
Hierarchically Gated Deep Networks for Semantic Segmentation

Guo-Jun Qi

Department of Computer Science

University of Central Florida

guojun.qi@ucf.edu

Abstract

Semantic segmentation aims to parse the scene structure

of images by annotating the labels to each pixel so that im-

ages can be segmented into different regions. While image

structures usually have various scales, it is difficult to use a

single scale to model the spatial contexts for all individual

pixels. Multi-scale Convolutional Neural Networks (CNNs)

and their variants have made striking success for modeling

the global scene structure for an image. However, they are

limited in labeling fine-grained local structures like pixels

and patches, since spatial contexts might be blindly mixed

up without appropriately customizing their scales. To ad-

dress this challenge, we develop a novel paradigm of multi-

scale deep network to model spatial contexts surrounding

different pixels at various scales. It builds multiple layers

of memory cells, learning feature representations for indi-

vidual pixels at their customized scales by hierarchically

absorbing relevant spatial contexts via memory gates be-

tween layers. Such Hierarchically Gated Deep Network-

s (HGDNs) can customize a suitable scale for each pix-

el, thereby delivering better performance on labeling scene

structures of various scales. We conduct the experiments on

two datasets, and show competitive results compared with

the other multi-scale deep networks on the semantic seg-

mentation task.

1. Introduction

The goal of semantic segmentation [2, 17, 1] is to seg-

ment images into different regions usually by assigning one

of semantic labels to each pixel. It is a crucial step to-

wards understanding image scene structures. The label of

an image pixel cannot be determined by its local features

extracted from a small sliding windows or neighborhood

surrounding it. Rather, pixel labels are usually defined in

spatial contexts, whose scales often have large variation in

sizes. For example, sky and sea have a large scale of spa-

tial context, but vessel and pedestrian are more localized to

a relatively small scale of context. Moreover, even the re-

gions of the same category may have various sizes of spatial

contexts, making it impossible to fix a scale to model each

pixel. This inspires us to develop a model that is capable of

learning to customize spatial contexts and their scales for

individual pixels in an image.

To model the spatial context of a pixel, a typical ap-

proach is to model the dependencies between the adjacent

local image structures based on 2D Markov Random Field-

s [4][12][13] and Conditional Random Fields [7][21][9].

These models usually capture the local similarity between

adjacent image structures of various scales, ranging from

pixels, patches to regions. Then, the scene labeling is per-

formed by maximizing the consistency between the similar

neighbors which are considered as being in the same spatial

context.

On the other hand, the success of deep learning frame-

work on ImageNet challenge [11] has inspired us to ap-

ply hierarchical neural networks to build the spatial con-

text on various scales. Convolutional Neural Networks (C-

NNs) [14], among all deep learning models, have shown

their striking performances on modeling the image struc-

tures on different levels with multiple layered convolutional

kernels.

The CNN models have been generalized to scene la-

beling. For example, multi-scale CNNs are proposed in

[3], which produce and concatenate the feature maps of

all scales. Usually, the learned features have to be post-

processed by up-sampling coarser-scale maps to match with

finer-grained image pixels, and the global contextual coher-

ence and spatial consistency are imposed by CRFs and seg-

mentation trees. Long et al. [16] propose an alternative

paradigm of fully convolutional networks to annotate im-

ages pixel-wise. They present an approach to de-convolve

coarser scale of output maps to label the image pixels. Un-

like these two CNN-based models, we are interested in a

hierarchical network, which not only explores multi-scale

structures of input images, but also avoids producing coarse

results that have to be up-sampled for labeling pixels. Such

a model is highlighted with customized scale of the spatial

context for each individual pixels so that the local structures

12267



can be modeled on a suitable scale.

Recently, Long Short Term Memory (LSTM) recurren-

t neural networks [8] has been applied for scene labeling

[1]. The LSTM networks are originally used to model se-

quential data, such as sentences [19] and videos [22]. The

networks are composed of a series of recurrently connected

memory cells, which are able to capture long-range depen-

dencies between different time frames. All the information

entering and leaving memory cells are controlled by several

types of gates, which ensures only the information relevant

to the task would be maintained in their memory spaces.

