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Abstract

We tackle the problem of large-scale object detection

in images, where the number of objects can be arbitrarily

large, and can exhibit significant overlap/occlusion. A suc-

cessful approach to modelling the large-scale nature of this

problem has been via point process density functions which

jointly encode object qualities and spatial interactions. But

the corresponding optimisation problem is typically difficult

or intractable, and many of the best current methods rely

on Monte Carlo Markov Chain (MCMC) simulation, which

converges slowly in a large solution space.

We propose an efficient point process inference for large-

scale object detection using discrete energy minimization.

In particular, we approximate the solution space by a finite

set of object proposals and cast the point process density

function to a corresponding energy function of binary vari-

ables whose values indicate which object proposals are ac-

cepted. We resort to the local submodular approximation

(LSA) based trust-region optimisation to find the optimal

solution. Furthermore we analyse the error of LSA approx-

imation, and show how to adjust the point process energy

to dramatically speed up the convergence without harming

the optimality. We demonstrate the superior efficiency and

accuracy of our method using a variety of large-scale ob-

ject detection applications such as crowd human detection,

birds, cells counting/localization.

1. Introduction

Object detection in images and video is one of the fun-

damental problems in computer vision. While there has

been remarkable progress in detecting small and moder-

ate numbers of potentially complex deformable objects in

2D images [12, 11], in this work we focus on large-scale

object detection, considering images that may capture hun-

dreds or even thousands of objects; Figure 1 shows typical

examples. Such scenarios are encountered in many useful

real-world applications ranging from estimating crowds in

video surveillance [14, 4, 25] to counting cells in micro-

scope images [20], bird populations (e.g., flamingos) [6]

and tree crowns [23] in remotely sensed images. Beside

being large-scale, these scenarios often include significant

overlap/occlusion of objects, which significantly compli-

cates the process of localizing individual objects.

Traditional object detection methods usually take a two-

stage approach. First, a large number of object hypothe-

ses are generated by running a scanning window detector

at different scales and locations. This procedure unavoid-

ably returns many imprecise overlapping object hypothe-

ses. To prune out redundant object detections, a greedy non-

maximum suppression (NMS) step is often applied, which

basically selects the maximum responses at each location.

However such a heuristic elimination suffers from several

limitations such as inability to detect nearby or overlapping

objects [17].

On the other hand, global methods [23, 8, 19, 28] jointly

optimize object detection and selection. Almost all of these

methods fall under the stochastic geometry framework [2],

which utilises point processes to model global object con-

figurations. Point processes allow convenient modelling of

the spatial pattern of the object configuration, as well as the

interaction between objects, with the optimal object config-

uration inferred by optimizing the point process probabil-

ity density. Typically the inference uses Reversible Jump

Markov Chain Monte Carlo (RJMCMC) simulation with

simulated annealing, whose convergence is slow, especially

for large-scale problems.

In this paper we propose a novel global method for large-

scale object detection, which utilizes both the elegant point

process formulation and efficient discrete energy minimiza-

tion. As in [19, 28], we define an energy function of object

configurations pertaining to the point process, whose min-

imizer will give rise to an optimal set of objects. The en-

ergy simultaneously encodes object detection scores (e.g.

confidences) and spatial object interactions (e.g. overlap-

ping). Unlike [19, 28] where the optimization is solved over

a continuous object state space using RJMCMC simulation,

we instead approximate the state space by a finite set of all

possible objects—for example proposing objects at all pixel
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(a) (b) (c) (d)

Figure 1. Best viewed electronically. Typical examples of large-scale object detection. (a) and (b) respectively show an image of stem cells

and the detection result using our proposed method, where 4144 stem cells are detected. (c) displays an image of a crowd participating in

a marathon. (d) Our method is able to detect 492 runners.

locations with all possible (discrete) sizes, orientations. We

will show that such a discretization not only does not greatly

affect the detection accuracy, but also permits efficient dis-

crete optimization.

We begin by constructing an energy function of binary

variables whose values indicate which of all possible ob-

ject proposals are selected. Since the resulting energy is

non-submodular in general, we resort to the local submod-

ular approximations (LSA) based trust region method [15].

