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Abstract

Automated 3D reconstruction of faces from images is

challenging if the image material is difficult in terms of

pose, lighting, occlusions and facial expressions, and if the

initial 2D feature positions are inaccurate or unreliable. We

propose a method that reconstructs individual 3D shapes

from multiple single images of one person, judges their

quality and then combines the best of all results. This is

done separately for different regions of the face. The core

element of this algorithm and the focus of our paper is a

quality measure that judges a reconstruction without infor-

mation about the true shape. We evaluate different qual-

ity measures, develop a method for combining results, and

present a complete processing pipeline for automated re-

construction.

1. Introduction

Algorithms that reconstruct 3D faces from images by

fitting a deformable face model, such as a 3D Morphable

Model (3DMM), rely on a relatively precise initial position-

ing of the face [7] or on a set of feature point coordinates

[8]. For an automated procedure, it is straight-forward to

combine these algorithms with automatic face and landmark

detection, such as the algorithm by Zhu and Ramanan [33]

or other feature detectors [11]. In practice, however, this

combination has turned out to be more challenging than ex-

pected, posing a number of fundamental questions. The fea-

ture point detection is a non-trivial task, especially if the im-

age material includes complex lighting, facial expressions,

wrinkles, eye glasses or facial hair. Therefore, the features

may be inaccurate, and some may even be outliers. More-

over, the optimal set of features for 3DMM fitting includes

points that are not easy to detect, such as the facial silhou-

ette and the ears. Those points are necessary for the 3DMM

to converge to the correct pose angle, and this in turn affects

the shape estimate.

Therefore, a simple combination of existing methods

Figure 1: A segment-based, weighted linear combination is

used to create the final head shape. The weight decreases

with the rank. Implausible segments are discarded. Note

that each facial segment is handled separately. Optionally

the texture can be extracted from one of the input images.

produces results that are substantially worse than those ob-

tained with manually labeled features. Attempts to make

3DMM fitting more robust [10] are promising but still not

sufficient. Instead, we argue that in many real-world appli-

cations more than one image of a person is available, so an

automated algorithm can exploit redundant data from multi-

ple images to gain robustness and reliability. Our algorithm

outperforms existing methods of simultaneous 3D recon-

struction from multiple images [7] significantly, which may

be due to the fact that outliers in feature positions adversely

affect the simultaneous least squares solution.

In contrast, our algorithm calculates separate reconstruc-

tions from each input image, and then combines them to an

optimal overall solution. We propose a method that selects

the most plausible reconstructions, operates on different re-

gion of the face separately, and merges them into a single

3D face.

The key component of our algorithm is a new measure
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for the visual quality of 3D reconstructions, based on sur-

face normals. Automated assessment of visual quality in

computer graphics and vision is a fundamental challenge.

Simple image comparisons are insufficient because they are

insensitive to small but important errors and artifacts. Eu-

clidean distance in 3D overrates global shape deformations

that would be irrelevant to human observers. Mahalanobis

distance is also inconsistent with the quality ratings of hu-

mans. In an experimental comparison with quality ratings

from human subjects, our new, normal based measure out-

performs these existing criteria.

In summary, the contributions of this paper are:
• a general measure of the quality (naturalness) of a

shape reconstruction,

• an algorithm for selecting and combining reconstruc-

tions of different facial regions (segments) from differ-

ent input images into a single 3D face,

• an automated algorithm that produces 3D shape re-

constructions from multiple images of a person, which

goes beyond a simple combination of landmark detec-

tion and 3DMM fitting.

2. Related Work

Although several approaches have been published re-

lated to high quality 3D reconstructions of faces from 2D

images, automated reconstruction still remains a challeng-

ing task, especially with facial expressions. It is often diffi-

cult to find images with a neutral expression, as most people

tend to smile in portraits.

In the literature on face modeling several different ap-

proaches can be found. For high quality 3D reconstructions

of faces which are used in computer games and movies,

the state of the art techniques still require 3D scans of the

person using laser scanners or multi-view camera setups

[3, 9, 4, 5, 12, 21, 2]. Additionally, substantial post pro-

cessing is required to combine the generated 3D data and to

morph between different facial expressions and visemes to

realistically animate the subjects face.