Recently, Byeon et al. [1] adapt the conventional LSTM

networks to model 2D images along four directions – left-

top, left-bottom, right-top and right-bottom, and a hidden

feedforward layer is built upon 2D LSTM layer to combine

the LSTM cells at each image location. Several 2D LSTM

layers and feedforward layers are interleaved to capture the

spatial contexts along different directions. However, unlike

the CNNs, each memory cell is not hierarchically connect-

ed with a receptive field of pixels, making it incapable of

modeling various scales of spatial contexts like the CNNs.

In this paper, we present a novel paradigm of Hierarchi-

cally Gated Deep Networks (HGDNs) to address the chal-

lenge of customizing spatial contexts for different pixels at

suitable scales. The proposed network combines the advan-

tage of both the CNNs and the LSTMs. Like CNNs, the

networks have multiple layers of memory cells that mod-

el a growing scale of image structures in bottom up fash-

ion. However, unlike CNNs, between two layers, there are

memory gates which control whether spatial contexts from

the lower layer should be annexed to form a larger scale of

spatial context at the higher layer. In this way, at each lay-

er, a memory cell takes the customized spatial context at its

location. Going up the HGDN layers, the spatial contex-

t of a pixel could gradually grow up to an arbitrary shape

by merging the relevant neighbors until it reaches a suitable

scale.

The HGDN model has an intrinsic hierarchical structure,

making it adequate in modeling multiple scales of spatial

contexts. Unlike the 2D LSTMs, the HGDN model does

not have any horizontal connections between memory cells

in one layer, and all the gates are deployed to control the

flows of spatial patterns moving vertically across layers. In

this way, the HGDN can accurately label pixels by avoiding

the risk of blindly mixing up different scales of spatial pat-

terns. The HGDN model inherits the ability of the CNNs

modeling various scales of image details, as well as the ad-

vantage of the LSTMs on capturing the long-range spatial

dependency between relevant pixels.

The remainder of this paper is organized as follows. In

the following section, we review the existing work related to

the proposed method. In Section 3, we formulate the prob-

lem of scene labeling that motivates our model. We present

the proposed network architecture in Section 4, followed by

a discussion on the implementation details in Section 6. We

present the experiment results in Section 7, and conclude

the paper in Section 8.

2. Related Work

Most of existing scene labeling approaches fall into one

of three major categories.

The first category uses probabilistic graphical models to

reveal the dependencies between adjacent pixels, patches or

regions. Tighe and Lazebnik [20] present a nonparamet-

ric approach to label superpixels by incorporating neigh-

borhood context with efficient MRF optimization. On the

contrary, Russell et al. [18] point out that there is no com-

mon optimal level like pixels and segments for labeling im-

ages, which is suitable for all scene categories. Thus they

propose to use a hierarchical CRF model to integrate the

features computed at different levels.

To explore the multiple scales of image spaces, Convo-

lutional Neural Networks and their variants become suc-

cessful and scalable in many computer vision application-

s. Among them, as aforementioned in the last section,

multi-scale CNNs [2] and fully convolutional networks [16]

have been proposed for scene labeling tasks. Both produce

coarse-scaled output layer which has to be up-sampled to

a higher resolution for labeling individual pixels. Kekeç et

al. [10] propose to use two separate CNNs to combine the

visual features and the contextual information for scene la-

beling.

Recently, LSTM recurrent neural networks have been

applied to model the spatial contexts for labeling scenes

[1]. This work is based on multi-dimensional LSTMs [5, 6],

which model N -dimensional data along different direction-

s. Specifically, 2D LSTMs are unfolded horizontally in

four different directions (left-top, left-bottom, right-top and

right-bottom) to model images. However, unlike the CN-

N models, multi-dimensional LSTMs do not model vari-

ous scales of input images in a bottom-up fashion. This

makes them inadequate in capturing flexible ranges of s-

patial contexts. Moreover, the 2D LSTMs work on pixel

patches rather than the individual pixels. Thus, the labeling

result on patches has to be interpolated to annotate individ-

ual pixels.

3. Problem and Motivation

In this section, we discuss the proposed Hierarchically

Gated Deep Network (HGDN) and its application on scene

labelling. Suppose we have an image X = {xi,j |i =
1, · · · ,M, j = 1, · · · , N} of size M × N , where xi,j

represents the local features extracted for the pixel locat-

ed at (i, j) of the image. Then the goal of scene labeling

is to assign each pixel with a label yi,j from a finite set

2268



Figure 1: An one-dimensional example of the proposed Hi-

erarchically Gated Deep Networks (HGDNs). The solid o-

range line represents the allowed information flows being

gated between multiple successive layers. They eventually

enter the highlighted node at the topmost layer.