Though [15] provides for efficient optimization, the approx-

imation error of LSA for a naive implementation of the

point process energy could be arbitrarily large (and hence

cause the trust-region optimisation to converge slowly or to

become stuck at a low quality solution). As the approxima-

tion error is caused by sub-modularizing the pairwise ob-

ject energies (which are used to encode spatial object con-

straints), we propose to reduce the hurdles of the pairwise

sub-modularization by conditionally decreasing the pair-

wise energies to their minima such that inter-object con-

straints are still guaranteed. Technically the new energy

function will admit the same global optimum as the origi-

nal one. We empirically validate the superior efficiency and

accuracy of our framework using a variety of large-scale

object detection problems including bird detection from re-

motely sensed images, cell detection/counting from micro-

scope images and crowd human detection from surveillance

cameras.

2. Related Work

In computer vision, object detection is a process of iden-

tifying individual object instances in images or video se-

quences. Objects of interest can be anything ranging from

semantic categories [10] such as humans, cars, animals, fur-

niture to geometric ones such as building outlines [22], road

networks [24, 18]. To this end, one would need to have

an object model, which is used to measure the likelihood

of an object instance (with location and shape parameters)

appearing in the input image. Depending on object com-

plexities and scene contexts, the object likelihood can be

computed using simply pixel intensities [13, 6] (e.g. con-

trast) or sophisticated deformable part models (DPM) [11]

learned from annotated training data. Also depending on

the specific applications the number of objects in a single

image could vary from a few [11] to thousands (e.g. bird

colony [6]).

In this work we are interested in large-scale object de-

tection, where hundreds to thousands of objects present in

each image, and objects heavily overlap (see Fig. 1). Dollar

et al. [9] have shown that the object detection performance

degrades disproportionately to the degree of object occlu-

sion. Though the work [9] has been validated on human

detection, the conclusion on the negative effects of occlu-

sion generalizes well to other objects.

Large-scale object detection has been encountered in

various vision applications such as bird counting from re-

motely sensed images (e.g., flamingo [6]), or line-network

[18] and building [22] extraction from digital elevation

models. In common, all these works rely on stochastic

point processes [2] to model spatial distribution of objects,

which could account for object overlaps, angles between

line segments or alignments between rectangles. Though

demonstrated promising results, the simulation of the point

process framework is often computationally expensive and

converges unstably [28]. In fact, these works use simulated

annealing coupled with RJMCMC sampling techniques to

infer the optimal object configuration that best explains the

input data. Basically, RJMCMC performs a sequence of

births, deaths or updates on the state space until conver-

gence which is usually very slow in practice. More ad-

vanced samplers such as multiple birth and death [7, 6] or

jump diffusion dynamics [19] have been proposed to speed

up the convergence. Unsurprisingly, GPU based paralleliza-

tion has also been exploited to reduce the computation time

[27, 28]. Although the efficiency of these advanced sam-

plers is improved over the standard RJMCMC, the compu-

tational expense for large scale problems is still problem-

atic, as we will show experimentally.
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The object detection framework introduced in this pa-

per also utilizes the point process formulation, in which the

spatial distribution of objects and their detection scores are

globally modelled. However rather than using slow MCMC

based inference, we show that the point process inference

can be solved efficiently using advanced discrete energy

minimization (e.g. [15]) without performance degradation.

Many object detection systems still rely on the heuristic

non-maximum suppression (NMS) algorithm to eliminate

false positive detections. Basically NMS works by sequen-

tially extracting local maxima which hopefully correspond

to the underlying objects. Clearly, NMS fails to tackle

overlapping objects, which happens frequently in crowded

scenes. In contrast, our method overcomes the limitations

of NMS by encoding spatial object constraints (e.g., over-

lap) into the point process density function, which is then

solved globally.

Actually there has been work proposed to tackle the lim-

itations of NMS previously, e.g., [3, 5]. Similar to ours,

these methods optimise a global energy (objective) function

which jointly models detection scores and inter-object rela-

tions. However what makes our work different from [3, 5]

is the scale of the problem. While [3, 5] detect only dozens

of objects from the images, we extract thousands of object

instances. This often leads to energy functions with mil-

lions of variables, which can not be solved efficiently and

effectively by using greedy optimization methods as done

in [3, 5].