Approaches like the one presented in this paper try to ob-

viate the need for special equipment. Instead, they make use

of data that can be easily produced with standard equipment

or that is already available, such as photo or video data.

Multi-view geometry [26, 14, 28, 13] is a common proce-

dure to reconstruct 3D shapes from several single images

or video frames. Although these algorithms are quite flexi-

ble in usage for different scenarios varying from the recon-

struction of buildings, smaller objects and even faces, they

cannot sufficiently handle non-rigid transformations (facial

expressions) within a series of input images.

Other recent publications have shown promising results

by aligning a 3D face to single or multiple images as well

as to videos frames. The approaches by Park et. al [22],

Aldrian and Smith [1] and Dou et. al [24] reconstruct the

3D shape from a single image. Wang et al. [30] extract

the silhouette from several input images to reconstruct the

3D shape, while Roth et. al [27] use an image collection

for photometric stereo-based normal estimation which iter-

atively optimizes the surface reconstruction. By estimating

the pose and computing the optical flow, a high detail re-

finement of the 3D shape is performed, resulting in a 3D

to 2D correspondence [20, 18, 15, 29]. Suwajanakorn et.

al [29] even captured fine details like wrinkles and in [19]

Kemelmacher-Shlizerman and Seitz showed that also ’faces

in the wild’ can be handled properly. But these approaches

lack an additional 3D to 3D correspondence. In this paper

we address 3D to 2D as well as 3D to 3D correspondence.

To reconstruct a 3D shape of a face from a 2D image,

Blanz and Vetter [7] introduced the 3DMM. With the Basel

Face Model [23], a 3DMM has been made available to the

public and Zhu et. al [34] presented a discriminative 3DMM

based on local features that provides accurate reconstruc-

tions. A common and significant drawback of the 3DMM

is its lack of robustness in the case of ’faces in the wild’,

especially if the facial landmarks are not perfectly detected.

Although Breuer et al. [11] propose to use a Support Vec-

tor Machine for automatic 3D face reconstruction and in

[10] an idea is presented to correct misplaced landmarks to

some extent, both implementations were not robust enough

to handle difficult scenarios caused by facial expressions

or complex lighting conditions. With the approach in this

paper, we aim to overcome the previous drawbacks of the

3DMM.

Additionally there are approaches which are not aiming

at the reconstruction of faces directly, but provide a strong

foundation for further processing by detecting faces, esti-

mating poses, localizing feature points or aligning face ge-

ometries [33, 32, 25, 31, 17].

3. 3D Morphable Model

The 3D Morphable Model [7] is a vector space of 3D

shapes and textures, Si = (X1, Y1, Z1, X2, . . . , Zn)
T and

Ti = (r1, g1, b1, r2, . . . , bn)
T , with X,Y, Z coordinates

and r, g, b colors of n = 113 753 vertices. In our exper-

iments, the 3DMM is constructed from 3D scans of 200

individuals and from 35 additional scans that show facial

expressions of a single individual [6]. On the individual

shapes, the expressions and the textures, a PCA defines

eigenvectors si, ui and ti, respectively, and average shapes

and textures s and t. In this basis, new faces can be approx-

imated by linear combinations

S = s+

m∑

i=1

αisi +

p∑

i=1

γiui T = t+

m∑

i=1

βiti. (1)

We use m = 100 eigenvectors for individual variations and

p = 4 for the most important degrees of freedom of facial
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expressions, with a focus on mouth movements.

Please note that a high percentage of images, for example

those in the database ’faces in the wild’, involve non-neutral

facial expressions, so our approach of combining multiple

images only makes sense with this additional degree of free-

dom. We use separate PCAs and basis vectors for shape and

expression in order to be able to give the 3D faces neutral

expressions (γi = 0) after fitting.