C = {1, 2, · · · , C}.

The difficulty of labeling pixels lies in that we do not

know a suitable scale of a pixel’s spatial context contain-

ing a set of relevant pixels that form a local structure, such

as object parts and scenery areas. Many existing method-

s attempt to explore the smoothness assumption over the

labels assigned to the pixels in a local neighborhood. How-

ever, this assumption might not be able to explore the large

variations in the scales of the spatial contexts. For exam-

ple, some pixels have large scales of context like grass and

sky; on the contrary, some pixels belong to an object part

with a small scale of spatial context such as wheel and win-

dow. While multi-scale deep networks such as CNNs model

various scales in a bottom-up fashion, however, they are i-

nadequate in capturing location-variant scales surrounding

pixels belonging to different scales of local structures. This

inspires us to develop a model which can automatically han-

dle flexible spatial contexts corresponding to different local

structures.

To address this challenge, in this paper we propose a nov-

el paradigm of multi-scale deep network, where a suitable s-

cale of spatial context for each pixel is determined by gating

varying sizes of neighborhood between two successive lay-

ers. It creates multi-layered gates to control the information

flows between multiple successive layers. The gate only al-

lows the information flows from the same spatial context to

update the hidden memory state corresponding to each pix-

el at the higher layer. A suitable scale of the spatial context

for each pixel gradually grows by annexing more and more

relevant pixels bottom up through the network layers.

Figure 1 illustrates this idea with an one-dimensional ex-

ample. The highlighted node at the topmost layer absorbs

information flows from a spatial context of four nodes at the

bottom layer. The solid arrows represent the allowed paths

of information flows entering the highlighted node. In the

Figure 2: An illustration of the network structure between

a memory cell at an upper layer and its connected cells in a

neighborhood of the lower layer. Each memory cell has an

internal state sli,j representing the spatial patterns extracted

from a context, and it produces an output hl
i,j fed into the

higher layer. Between two connected cells, there is a gate

gl−1
i,j;m,n (square nodes) controlling whether to allow infor-

mation flows of lower-layer outputs to enter the memory

cells at the higher layer. Only the information flows from

the same spatial context should be allowed to pass through

the gate.

next section, we will formalize this idea of gating informa-

tion flows in the mathematical details.

4. The Proposed Approach

The proposed deep network has multiple layers of neu-

rons which have the same size as the input image. This

enables labeling each pixel directly at the output layer with-

out having to up-sample the labels. Each layer is composed

of a two-dimensional grid of memory cells indexed by (i, j)
for i = 1, · · · ,M and j = 1, · · · , N , each corresponding

to a pixel of input image.

As illustrated in Figure 2, between two layers, each

memory cell (i, j) at an upper layer l is connected to a

neighborhood N l−1
i,j of memory cells around the same lo-

cation (i, j) at the lower layer l − 1. Each memory cell has

an internal state sli,j , which memorizes the patterns obtained

from the spatial contexts up to the level l. Meanwhile, the

memory cell produces the output hl
i,j , which is fed into the

upper layer. All outputs are gated so that only the relevant

patterns are allowed to update the memory cells at the upper

layer.

In the following, we will explain different components

of the proposed network architecture in detail.

Input Gates

First, we define an input gate to control the information

flow between a memory cell (i, j) and its connected cells

(m,n) ∈ N l−1
i,j at the lower layer. The role of this gate is to

2269



filter out those irrelevant patterns to the pixel labels.

Specifically, for any connected cell (m,n) ∈ N l−1
i,j \

{(i, j)} in the neighborhood of (i, j), we have an input gate

defined as

gl−1
i,j;m,n = σ(U(i−m,j−n)

g sl−1
i,j +W(i−m,j−n)

g hl−1
m,n + bg)

(1)

where σ(·) is the sigmoid activation over the range of [0, 1];

U
(i−m,j−n)
g and W

(i−m,j−n)
g are transformation matrices

from the state and input to the gate respectively, and bg is

the bias vector 1. These parameters are functions of the rel-

ative disposition (i−m, j − n) between (i, j) at the center

and (m,n) in the neighborhood N l−1
i,j \ {(i, j)}. So these

parameters are recurrent across different neighborhoods at

the same layer, which can save a huge amount of parame-

ters.