Large-scale object detection is clearly also closely re-

lated to object counting problems such as [21, 16, 1] in

which the objective is to determine the number of objects

present. Obviously our detection results can be used for

counting purposes. However, unlike [21, 16, 1] where only

the quantity of objects is estimated, our method returns also

object locations which can be used for analysing object spa-

tial distributions, or object tracking.

3. Spatial Point Process for Object Detection

A spatial point process (SPP) is a random collection

of points describing phenomena occurring at random loca-

tions. A spatial point process can be formulated as a finite-

set-valued random variable u = {u1, u2, . . . , un} and what

distinguishes a SPP from a random vector is that the number

of constituent variables is random and the variables them-

selves are random, distinct and unordered. A statistical

function describing a point process p(u) is a combinato-

rial probability density function which consists of a discrete

cardinality distribution, and a family of probability densities

of the constituent variables, respectively. We refer readers

to [2] for details of spatial point processes.

Clearly the point process formulation is a principled ap-

proach for problems with unknown cardinality and states,

and is therefore well-suited to modelling the large-scale ob-

ject detection problem in which we seek to simultaneously

estimate the number of objects and their state parameters

(i.e. locations and bounding box sizes). More formally, let

ui ∈ U ⊂ R
d be ith object state where U denotes a state

space describing the object’s location and shape (e.g. the

class of bounding boxes with different widths and heights).

Then, the problem becomes to estimate the optimal subset

(object configuration) u∗ = {u1, u2, . . . , um} ⊂ U (from

a finite set of feasible object configurations generated by

U), that best describes the image data D. For most applica-

tions, an optimal object configuration u
∗ should satisfy two

main properties. First, each object ui must be attractive—

reflecting the true object in the image. Second, the objects

should follow a favoured spatial pattern (e.g., minimal over-

laps). The latter constraint implicitly forbids duplicated ob-

jects in the solution.

The optimal subset u∗ can be attained by solving the fol-

lowing combinatorial MAP problem:

u
∗ = argmax

u⊂U

p(u|D), (1)

where p(u|D) is the posterior distribution of the object con-

figuration, given the image data D. For notational sim-

plicity, we drop the input image data D and simply denote

p(u|D) as p(u).
To model populations of objects, Markov point pro-

cesses [2, 26, 27, 13] are widely used. Markov point pro-

cesses model pairwise interactions between objects giving

rise to global spatial patterns and effectively control the

number of objects (cardinality). A commonly used [27, 13]

Markov point process density function for modelling popu-

lations is the Gibbs distribution:

p(u) ∝
∏

ui∈u

ψ(ui)
∏

(ui∼uj)∈u

φ(ui, uj), (2)

where ψ(ui) is the density function representing data term,

and φ(ui, uj) is the interaction function between neighbour-

ing objects ui ∼ uj . The corresponding Gibbs energy is

E(u) =
∑

ui∈u

D(ui) +
∑

ui∼uj

ui,uj∈u

V (ui, uj) (3)

such that p(u) ∝ e−(E(u)+λ),

where λ is a positive constant used to ensure E(u)+λ ≥ 0.

The functions D and V are the unary and pairwise interac-

tion energies respectively. Typically, D(ui) computes the

confidence of ui being a true object. Without loss of gener-

ality we assume that the values of function D(.) have been

normalized to [−d,+d], in which smaller values indicate

better object hypotheses. V (ui, uj) measures spatial pat-

tern cost, i.e.

V (ui, uj) =

{

g(R(ui, uj)) if R(ui, uj) < To

K if R(ui, uj) ≥ To,
(4)
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where R(ui, uj) ∈ [0, 1] evaluates spatial consistency be-

tween ui and uj , To ∈ [0, 1] is a tolerance threshold, and

g is a non-negative monotonically increasing function (we

used g(x) = x), and K is a constant number. Note that

K needs to be a very large number to forbid spatial object

inconsistencies. In Sec. 4, we provide a theoretically justifi-

able way of selecting K, so as to speed up the optimization

without introducing extra errors. Intuitively, ui and uj are

disallowed from appearing together if they are spatially in-

consistent with respect to the threshold To, otherwise they

could be both selected by paying a cost g(R(ui, uj)). A

typical example of R is the degree of overlapping between

ui and uj , and solutions with strong object overlaps (e.g.

