for classification, and the parameters of SVM are

determined by cross-validation.

1Indeed, DynTex++ originates from DynTex. However, regarding its

wide use, we consider it a separate dataset in this paper.
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Figure 1. Pipeline of the proposed DT descriptor.

(a) Two circles (b) K-SVD [1] (c) Model (4)

(d) Two spirals (e) D-KSVD [45] (f) Model (16)

Figure 2. Proposed kernel sparse coding methods versus general

sparse coding methods on two synthetic data. Note that general

sparse coding methods cannot learn informative dictionary atoms

in (a) and (b), as the distributions of red points and blue points

along different directions are the same to each other.

(a) (b)

(c) (d)
Figure 3. Some results. (a) Time costs of Alg. 1 and kernel KSVD;

(b) Objective function value decay of Alg. 1 when applying Alg. 1

to (c); (c) Synthetic data; (d) Coding results from (c) by Alg. 1.

5.2.1 The UCLA-DT Dataset

The UCLA-DT dataset originally contains 200 DT se-

quences from 50 categories, and each category contains

four video sequences captured from different viewpoints.

All the videos sequences are of the size 160 × 110 × 75.

Figure 4 shows some sample sequences from the dataset.

There are several rearrangements for this dataset in the lit-

erature, but the performance of recent methods on most of

the rearrangements has been saturated.2 Therefore, we only

selected two most challenging rearrangements for evalua-

tion, including the ’Cat-9’ protocol [15] and the ’SIR’ pro-

tocol [6]:

Figure 4. Snapshots of DT sequences from the UCLA-DT dataset.

• Cat-9 (9 Categories) [15]: The original sequences are

combined from different viewpoints to form 9 categories,

with the number of samples per category varying from 4

to 108. Half of the samples per category are used for

training and the rest are used for test. This protocol can

evaluate the robustness to viewpoint changes.

• SIR (Shift-Invariant Recognition) [6]: Each original

video sequence is cut into non-overlapping left and right

halves with careful panning, where one half is used for

training and the other half for test. This protocol is

mainly to evaluate the shift-invariance of descriptors.

5.2.2 The DynTex Dataset

The DynTex dataset contains a large number of DT se-

quences of size 720 × 576 × 250. See Figure 5 for some

samples from the dataset. There are three breakdowns of the

dataset which are challenging and used in previous study,

including ’Alpha’ [27], ’Beta’ [27], and ’Gama’ [27]. These

breakdowns share the same protocol where five samples per

category are used for training and the rest are used for test,

and the differences between them are as follows:

• Alpha [27]: 60 sequences divided into three categories

(sea, grass and trees), with 20 samples in each category.

• Beta [27]: 162 sequences from 10 categories, with the

number of samples per class varying from 7 to 20.

2The saturated performance is over 90% and even has reached 100%.
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Figure 5. Snapshots of DT sequences from the DynTex dataset.

• Gamma [27]: 275 sequences from 10 categories, with

the number of samples per class varying from 7 to 38.

5.2.3 The DynTex++ Dataset

The DynTex++ dataset is a large DT dataset with 36 cat-

egories. Each category contains 100 DT sequences. See

Fig. 6 for some samples of the dataset. One half samples

per class are used for training and the rest are for test.

Figure 6. Snapshots of DT sequences from the DynTex++ dataset.

5.3. Implementation Details and Results

Throughout the experiments, we sampled 10000 patches

from each class to stack the training set for the first-layer

dictionary learning. The patch size is set according to the

size as well as the resolution of training sequences, ranging

from 4 to 7, and the sparsity degree is set to 5. The dic-

tionary is initialized by a set of wavelet tight frame filters.

Using the learned dictionary, we selected the sparse code

which corresponds to the 25 most discriminative dictionary

atoms for computing the histograms. Each histogram is 20-

dimensional. In the second-layer dictionary learning, the

sparsity degree is set to 7 and the dictionary is randomly

initialized. In classifier training, we set the penalty coef-

ficient of SVM to a multiple of the number of categories

when the size of training set is insufficiently large for reli-

able cross-validation.

Results on UCLA-DT: Our method is compared to MMDL

[15], DFS [42] and its variant DFS+ [43], HEM [26],

OTF [41], and WMFS [21]. The results are summarized

in Tab. 1, in which our method performs the best among

the compared methods and shows noticeable improvement

over the latest DT descriptors. It is worth mentioning that

the overall performance of our method dropped by 2.8%-3.6

when we discarded the higher-level component and trained

the classifiers directly by the first-layer output.

Table 1. Classification accuracies (%) on the UCLA-DT dataset.

Protocol MMDL DFS DFS+ OTF WMFS HEM Ours

Cat-9 95.6 97.5 97.5 97.2 97.1 97.3 98.6

SIR - 73.8 74.2 67.4 61.2 58.0 75.8

Results on DynTex and DynTex++: Besides the aforemen-

tioned DFS, OTF, and WMFS methods, we compare our

method with the LBP-TOP [46], KGDL [19], 2D+T [10].