3D shape reconstruction by fitting the model to an image

is essentially a minimization of the image distance

dimage =
∑

u,v

‖Iinput(u, v)− Imodel(u, v)‖
2 (2)

in all 3 color channels, with respect to the linear coefficients

αi, γi, βi and some imaging parameters ρi that control pose,

lighting and other parameters (for details see [7]).

Overfitting is avoided by a regularization term that is the

Mahalanobis distance from the starting conditions,

dmaha =
∑

i

α2

i

σ2

S,i

+
∑

i

γ2

i

σ2

S,i

+
∑

i

β2

i

σ2

T,i

+
∑

i

(ρi − ρi)
2

σ2

R,i

,

(3)

where ρi denotes the starting values of the rendering param-

eters, and σ are the standard deviation from PCA.

A stochastic newton optimization algorithm minimizes

the weighted sum of dimage, dmaha and an additional term

dfeatures =
∑

j

‖

(
xj

yj

)
−

(
Px(Xkj

, Ykj
, Zkj

)
Py(Xkj

, Ykj
, Zkj

)

)
‖2

(4)

which is the sum of squared distances between 2D feature

positions xj , yj and the projected positions of the corre-

sponding vertex kj , with a perspective projection P [8].

dfeatures is only for initialization, with a weight that de-

creases as the fitting proceeds.

Unlike earlier work on 3DMM fitting [8], we use a fea-

ture detection algorithm by Zhu and Ramanan [33] for an

automated process. The reduced precision of these features

and the suboptimal choice of features (silhouettes, ears) af-

fect the quality of the output significantly. In the remainder

of this paper we describe how to select the most successful

reconstructions based on a given set of images of a person,

and how to combine these to a 3D face.

4. Quality Measures

For a meaningful quality measure, it is important to be

independent of facial expression. Therefore, we use “neu-

tralized” facial expressions (with γi = 0) in this section ex-

cept for image distance. Because the image distance com-

pares the rendered reconstruction with the original input im-

age, it needs to be as close as possible to the original face.

Figure 2: The image distance is computed by subtracting

the input image with a modified version where the recon-

structed face is rendered on top of the original face.

4.1. Image Distance

In contrast to all others distance functions that are dis-

cussed in this paper, the image distance dimage Eq. (2) is

the only one that penalizes differences between the original

face and the reconstruction. The other distance measures

will only estimate the plausibility of naturalness of recon-

structed faces.

Fig. 2 illustrates one major drawback of this error func-

tion: it is not possible to penalize the fact that the projected

face does not occlude the complete face in the input image.

This is the case for Obama’s right ear. In Iinput − Imodel,

the image distance for most pixels of the right ear is zero

and therefore the error is quite small. The reconstructed ear

is rendered on the cheek, but due to the similar color, this

has also little effect on dimage. In general, dimage fails to

capture small but relevant errors and artifacts in the recon-

struction.

On the other hand, dimage can also be high even though

the faces look similar, for example when the overall color

tone is wrong or the face is slightly shifted. All of these

problems are caused by the fact that dimage is a sum of all

pixels and that many small errors count more than a few

large errors.

Even though dimage turns out to be suboptimal for rating

the quality or plausibility of the 3D reconstruction, as we

will demonstrate in Section 5, it makes sense to use dimage

in the fitting procedure because, unlike the following crite-

ria, it measures the distance from the input face, and it is

easy to compute.

4.2. Mahalanobis Distance

Mahalanobis distance measures the distance of the cur-

rent solution from the average face using PCA, taking into

account the standard deviations observed in the training

data. It is directly related to the multivariate Gaussian prob-

ability density function which is estimated by PCA. Just as

the image distance, the Mahalanobis distance is already in-

tegrated in the 3DMM fitting procedure. For the experi-

ments in Section 5, where we only want to rate the quality

of the reconstructed shape, we simplified Eq. (3) to

dmaha =
∑

i

α2

i

σ2

S,i

, (5)
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so we measure only the distance of the neutral face shape

from the average face, while expressions, texture and ren-

dering parameters are omitted. The motivation is that, un-

like neutral shape, the texture and expression of a successful

reconstruction may be far from the average if the input im-

age is unusual (hair, facial hair, eye glasses, smile).