To ≥ 0.5) should not be accepted.

Consequently the optimal object configuration can be

equivalently calculated by

u
∗ = argmin

u⊂U

E(u) (5)

Since there is no analytical solution for solving (5), previ-

ous methods [7, 6, 27, 28] resorted to simulated annealing

coupled with sampling techniques (e.g., MCMC). However

such simulations are slow in practice. In the following we

show that the continuous object state space U can be dis-

cretized without losing much information, and subsequently

the point process inference can be solved efficiently using

global discrete optimization techniques.

4. Efficient Point Process Inference

4.1. State Space Discretization

Recall that each object ui is described by a set of state

parameters including its location and shape, i.e. ui ∈ U ⊂
L × S. L and S are location and shapes space respectively,

for example L = R
2, S = R

s, where s is the object shape

dimension (e.g. two for boxes, three for ellipses). As opti-

mizing the object configuration u over the continuous space

U is difficult, we instead perform a fine discretization of U

(L and S) so that it permits the usage of efficient discrete

optimization (see Sec. 4.2).

Specifically, we approximate the location space L

by the discrete image space (i.e. pixel locations), i.e.

L ≈ {1, 2, . . . ,W} × {1, 2, . . . , H}; W and H are

width and height of the image. The object shape

can also be discretized similarly—for instance consid-

ering the bounding box shape, S ≈ {wmin, wmin +
1, . . . , wmax} × {hmin, hmin + 1, . . . , hmax}, in which

wmin, hmin, wmax, hmax are the minimum and maximum

width and heigh of objects. (See Sec. 5 for specific dis-

cretizations for different types of objects). We will show in

Sec. 5 that such a fine discretization does not really affect

the detection performance.

Consequentially, the state space U can be sufficiently ap-

proximated by a finite set of all possible object hypotheses

Û = {u1, u2, . . . , uN} (by combining all possible locations

and shapes). Note that N can be huge – in the example

above N =W ×H × (wmax − wmin)× (hmax − hmin).
The object detection becomes

u
∗ = argmin

u⊂Û

E(u). (6)

4.2. Binary Energy Minimization

Given a set of all possible object proposals Û (with a

fixed ordering), denote X = [x1, x2, . . . , xN ] as a vector

of binary variables in which xi = 1 denotes that proposal

ui participates in the object configuration u. We define the

following binary energy function

E(X) =

N
∑

i=1

D(ui)xi +
∑

xi∼xj

V (ui, uj)xixj . (7)

xi and xj are linked (indicated with the notation xi ∼ xj)

if the corresponding ui and uj are linked, ui ∼ uj (for

example, if they are neighbors). It is clear that minimizing

the energy E(X) (7) corresponds to minimizing the energy

E(u) over Û. As a result, the optimal object configuration

can be obtained by solving:

X∗ = argmin
X

E(X). (8)

Unfortunately, since the energy (7) is non-submodular 1,

minimizing (7) is NP-hard. In our large-scale object de-

tection problem, the dimension of X can be extremely

large (up to millions of variables depending on the image

sizes), ruling out standard quadratic programming solvers.

Thus we resort to the local approximation based trust-region

method [15] due to its proven effectiveness and efficiency.

However care must be taken when using [15] for large prob-

lems as its accumulated approximation errors could lead to

unsatisfactory results as well as slow convergences, as we

will show shortly.

4.2.1 LSA Trust-region Optimization

Trust-region methods are a class of optimization algorithms

that iteratively optimize an approximate energy function

constructed near the current best solution within a “trust”

region. The approximate functions should be chosen such

that they are “close” to the true energy function and can

be optimized efficiently. The convergence will be reached

when the improvement is too subtle.

Actually what makes the energy (7) hard to optimize

is the nonsubmodular quadratic terms (i.e. V (ui, uj)xixj).

Inspired by [15], we approximate them by submodular

1θij(1, 1) + θij(0, 0) ≥ θij(0, 1) + θij(1, 0), where θij(xi, xj) =
V (ui, uj)xixj .
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functions (e.g. linear functions). In particular, letting Xt =
[xt1, x

t
2, . . . , x

t
N ] be the current solution, we construct the

following energy

Et(X) =

N
∑

i=1

D(ui)xi +
∑

xi∼xj

A(xi, xj |x
t
i, x

t
j), (9)

where

A(xi, xj |x
t
i, x

t
j) =

1

2
V (ui, uj)x

t
jxi +

1

2
V (ui, uj)x

t
ixj .