The gate defines a spatial context in the neighborhood

of (i, j) – its value decides to what extent the output from

a memory cell (m,n) of a lower layer is contextually con-

nected to a memory cell at (i, j) of the upper layer. It is a

multiplicative gate, where a large value of the gate implies

the output hl−1
m,n from (m,n) can pass through it to update

the memory state sli,j . In this sense, the gate can be viewed

as an indicator of whether (m,n) belongs to the spatial con-

text of (i, j).
It is worth noting that gl−1

i,j;m,n is not a symmetric func-

tion of two locations (i, j) and (m,n). In other words, the

assertion that (m,n) belongs to the spatial context of (i, j)
does not necessarily imply (i, j) also belongs to the spa-

tial context of (m,n). For example, for labeling a ship, the

spatial context might include surrounding pixels of sea as

they provide useful clues to label ship. However, on the

converse, it is not necessary to include ship as the spatial

context when labeling sea. This gives more flexibility to

model the spatial contexts for different pixels.

Memory Cell States

With the input gate defined above, the state sli,j of a

memory cell can be updated by combining all the outputs

from the connected memory cells at the lower layer through

the relevant spatial context defined by the gates of gl−1
i,j;m,n

sli,j = sl−1
i,j +

∑
(m,n)∈N l−1

i,j
\{(i,j)}

{gl−1
i,j;m,n ⊙ il−1

i,j;m,n}

(2)

where ⊙ is the element-wise multiplication, and il−1
i,j;m,n is

the input modulating hl−1
m,n entering the memory cell (i, j):

il−1
i,j;m,n = tanh(W(i−m,j−n)

s hl−1
m,n + bs) (3)

where the transformation matrix and bias vector

W
(i−m,j−n)
s and bs are functions of the relative lo-

1These parameters should differ between different layers. However, for

notational simplicity, we do not explicitly distinguish them for different

layers.

cation of (i−m, j−n), and the hyperbolic tangent tanh(·)
is the activation function for this modulated input.

Note that, the first term of the RHS of Eq. (2) suggest-

s that the memory state sl−1
i,j from the lower layer does not

need to be gated before entering the memory cell at the same

location. This is based on the assumption that each mem-

ory cell must belong to its own spatial context at this same

location. Thus, it allows the memory state to go straight up

to label the pixel at that location.

Memory Cell Outputs

Once the state of a memory cell is updated, it is ready to

produce the following output fed into the higher layer.

hl
i,j = tanh(Whs

l
i,j + bh)

where Wh and bh are the parameters for the memory cell

output.

Topmost Output Layer

At the top of the network, we have an output layer where

a softmax function is applied at each location (i, j) to clas-

sify the corresponding pixel to one of C labels:

Pr(yij = c|hL
i,j) =

exp((wc ∗ h
L)i,j + bc)

exp(
∑C

c=1(wc ∗ hL)i,j + bc)

where ∗ denotes the convolution between a kernel wc of

label c and the hidden output hL from the last memory cell

layer L, and bc is bias for each label c.

5. Training the Deep Network

The training of the proposed deep network can be per-

formed by back-propagating the errors up down through the

whole network.

In particular, given a training image X = {xi,j} with the

pixel labels Y = {yi,j}, the loss function can be defined as

the negative log likelihood of softmax outputs

�(Θ) =

M,N∑

i,j=1

− log Pr(yi,j |h
L
i,j)

where Θ contains all model parameters.

It is worth noting that this loss function is separable be-

tween the pixel labels at different locations. Thus we can

parallelize the calculation of the loss derivatives across dif-

ferent locations for an input image. This can speed up the

back-propagation procedure on GPU with many cores.

Also, when we back-propagate the errors down the net-

work, we will truncate those errors leaving a memory cell

down to the lower layer, except the errors back-propagated

along the states of the memory cells at the same location.

This truncated back-propagation algorithm has worked well

on training Long Short-Term Memory (LSTM) machine [8]

to prevent the vanishing or exploding errors.