Note that KGDL is a Grassman kernel dictionary learning

method which is closely-related to our work. The classifi-

cation results are summarized in Tab. 2. Again, our method

outperforms the latest ones. The effect of not using kernel

was simply evaluated in our framework by setting the map-

ping function Φ as Φ(x) = x. Overall, around 2.2%-4.6%

performance drop was observed on the tested datasets. We

also tested the supervised extension (16) by using it for the

high-level representation, and there is essentially no perfor-

mance improvement. The possible reason could be that our

original framework is sufficient for the complexity of the

tested data.

Table 2. Classification accuracies (%) on the DynTex and and Dyn-

Tex++ datasets.

Protocol DFS OTF LBP-TOP DFS+ 2D+T KGDL Ours

Alpha 84.9 82.8 83.3 85.2 85.0 86.2 88.8

Beta 76.5 75.4 73.4 76.9 67.0 77.0 77.4

Gamma 74.5 73.5 72.0 74.8 63.0 75.1 75.6

DynTex++ 89.9 89.8 89.2 91.7 - 92.8 93.4

6. Conclusion

Kernel sparse coding has been an effective tool for ex-

ploiting the nonlinear structures and patterns of data. In

this paper, we proposed a new mathematical framework for

learning an equiangular dictionary in the implicit space as-

sociated with some kernel, and then developed an efficient

numerical solver with guaranteed convergence property.

The learned equiangular dictionary has low mutual coher-

ence to ensure the accuracy and stability of sparse coding.

We also investigated the application of kernel sparse coding

in DT analysis. A new DT descriptor is constructed via a

two-layer kernel sparse coding based framework, where the

proposed kernel sparse coding method is used for both local

DT pattern extraction and global DT feature representation.

The experiments on several DT datasets showed that the

proposed equiangular dictionary learning method can effec-

tively characterize DT sequences with better performance

over the state-of-the-art methods. In future, we would like

to investigate the potential applications of equiangular ker-

nel dictionary learning in other visual recognition tasks.
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[10] S. Dubois, R. Péteri, and M. Ménard. Characterization and recog-

nition of dynamic textures based on the 2d+ t curvelet transform.

Signal, Image and Video Processing, pages 1–12, 2013. 8

[11] S. Gao, I. W. Tsang, and L.-T. Chia. Sparse representation with ker-

nels. IEEE Trans. Image Process., 22(2):423–434, 2013. 1, 2

[12] S. Gao, I. W.-H. Tsang, and L.-T. Chia. Kernel sparse representation

for image classification and face recognition. In ECCV, pages 1–14.

Springer, 2010. 1, 2

[13] W. Gao, J. Chen, C. Richard, and J. Huang. Online dictionary learn-

ing for kernel LMS. IEEE Trans. Signal Process., 62(11):2765–

2777, 2014. 2

[14] B. Ghanem and N. Ahuja. Phase based modelling of dynamic tex-

tures. In ICCV, pages 1–8. IEEE, 2007. 3

[15] B. Ghanem and N. Ahuja. Maximum margin distance learning for

dynamic texture recognition. In ECCV, pages 223–236. Springer,

2010. 6, 7, 8

[16] B. Ghanem and N. Ahuja. Sparse coding of linear dynamical systems

with an application to dynamic texture recognition. In ICPR, pages

987–990. IEEE, 2010. 3

[17] B. S. Ghanem. Dynamic textures: Models and applications. PhD

thesis, University of Illinois at Urbana-Champaign, 2010. 3

[18] M. Harandi and M. Salzmann. Riemannian coding and dictionary

learning: Kernels to the rescue. In CVPR, volume 31, pages 210–

227, 2015. 1, 2, 5

[19] M. Harandi, C. Sanderson, C. Shen, and B. C. Lovell. Dictionary

learning and sparse coding on grassmann manifolds: An extrinsic

solution. In ICCV, pages 3120–3127. IEEE, 2013. 3, 8

[20] M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell. Sparse

coding and dictionary learning for symmetric positive definite matri-

ces: A kernel approach. In ECCV, pages 216–229. Springer, 2012.

2

[21] H. Ji, X. Yang, H. Ling, and Y. Xu. Wavelet domain multifractal

analysis for static and dynamic texture classification. IEEE Trans.

Image Process., 22(1):286–299, 2013. 3, 8

[22] Z. Jiang, Z. Lin, and L. S. Davis. Learning a discriminative dictionary

for sparse coding via label consistent K-SVD. In CVPR, pages 1697–

1704. IEEE, 2011. 2, 5

[23] P. Li, Q. Wang, W. Zuo, and L. Zhang. Log-euclidean kernels for

sparse representation and dictionary learning. In ICCV, pages 1601–

1608. IEEE, 2013. 2

[24] T. Lin, S. Liu, and H. Zha. Incoherent dictionary learning for sparse

representation. In ICPR, pages 1237–1240. IEEE, 2012. 2

[25] H. Liu, J. Qin, H. Cheng, and S. Fuchun. Robust kernel dictionary

learning using a whole sequence convergent algorithm. In IJCAI,

2015. 1, 2, 5

[26] A. Mumtaz, E. Coviello, G. R. Lanckriet, and A. B. Chan. Clustering

dynamic textures with the hierarchical em algorithm for modeling

video. IEEE Trans. Pattern Anal. Mach. Intell., 35(7):1606–1621,

2013. 3, 8
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