4.3. Euclidean Distance

A more direct measure for the distance of a 3DMM shape

from the average face is the Euclidean distance between the

reconstructed shape vector (with neutralized expression) S,

and the average vector s:

deucl(S, s) =

√√√√
3n∑

i=1

(Si − si)2 = ||S− s||2. (6)

Please note that deucl is sensitive to rigid transformations

of the faces. The 3DMM shape vectors are, by construc-

tion, aligned in a least-squares sense. In 3DMM fitting,

rigid transformations are applied to these externally, and

captured by rendering parameters ρi (Section 3). Still, a

general drawback of deucl remains with respect to simple,

global transformations, e.g. anisotropic scaling, which does

not affect naturalness or shape similarity, but has significant

effect on deucl.

Equation (6) tends to overrate outlier vertices in the sum

of squared distances. For the evaluation (Section 5), we

also considered a modified distance which is the sum of 3D

vertex distances (square root on a per-vertex level). But we

found no improvement, so Section 5 will refer to Equation

(6) only.

4.4. Normal Distance

We have observed that local or even global distortions

of the surface are a common feature of failed 3D face re-

constructions. This is true for most or perhaps all 3DMM

algorithms (see Section 2) and – in a different context –

even for 3D shape capture setups such as scanners or stereo

and multiview techniques. For shape fitting algorithms, it

is unlikely that a failed reconstruction is misaligned and

still close to the average, because misalignments tend to

have undesired effects on the cost functions of the fitting

algorithm and therefore lead away from the set of plausi-

ble faces. In our context, misalignments may be caused

by inaccurate initial feature positions. Also, other potential

reasons for failed reconstructions, such as lighting effects,

occlusions or extreme facial expressions, tend to lead the

algorithm far away from the average, and a very sensitive

measure for this is the deviation of surface normals from

the average.

We would like to point out that regularization mecha-

nisms, such as Equation (3) reduce this effect and keep the

(a) (b) (c)

Figure 3: The Normal distance is determined by computing

the angle between the normal of the average (Fig. 3a) and

the reconstructed face (Fig. 3b) per corresponding vertex

pair (see Fig. 3c). These values are averaged per segment

(see Fig. 4a) or face to obtain a global distance value.

solution close to the average. Still, for practical purposes,

we have observed that (1) if the weight of the regulariza-

tion is too large, it implies suboptimal results on images that

would otherwise be reconstructed successfully, so there is a

fundamental tradeoff between quality and robustness, and

(2) the regularizer Eq. (3) is not a reliable measure of plau-

sibility of faces, as we will see in Section 5.

Based on the dense point-to-point correspondence be-

tween vertices i of the 3DMM, the new distance measure

dnormal analyzes the difference between the surface nor-

mals ni of the reconstructed face, and the normals n
′

i of

the average face:

dnormal =
1

n

n∑

i=1

arccos
ni · n

′

i

‖ni‖ ‖n′
i‖
. (7)

The idea of this Normal distance is illustrated in Fig. 3.

Note that, unlike deucl, dnormal is insensitive to scaling and

shifting. By segmenting the full face into distinct facial re-

gions (eyes, mouth, nose and surrounding region, see Fig.

4a), separate distances dnormal can be defined that reflect

the plausibilities of regions separately. We will use this idea

in Section 6.

In human faces, the normals in some vertices on the nose,

the eyes or the lips vary more than others. We have analyzed

the original 200 3D scans of the 3DMM and created differ-

ent weight maps ω (see Fig. 4b) which account for these

local differences by scaling regions with high normal vari-

ation either up (considering them most diagnostic) or down

(normalization). In a first step, we computed the average de-

viation angle φi of the normal ni from the average normal

n
′

i in each vertex i across all 200 faces. Then, we found the

best weight map to be defined by ω̂i = 1− φi−φmin

φmax−φmin

, and

the weighted Normal distance is

dnormalW =
1

n

n∑

i=1

ω̂i arccos
ni · n

′

i

‖ni‖ ‖n′
i‖
, (8)

for which we obtained experimental results that are summa-

rized in the next section.
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(a) (b)

Figure 4: Fig. 4a shows the different face segments. The

3DMM based weight map is shown in Fig. 4b.