(10)

It can be seen that the pairwise terms have been decomposed

into linear terms, and the energyEt(X) can be rewritten as:

Et(X) =

N
∑

i=1

[D(ui) +
∑

xj∼xi

1

2
V (ui, uj)x

t
j ]xi. (11)

Given Xt, the next solution Xt+1 can be obtained by mini-

mizing the following energy function

Lt(X) = Et(X) + λt||X −Xt||. (12)

||.|| is Hamming distance. The parameter λt controls the

trust region size, which is updated at each iteration based

on the quality of the current solution. Notice that the local

approximate energy function (12) is linear and contains no

constraints, thus minimizing Lt(X) can be done efficiently

using simple min operators.

Nevertheless the performance (accuracy and efficiency)

of the trust region method highly depends on how accurate

Et(X) approximates E(X) at each iteration. If the approx-

imation is poor, one needs to tighten the trust region. Con-

sequently the algorithm might either get stuck at bad local

optimum or take an enormous number of iterations before

convergence. For our problem we note that the approxi-

mation error is proportional to the value of function V (see

Eq. (10)), which can be arbitrarily large (see Eq. (4)).

Recall that the function V (ui, uj) measures the spatial

inconsistency between two objects ui and uj . If ui and uj
are inconsistent (with respective to some threshold), V pays

a very large penalty K to prevent ui and uj from appear-

ing together in the solution. Thus, the approximation error

mainly depends the value of K.

One naive way to soften the hurdles of the above ap-

proximation errors is to carefully choose a small K which

still guarantees inter-object constraints. However manually

picking a proper K is tedious and time-consuming. Alter-

natively, one could use training data to learn the value ofK,

however for large-scale object detection problems, ground

truth data is not always available.

Figure 2. Comparing the numbers of iterations before conver-

gences when optimizing the two energy functions E(X) and

Ê(X), respectively.

4.2.2 Adaptive Pairwise Energies

Here we propose to a simple way for automatically comput-

ing the smallest inconsistent penalty for ui and uj , but still

guaranteeing valid solutions. In particular, we adaptively

adjust V (ui, uj) based on the qualities of ui and uj , and

will show that such modification does not change the global

optimality. Specifically we define

V̂ (ui, uj) =

{

g(R(ui, uj)) if R(ui, uj) < To

α if R(ui, uj) ≥ To,
(13)

where α = max(|D(ui)|, |D(uj)|)+ ǫ; ǫ is a small positive

number; We set ǫ = 0.001. The corresponding modified

energy function is

Ê(X) =

N
∑

i=1

D(ui)xi +
∑

xi∼xj

V̂ (ui, uj)xixj . (14)

Proposition 1. IfX∗ is the globally minimal solution of the

energy function (14), X∗ is also the global minimizer of the

function (7), and vice versa.

The proof is given in the supplementary material. Basi-

cally, the proposition 1 reveals that the two energy func-

tions E(X) (7) and Ê(X) (14) admit the same globally

optimal solution. To demonstrate the advantage of opti-

mizing Ê(X) over E(X), we synthetically generate energy

functions of different sizes ranging from 100 to 10000 vari-

ables. For each problem size, we run the LSA trust-region

optimisation on the energies Ê(X) and E(X) respectively,

and record the numbers of iterations before convergences.

Fig. 2 shows the difference, where as expected, optimising

energy Ê(X) requires much less number of iterations than

that of E(X). Also we observe that E(X̂∗), on average,

are slightly lower than E(X∗), where X̂∗ and X∗ are the

solutions of minimizing Ê(·) and E(·) respectively.
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(a) (b) (c) (d)

Figure 3. Flamingo detection and counting from remotely sensed images. (a) and (b) display an input image and a cropped region,

respectively. Our algorithm is able to detect 10687 flamingoes in 13 seconds (the ground truth is 10800). (c) and (d) show qualitative

results, where ellipses indicate detected objects.