2270



It is also worth noting that all the model parameters W∗

and b∗ are recurrent over each layer. Like the convolution-

al kernels used in Convolutional Neural Networks (CNNs),

this recurrent structure significantly reduces the size of the

parameters that have to be estimated. This makes it possible

to have the whole network fit in the GPU’s device memory,

without frequent swap of the network parameters between

the host and device memory spaces. On the Nvidea Tesla

K40 GPUs we used for the experiment, the model can fit

into the device memory. This further speeds up the training

of the proposed HGDN on the GPUs.

6. Further Discussions

6.1. GPU Implementation

Most computations of the model arise from the calcula-

tion of multiple layered memory cells and their gates. They

can be accelerated by the GPUs. For example, each term in

the argument of the memory gate function (1) can be par-

allelized on GPGPU. The first term can be vectorized by

copying sli,j to tile over the neighborhood and applying the

matrix multiplication with Ug simultaneously; the second

term can also be parallelized over the whole neighborhood,

which can be conducted on GPUs very fast.

Then, in calculating the memory state in Eq. (2), the

summation between the gate function gl−1
i,j;m,n and the mod-

ulated input il−1
i,j;m,n can be considered as a variant of con-

volution 2 between these two terms. These multiplication

and summation operations can be parallelized together with

the computations of gate function (1) over each neighbor-

hood in the similar way as the standard convolution. In our

implementation on Nvidia Tesla K40 GPUs, an image of

size 256 × 256 can be processed within 0.03 seconds on

average, including both feed-forward pixel labeling for pre-

diction and backward error propagation for model training.

6.2. How many layers should be added?

One of interesting questions is how many layers we

should build for labeling an input image through the

HGDN. Clearly, the answer depends on the size of the im-

age, as well as the size of neighborhood.

Each memory cell at a particular layer has a maximal

size of spatial context over the input image, if we assume

all the gates are completely open. For example, in Figure 1,

the highlighted memory cell at the top layer can cover a

maximal number of five nodes in its spatial context at the

input layer. But the actual scale of the spatial context for a

memory cell can be much smaller than its possible maximal

scale when not all gates on its path to input layers are open,

2Here the convolutional kernel g is location-variant unlike the stan-

dard convolutional kernel that is location invariant. However, the location-

variant convolution makes it possible to customize unique scale of spatial

context for each pixel at different locations.

as shown in Figure 1 where the highlighted cell only covers

four rather than five nodes of input layer in its spatial con-

text. As more layers are added, assuming all gates are open,

the maximal scale of a spatial context will gradually grow

until it covers the whole input image. How fast the scale of

spatial context will grow will depend on the size of neigh-

borhood – the larger the neighborhood, the more cells from

the lower layer may be involved, and thus a spatial context

can grow faster. Then the maximum number of layers re-

quired for labeling pixels can be defined as the one when

the whole input image is covered by the memory cells at

the output layer.

However, in practice, we only need spatial contexts to

cover a relatively small part of an input image rather than

the entire image, and thus the actual number of layers is

often much smaller than the theoretical maximum number.

For example, on the datasets we used in the experiments,

we find with neighborhood sizes ranging from 11 × 11 to

5× 5 pixels, five hidden layers (excluding input and output

layers) should be enough to give a satisfactory performance

on labeling pixels.

7. Experiments

In this section, we present our experiment results on

scene labeling tasks.

7.1. Datasets

We test the proposed HGDN on two datasets – Stanford

Background dataset [4] and the SIFT Flow dataset [15].

Both datasets have been fully labeled on individual pixel

level.

The Stanford background dataset contains 715 images,

which are annotated with 8 scene labels. The dataset is s-

plit into a training set of 572 images, and a test set of 143
images. It has a special foreground label, which denotes un-

known objects. Each individual image has a different reso-

lution, with an average size of 320× 240 pixels.

On the other hand, SIFT Flow dataset has 2, 488 images,

each having a fixed resolution of 256 × 256 pixels. The

dataset is split into a training set of 2, 488 images and a test

of the rest 200 images. It contains 33 labels annotated by

LabelMe users.