5. Evaluating the Distance Measures

The goal of this evaluation is to find out which quality

measure is closest to the ratings that human observers would

assign to different reconstructions. For humans, quality

may mean how natural and plausible the 3D face looks,

but also how similar it is to the person in the image. For

failed reconstructions, both criteria are usually violated at

the same time, so the distance measures from Section 4 are

good candidates even though most do not measure similar-

ity to the input face.

5.1. Evaluation 1

The first ranking was performed on 24 3D reconstruc-

tions from pictures of Barack Obama based on automati-

cally detected landmarks. The automatic detection of land-

marks is based on the approach of Zhu and Ramanan [33].

An additional set of 24 reconstructions was created by us-

ing manually selected landmarks on the same input images.

Again the algorithmic distance measures introduced in Sec-

tion 4 were used to perform a ranking. All reconstructions

were created from a single image as described in Section 3.

We asked four naive participants to create a ranking in

each of the two sets of 24 reconstructions, based on the per-

ceived quality of the reconstruction. The individual user

rankings were combined to define an overall ranking list,

which was compared to the ranking of each distance mea-

sure. As can be seen in Table 1, the mean and max errors

(difference of ranks assigned to each reconstruction) of Ma-

halanobis and Normal distance are much less than the ones

based on Euclidean and image distance. Furthermore, based

on the numbers for dnormalW (see Eq. 8), it can be noted

that the influence of the weight map is not very strong com-

pared to the ranking based on dnormal (see Eq. 7).

In Fig. 5 the correlation of each distance measure is

visualized: The horizontal axis describes the average user

ranking, while each distance measure is mapped to the ver-

tical axis. If a distance measure correlates perfectly with

the user ranking, the dots of the scatter diagram are aligned

along the diagonal. As can be seen in Fig. 5a, for the image

distance the dots are widely scattered. The same can be ob-

served for the Euclidean distance in Fig. 5b. Consequently,

(a) (b)

(c) (d)

Figure 5: Visualization of the correlation between the av-

erage user ranking and each distant measure (100 =̂ very

good, 0 =̂ very bad) for reconstructions based on automatic

(red) and manual (yellow) landmark selection.

both measures are not useful to distinguish plausible from

implausible reconstructions in a way that correlates to the

opinion of users. For the Mahalanobis (see Fig. 5c) and the

Normal distance (see Fig. 5d), the correlation between the

user rating and the rating based on the algorithmic distance

measures is clearly visible. Especially the Normal distance

predicts much of the quality judgments of our participants.

The correlations for all 2 · 24 reconstructions (automatic

and manual) are for dimage: 0.27, for deuclidean: 0.27, for

dmaha: 0.85 and for dnormal: 0.94.

5.2. Evaluation 2

In a second evaluation, 3D reconstructions based on im-

ages of Obama (24 images), Lawrence (32 images), Annan

Obama dataset

automatic landmarks manual landmarks

mean error max error mean error max error

dimage 6.92 19 6.83 18

deucl 5.67 16 8.08 20

dmaha 2.25 8 3.42 12

dnormal 1.33 5 2.25 6

dnormalW 1.33 5 2.17 6

Table 1: Mean and max difference of ranks for 24 recon-

structions with automatically and 24 with manually selected

landmarks based on the perceived quality of four naive par-

ticipants (see Section 5.1).
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(32 images), Watson (46 images) and Carell (28 images)

were rated. Again two distinct sets were created, but this

time only automatically selected landmarks were utilized.

The first set was created by fitting to a single image, while

for the second set a simultaneous fit to two images was per-

formed by applying the multifit approach of Blanz and Vet-

ter [7]. A fixed reference image was selected and was then

combined with each other image of the collection for the

person. Please note that the facial landmarks differ from to

the ones in Section 5.1. Thus, although the same input im-

ages are used for the Obama dataset, the reconstructions are

different.