Data Methods Detection True Pos. False Pos. False Neg. Precision Recall Time (s)

Bird colony

GT = 10800

rmin = 1, rmax = 4

OURS 10678 - - - - - 13.6

MBD [6] 9891 - - - - - 897.3

PMC [28] 11280 - - - - - 187.32

MBD* 10154 - - - - - 813.3

PMC* 10903 - - - - - 266.6

Bird colony small

GT = 148

rmin = 1rmax = 4

OURS 153 146 7 2 95.4 98.6 0.29

MBD 129 126 3 22 97.6 85.1 37.3

PMC 153 139 14 9 90.55 93.99 10.74

MBD* 148 143 5 5 96.6 96.6 10.1

PMC* 137 133 4 15 97.1 89.9 9.6

Stomata

GT = 676

rmin = 2, rmax = 5

OURS 750 627 123 49 83.6 92.7 1.4

PMC 707 613 94 63 86.73 90.65 64.21

PMC* 716 560 156 116 78.2 82.4 168.0

Cells

GT = 500

rmin = 6, rmax = 10

OURS 479 479 0 21 100 95.8 2.57

MBD 440 436 4 64 99.0 87.2 433.6

PMC 483 463 20 37 95.92 92.54 60.44

MBD* 447 447 0 53 100 89.4 104.5

PMC* 482 480 2 20 99.6 96 7.5

Yellow Cabs

GT = 100

rmin = 2, rmax = 6

OURS 130 87 43 12 84.38 81.82 0.8

MBD* - - - - - - -

PMC* 86 81 5 19 94.2 81.0 165.0

Table 1. Quantitative results on large-scale object detection. Note that MBC* and PMC* indicate the results obtained from [28]. For each

image, the best results are boldfaced. It can be seen that our method is an order of magnitude faster than others. Also in most cases our

method is more accurate, except the Yellow Cabs image. This is because the unary term we used (15) which relies on simple intensity

contrast does not robustly detect yellow objects. In contrast we believe that the unary model used in [28] is much stronger, but this is not

detailed in [28]. GT = Ground truth number of objects; rmin, rmax are the minimum and maximum radii of objects respectively.

5. Experimental Results

5.1. 2D Parametric Object Detection

We first compare the performance of our method against

the state-of-the-art point process inference method using

parallel Monte Carlo [28], denoted as PMC. While our

method is implemented using MATLAB and CPU, PMC

used C++ and GPU parallel implementation. We also in-

clude multiple births and deaths (MBD) method [6] for

comparison though their low performance relative to PMC

has been reported in [28]. We used the benchmarking

datasets [28] for experiments. These datasets are equipped

with ground truth information so that the accuracy can be

measured. The objects of interest in these images are birds,

cells, stomata and yellow cabs, which can be modelled us-

ing ellipses. The unary energy is defined as:

D(u) =

{

1− du

d0

if du < d0

exp(−du−d0

d0

)− 1 if du ≥ d0,
(15)

where du is the contrast between object u and background

(computed as the Bhattacharyya distance between the inside

and outside rings of the object [28]), d0 is a tuning parame-

2842



Methods
Lempitsky (L1-reg.) [21] Lempitsky (Tikhonov-reg.) [21]

OURS
N=2 N=4 N=8 N=16 N=2 N=4 N=8 N=16

Mean Absolute Error 7.96 7.02 6.76 4.81 5.27 4.99 4.92 4.23 4.7

Standard Deviation 7.28 6.66 6.54 4.22 4.69 4.54 4.45 3.64 3.5

Average Time (s) 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.31

Table 2. Performance comparison results for counting bacterial cells in fluorescence-light microscopy images. The method [21] comes with

two different regularizations, i.e. L1 and Tikhonov. N is the number of training images. All the methods are tested on 100 cell images.

The best results are boldfaced (smaller is better). It is clear that our method not only performs better but also is more stable, with less

computational cost. Note that the main computation cost of Lempitsky and Zisserman’s method is for feature extraction.

(a) Our method (b) NMS

Figure 5. Crowd human detection qualitative performance comparison. (a) and (b) display the detection results returned by our method and

NMS respectively. At about 67% recall, our precision is 82.84% while the precision of NMS is only 61.08%. Only heads are shown.