7.2. Network Architecture

The HGDN model used in the experiment has seven lay-

ers, including one input layer, five hidden layers and one

output layer. As shown in Table 1, five hidden layers are

created to hierarchically gate the information flows origi-

nated from the input images. At the first hidden layer, con-

volutional filters of size 11× 11 are applied to input image

to initialize the states of memory cells at all locations. In

other words, each memory cell at the first hidden layer is

2271



Table 1: Proposed HGDN architecture. Except the number

of memory states, the same HGDN architecture is applied

to both datasets. This table shows the neighborhood size

of memory cells for each hidden layer. Among them, the

first hidden layer initializes the memory cell state at each

location by applying a convolution kernel of size 11 × 11
to input images. From the second hidden layer through the

fifth hidden layer, varying sizes of neighborhoods are ap-

plied to connect the memory cells between two layers. Fi-

nally, the topmost output layer generates the pixel labels by

applying a convolution computation to the last memory cell

layer (i.e., the first layer) with a kernel of size 5× 5.

(a) Hidden Layers

Layer Neighborhood Size
No. of Mem. States

Stanford SIFT Flow

1 11× 11 32 256

2 9× 9 32 256

3 5× 5 32 256

4 5× 5 32 256

5 5× 5 32 256

(b) Output Layer

Layer Conv. Kernel Size
No. of output labels

Stanford SIFT Flow

Output 5× 5 8 33

connected to a neighborhood (receptive field) of 11 × 11
pixels of the input image.

From the second hidden layer, each memory cell receives

the gated inputs from a varying-sized neighborhood at the

lower layer. The memory cells at the second hidden layer

are connected to a neighborhood of 9 × 9 memory cells of

the lower layer; from the third hidden layer, each memory

cell is connected to a neighborhood of 5 × 5 memory cell-

s from the lower layer. Finally, a convolutional kernel of

size 5 × 5 is applied to the last memory cell layer, which

generates the pixel labels at the topmost output layer.

All hidden layers have the same number of states for

each memory cell, which ensures the representation of s-

patial contexts reside in the same state space across layers.

A rule of thumb to choose the number of memory states is

to use a multiple of 16 closest to four times of scene la-

bels – on Stanford background dataset, we use 32 states

for each memory cell, while 128 states are used for SIFT

Flow dataset. Choosing the multiple of 16 for the number

of memory states increases the computing performance on

GPUs thanks to the data alignment. We find this rule works

well for both datasets. Also, each layer is padded with the

zeros to ensure all the layer to have a full size of resolution

after being processed. All the layers of memory cells, from

the input to the output layer, have the same size and thus

we do not need to up-sample the output layer to label every

pixel.

We adopt stochastic gradient method to train the model.

All the model parameters are initialized with a zero-mean

Gaussian distribution with a standard deviation of 0.1. The

learning rate is fixed to 0.001, with a momentum of 0.9.

With the GPU implementation, each epoch can be finished

within less than 1.5 seconds with a batch of 128 training

images.

7.3. Evaluation Metrics

The evaluation of scene labeling task is usually per-

formed based on two metrics. The first is the pixel-wise

accuracy, which measures the ratio of pixel-wise true posi-

tives over all the pixels. The second is the average label ac-

curacy, which computes the average of label accuracies over

all labels. The latter metric is more challenging because on

both datasets, different labels are imbalanced, where some

labels (e.g., sky) cover a much larger number of pixels than

the other labels (e.g., pedestrian). To make a fair compar-

ison with the other algorithms, we use all the pixel labels

in their natural frequencies and do not balance them to train

the model. We report both metrics when comparing with

different algorithms.

7.4. Results

Table 2a and Table 2b report the pixel-wise accuracy and

average label accuracy on Stanford Background dataset and

SIFT Flow dataset respectively. We also compare the av-

erage computing time to process each image by different

algorithms. Our implementation is very fast in processing

images as we parallelize the computation across neighbor-

hoods in each layer.

We compare with both CNN and LSTM paradigms of

state-of-the-art methods. The results show that the proposed

HGDN model achieves very competitive accuracy on both

datasets, outperforming both CNN and LSTM paradigms

when no extra training data are involved in pretraining the

model. Note that the 2D LSTM model in [1] divided images

into patches as inputs and has reported the performances

with varying sizes of input patches. In the table, we report

the best result achieved by the optimal size of input patch

on two datasets.