For each dataset, the distance measures were used to

create a ranking list. Then we asked seven naive partici-

pants to rate each 3D reconstruction. Possible ratings were

’very good’, ’good’, ’acceptable’ or ’failed’. The individ-

ual ratings were averaged and then used to create a rank-

ing. Many reconstructions obtained the same average rat-

ings and therefore many positions in the ranking are shared.

This implies higher discrepancies between the rank list de-

rived from humans, and the rank list from distance measures

than in Evaluation 1, where we asked participants to create a

unique ranking directly. Still, the Normal distance matches

the user rating best, as can be seen in Table 2 and 3.

Obama Lawrence Annan Watson Carell

dimage 5.29 (13) 7.56 (20) 9.59 (30) 13.15 (29) 8.04 (18)
deucl 8.38 (20) 8.38 (22) 10.84 (23) 13.54 (35) 8.82 (20)
dmaha 5.79 (13) 7.00 (18) 5.22 (16) 11.94 (27) 3.46 (9)
dnormal 5.21 (13) 5.44 (14) 4.97 (12) 11.50 (27) 2.61 (8)
dnormalW 5.21 (13) 5.31 (14) 4.97 (12) 11.41 (27) 2.46 (8)

Table 2: Mean and max (in brackets) difference of ranks for

reconstructions from a single image based on the perceived

quality of seven naive participants (see Section 5.2).

Obama Lawrence Annan Watson Carell

dimage 6.75 (14) 8.34 (23) 8.75 (24) 10.80 (33) 6.32 (19)
deucl 5.58 (16) 8.47 (24) 6.56 (19) 10.02 (34) 9.32 (24)
dmaha 4.33 (11) 5.47 (14) 5.25 (19) 10.07 (28) 6.82 (19)
dnormal 4.08 (10) 4.41 (14) 4.31 (15) 7.85 (25) 4.96 (17)
dnormalW 4.08 (10) 4.41 (14) 4.31 (15) 7.80 (25) 4.96 (17)

Table 3: Mean and max (in brackets) difference of ranks

for reconstructions from multiple images based on the per-

ceived quality of seven naive participants (see Section 5.2).

6. Weighted Linear Combination per Segment

The automated 3D reconstruction that we propose in this

paper compensates the reduced precision and reliability of

automatically detected feature positions by using more than

a single image of the face. Note that, unlike stereo and mul-

tiview algorithms, we allow for nonrigid deformations due

to facial expressions, and large differences in the (unknown)

imaging conditions.

Figure 6: Plausibility rating of the single image based re-

constructions using Normal distance with subsequent order-

ing.

Our strategy is to apply single image 3DMM fitting (Sec-

tion 3) on each of the input images of the person separately,

based on landmarks detected by the algorithm by Zhu and

Ramanan [33], select the m best results (Fig. 1 and 6) on

each segment (Fig. 4a) using dnormal, compute weighted

linear combinations of these and merge them into a single

3D face.

The shape for each segment is determined by a weighted

linear combination of corresponding segments based on the

ranking list order. The weight decreases with the the rank.

Thus the combined shape for each individual segment

Sseg =

m−1∑

i=0

αi Sseg,i (9)

is determined by m individual reconstructions of corre-

sponding segments Sseg,i weighted by

αi =
1− (i · 1

m
)

∑m−1

c=0
1− (c · 1

m
)
. (10)

The algorithm is summarized in Fig. 1. Note that for

illustration, Fig. 6 and 1 refer to the shape of the entire

face, and not for separate segments as in our algorithm.

An important element of our algorithm is to define a

threshold quality value that determines which reconstruc-

tions are considered in the weighted sum. Based on the

data from Section 5, we estimated a threshold that separates

plausible from implausible reconstructions. In Evaluation 1,

participants were also asked which faces are still plausible

and which are not. In Evaluation 2, the threshold is sup-

posed to be between ratings “acceptable” and “failed”. For

both data sets, we estimated Gaussian Distributions p0(u)
and p1(u) for plausible and implausible reconstructions us-

ing the arithmetic mean and the estimated standard devia-

tions of dnormal in either set.