Figure 3 illustrates the output maps of scene labels on

some image examples. The brightness of output maps rep-

resents the activations of a pixel in respondence to different

scene categories. It reflects the probability of each pixel be-

longing to those scene categories. The results are obtained

from the last HGDN output layer. We can see that different

scene categories occupy various scales of spatial contexts

– for example, the sky and road usually span a larger scale

of context, while the tree is often restricted to relatively s-

2272



Table 2: Comparison of pixel-wise accuracy and label average accuracy on (a) Stanford Background and (b) SIFT FLOW

datasets. We also report the average computing time to process each image by different algorithms. The proposed HGDN is

implemented on Tesla K40 GPU, which reaches very fast computing speed. Not all compared models are implemented on the

GPUs, and we denote them in the parenthesis after the reported computing time. Some results by the compared algorithms

are missing in the literature, where we denote with N/A. We do not balance the label frequencies to improve the label average

accuracy. † It is noted that the FCN uses extra ILSVRC data to pretrain a reference model before it is fine-tuned on the SIFT

Flow dataset, whereas no extra data are involved to pretrain the HGDN.

(a) Stanford Background

Algorithm Pixel-wise Accu. Label Avg Accu. Comp. Time (sec.)

Superparsing 2010 [20] 77.5 N/A 10 to 300

Singlescale ConvNet 2013 [2] 66 56.5 0.35 (GPU)

Multiscale net [2] 78.8 72.4 0.6 (GPU)

Multiscale net + superpixels [2] 80.4 74.56 0.7 (CPU)

Multiscale net + gPb + cover [2] 80.4 75.24 61 (CPU)

Multiscale net + CRF on gPb [2] 81.4 76.0 60.5

Augmented CNNs 2014 [10] 71.97 66.16 N/A

Recurrent CNNs [17] 76.2 67.2 1.1 (GPU)

2D LSTM networks [1] 78.56 68.26 1.3 (CPU)

Proposed HGDN 82.41 72.98 0.02 (GPU)

(b) SIFT Flow dataset

Algorithm Pixel-wise Accu. Label Avg Accu. Comp. Time (sec.)

Multi-scale net (balanced frequency) [2] 72.3 50.8 N/A

Multi-scale net (natural frequency) [2] 78.5 29.6 N/A

Augmented CNNs 2014 [10] 49.39 44.54 N/A

Recurrent CNNs [17] 65.5 20.8 N/A

FCN† [16] 85.2 51.7 0.175 (GPUs)

2D LSTM networks [1] 70.11 22.59 1.2-3.1 (CPU)

Proposed HGDN 79.68 51.26 0.03 (GPU)

maller scale. Even for the same scene category, its scale

of spatial context can vary a lot between different images.

This confirms the necessity to customize the spatial context

to various scales.

We also illustrate the feature maps of 32 memory states

at 2-5 hidden layers in Figure 4. It shows that how im-

age structures of various scales are captured through these

layers – at the lower layers, small structures are captured,

while at the higher layers, complex structures are modeled

by gradually annexing the small structures from the lower

layers. It is also worth noting that the activations of these

32 memory states are much sparse – some of memory states

produce zero or saturated activations. This makes sense s-

ince not every memory state need to respond to all scene

labels. Actually, the sparseness decouples the activation-

s between different memory states, which can reduce the

over-fitting risk.

Also, to verify the importance of gating the scales of s-

patial contexts across layers, we test a compared HGDN

model by removing the multi-layered gates between layers.

We found that the pixel-wise accuracy on the two datasets

would drop to 63.84% and 56.75% respectively, and the av-

erage label accuracy would decline to 65.92% and 43.22%.

This shows that without these gates, different scales of the

spatial contexts might be mixed up, leading to bad perfor-

mance on labeling pixels. This result justifies the necessity

of adding gates to control the spatial scales.

Finally, it is worth noting that our pixel labeling result

is the direct output from the HGDNs, without any postpro-

cessing procedure like label smoothing or interpolation. Al-

though we have found that postprocessing the labeling re-

sult via CRFs, over-segmented patches, and segmentation

trees can further improve the performance, we do not report

the post-processing results to ensure fair comparison with

the other algorithms.

8. Conclusion

In this paper, we develop a novel paradigm of deep net-

work which explores various scales of spatial contexts ad-

justed to pixels at different locations. Compared with the

2273



sky tree

road grass water

building mountain foreground

sky tree

road grass water

building mountain foreground

sky tree

road grass water

building mountain foreground

sky tree

road grass water

building mountain foreground

Figure 3: Illustration of output maps of scene labels on Stanford Background dataset, where the brightness represents the

activations of a pixel in respondence to different categories. The results are obtained from the last HGDN output layer.