In a maximum likelihood approach, the threshold equals

the intersection point of the Gaussian distributions p0(u)
and p1(u). Based on our data, this threshold equals u = 11
as is shown in Fig. 7 and can be computed by solving

p0(u) = p1(u).
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(a) (b)

Figure 7: Gaussian distribution of dnormal for plausible

(blue) and implausible (red) 3D reconstructions. For Eval-

uation 1 (Fig. 7a) the intersection is in u = 11.08 and for

Evaluation 2 (Fig. 7b) it is in u = 10.95.

Now, all segments with Normal distances larger than

this threshold are discarded, as illustrated in Fig. 1. Af-

ter the shape for each segment has been reconstructed using

a weighted linear combination based on the ranking order

for the remaining segments, all independent segments are

combined to build the shape of the complete face using the

method described in [7]. One of the input images, for exam-

ple the one with minimum dnormal, can be used for texture

transfer as in [7], so the texture is not just a linear combi-

nation of all input images, but captured from a single input

image with inverse projection and lighting.

7. Results

We compared our approach with an existing method of

simultaneous 3D reconstruction from multiple images [7].

To that end we used sets of 8 to 15 images showing the

same face from different angles. A subset of these images

is shown in the second column of Fig. 8 and 9. The first col-

umn in each of these figures show the results of the existing

approach, whereas the results of our approach are presented

in Col. 3 with a uniform color and in Col. 4 with the com-

bined texture colors. Therefore the textures of each indi-

vidual segment have been linearly combined in exactly the

same way as has been described for the shape in Section

6. In respect of shape estimation it outperforms the exist-

ing method if a fully automated approach is demanded and

if the landmark locations may not fit the input image per-

fectly.

While the input images in Fig. 8 and 9 are taken under

controlled lighting conditions and lack facial expressions,

we also tested our approach with images from the Labeled

Faces in the Wild [16] database. Here pose, expression

and lighting differ in each image and the resolution is only

250*250px. The results are shown in Fig 10. From left to

right the columns contain one image per dataset and person

and two views of the reconstructed shape. At first with an

uniform coloring and then with the extracted texture from

Figure 8: Two face reconstructions from multiple images

using the existing 3DMM approach (Col. 1), the proposed

method with Normal distance (Col. 3) plus combined color

(Col. 4). A subset of the input images is shown in Col. 2.

the input image on the left. To retain a fully automated pro-

cess, the input image belongs to the most plausible single

image reconstruction (Fig. 6). As is shown in Fig. 1, any

other input image can also be used for texture transfer, be-

cause the 3DMM enables a 2D to 3D correspondence be-

tween the image and each reconstruction as well as a 3D to

3D correspondence between all reconstructions.

8. Conclusions

We have proposed an algorithm that reconstructs a 3D

face from a set of arbitrary images of a person. The core

idea is to perform separate reconstructions on each image

and combine the best of all reconstructions into the final

shape. An important element of our work is to evaluate dif-
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Figure 9: Two face reconstructions from multiple images

using the existing 3DMM approach (Col. 1), the proposed

method with Normal distance (Col. 3) plus combined color

(Col. 4). A subset of the input images is shown in Col. 2.

ferent quality measures of 3D reconstructions. Combined

with a feature point detector, we obtain an automated algo-

rithm for 3D reconstruction that accounts for errors in the

feature coordinates. Our method is modular, scalable and

flexible, and it overcomes some of the problems that have

restricted 3DMMs so far.

On a more fundamental level, it is the combination of

results (multiple images, multiple segments) which makes

our algorithm robust, and this is an alternative strategy to

combining all input data into a single optimization problem.

It is a non-trivial result that multiple suboptimal 3D faces

can be combined into a single, much more appealing one,

and that this result is not just the average face. Another

non-trivial result is that the reconstruction quality can be

assessed without knowing the ground truth shape.

Figure 10: 3D face reconstructions for image sets from the

LFW [16] database. From left to right the columns con-

tain an example image from the image set, two views of the

reconstructed shape and two views with extracted textures.
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