(a) Layer 2 (b) Layer 3

(c) Layer 4 (d) Layer 5

Figure 4: Illustration of the learned feature maps from the top four layers of memory cells (Layer 2-5). The input image

corresponds to the first one in Figure 3.

other multi-scale deep network, the proposed model con-

structs multiple layers of memory cells, whose outputs are

hierarchically gated on different scales before recursively

feeding to higher layers. Then the pixel labels at differen-

t locations are decided based on the spatial contexts of the

customized scales. The experiment results show that its ar-

chitecture is more adequate in modeling the scene structures

on different scales than the other compared deep networks.

2274



References

[1] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene

labeling with lstm recurrent neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3547–3555, 2015. 1, 2, 6, 7

[2] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning

hierarchical features for scene labeling. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 35(8):1915–

1929, 2013. 1, 2, 7

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In Computer Vision and Pattern Recognition

(CVPR), 2014 IEEE Conference on, pages 580–587. IEEE,

2014. 1

[4] S. Gould, R. Fulton, and D. Koller. Decomposing a scene

into geometric and semantically consistent regions. In Com-

puter Vision, 2009 IEEE 12th International Conference on,

pages 1–8. IEEE, 2009. 1, 5

[5] A. Graves, S. Fernndez, and J. Schmidhuber. Multi-

dimensional recurrent neural networks. In Artificial Neural

Netwroks ICANN 2007, pages 519–558, 2007. 2

[6] A. Graves and J. Schmidhuber. Offline handwriting recog-

nition with multidimensional recurrent neural networks. In

Advances in Neural Information Processing Systems, pages

545–552, 2009. 2

[7] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán. Multiscale

conditional random fields for image labeling. In Computer

vision and pattern recognition, 2004. CVPR 2004. Proceed-

ings of the 2004 IEEE computer society conference on, vol-

ume 2, pages II–695. IEEE, 2004. 1

[8] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 2, 4

[9] Q. Huang, M. Han, B. Wu, and S. Ioffe. A hierarchical con-

ditional random field model for labeling and segmenting im-

ages of street scenes. In Computer Vision and Pattern Recog-

nition (CVPR), 2011 IEEE Conference on, pages 1953–1960.

IEEE, 2011. 1

[10] T. Kekeç, R. Emonet, E. Fromont, A. Trémeau, and C. Wolf.

Contextually constrained deep networks for scene labeling.

2, 7

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1

[12] M. P. Kumar and D. Koller. Efficiently selecting regions for

scene understanding. In Computer Vision and Pattern Recog-

nition (CVPR), 2010 IEEE Conference on, pages 3217–3224.

IEEE, 2010. 1

[13] D. Larlus and F. Jurie. Combining appearance models and

markov random fields for category level object segmentation.

In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1–7. IEEE, 2008. 1

[14] Y. LeCun and Y. Bengio. Convolutional networks for images,

speech, and time series. The handbook of brain theory and

neural networks, 3361(10), 1995. 1

[15] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense correspon-

dence across scenes and its applications. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 33(5):978–

994, 2011. 5

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolution-

al networks for semantic segmentation. arXiv preprint arX-

iv:1411.4038, 2014. 1, 2, 7

[17] P. Pinheiro and R. Collobert. Recurrent convolutional neural

networks for scene labeling. In Proceedings of The 31st In-

ternational Conference on Machine Learning, pages 82–90,

2014. 1, 7

[18] C. Russell, P. Kohli, P. H. Torr, et al. Associative hierarchi-

cal crfs for object class image segmentation. In Computer

Vision, 2009 IEEE 12th International Conference on, pages

739–746. IEEE, 2009. 2

[19] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence

learning with neural networks. In Advances in Neural Infor-

mation Processing Systems, pages 3104–3112, 2014. 2

[20] J. Tighe and S. Lazebnik. Superparsing: scalable nonpara-

metric image parsing with superpixels. In Computer Vision–

ECCV 2010, pages 352–365. Springer, 2010. 2, 7

[21] B. Triggs and J. J. Verbeek. Scene segmentation with crfs

learned from partially labeled images. In Advances in neural

information processing systems, pages 1553–1560, 2007. 1

[22] V. Veeriah, N. Zhuang, and G.-J. Qi. Differential recurrent

neural networks for action recognition. Proceedings of In-

ternational Conference on Computer Vision, 2015. 2

2275