(a) (b) (c) (d)

Figure 4. Bacterial cell detection and counting from fluorescence-

light microscopy images. (a) and (b) display an input image with

500 cells and a cropped part, respectively. (c) and (d) show qual-

itative results, where ellipses indicate detected cells. Our method

correctly detects 479 cells in less than 3 seconds.

ter. The non-overlapping constraint is imposed on the object

configuration, i.e.

R(ui, uj) =
A(ui ∩ uj)

min(A(ui),A(uj))
. (16)

A(ui) returns the area of ui. The angles of ellipses are se-

lected from a range [0, π/8, 2π/8, . . . , π], and the ranges of

radii for different objects are given in Tab 1.

The comparison results are given Tab. 1. It is clear that

our method is significantly faster than the competitors while

our accuracies are comparable, if not superior. Fig. 3 shows

an example of detecting flamingoes using our method.

5.2. Object Counting

As our method can be used for object counting, we apply

our method for counting bacterial cells in fluorescence-light

microscopy images [20]. Cells are modelled using ellipses.

We compare against the learning based method [21]. Note

that the method in [21] only returns an estimated number of

cells in each image, whereas our method additionally gives

cell locations, which are useful for cell tracking. Moreover

our method does not require any training. The results re-

ported in Tab. 2 show that our method is not only more ac-

curate but also more stable than [21]. The method [21] only

performs better when using more training data. Further-

more it can be seen that our method is very efficient, which

takes about 0.3 seconds per image. Fig. 4 shows a sample

of qualitative cell detection results using our method.

5.3. Crowd Human Detection

Crowd human detection and counting is another inter-

esting problem which has many real-world applications

such as event management (i.e. protests, marathons), video

surveillance and anomaly detection. Here we aim to test the

performance of our algorithm on detecting humans in crowd

scenes. We used the UCF-HDDC dataset recently published

in [17] for evaluations. In this application, human are rep-
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(a) (b)

Figure 6. The graphs report quantitative comparison results for the large-scale human detection application using UCF-HDDC dataset [17].

(a) compares our method against NMS. (b) shows the improvement of the global occlusion reasoning [17] over NMS (the results are taken

from [17].) Note that the set of human proposals in our experiment is different from [17], which leads to the difference in the overall

accuracies.

resented as bounding boxes. Unlike previous applications,

which only consider the object overlap, the pairwise poten-

tial functions here jointly penalize both strong object over-

lap and scale inconsistency between nearby objects. In par-

ticular R(ui, uj) is defined as below:

R(ui, uj) =
A(ui ∩ ui)

min(A(ui),A(uj))
(17)

+

(

1−min(
sui

suj

,
suj

sui

)

exp(
−d(ui, uj)

σp
),

where sui
is the scale of object ui, d(ui, uj) computes the

Euclidean distance between the centres of ui and uj , σp is

the deviation threshold (we set σp = 200). As full bod-

ies are hardly visible in crowd images, we adapt the DPM

human detector [11] to detect combination-of-parts (CoP),

namely upper bodies and head-shoulders, as done in [17].

Also similar to [17] we re-score the detections using confi-

dence and scale priors. We refer readers to [17] for details.

For each object proposal, the unary function is defined as

D(ui) = −S(uj), where S(ui) is the detection score.

We compare our global point process object selection

algorithm against the standard local non-maximal suppres-

sion (NMS). Both methods take the same set of object pro-

posals (head bounding boxes only) as input. Fig. 5 shows

a sample of qualitative comparison results between the two

methods. For this image, we select a detection threshold for

each method such that both methods have approximately the

same recall. Our corresponding precision is 82.84% while

that of NMS is only 61.08%. Notice that NMS returns many

false positives, and also its detection scales are not globally

consistent. In contrast, the scales of our detections change

gradually.

Quantitative comparison results over 100 test images are

reported in Fig. 6(a). As expected, our result is clearly su-

perior to that of NMS, providing a boost in performance

of around 10% for recall values greater than 0.25. Ideally,

we would also compare our method directly against that of

[17], but this is not possible because of the different factors

in particular closed implementations of CoP and scale es-

timation that contribute to their overall result. Instead we

show in Fig. 6(b), their result against NMS, taken directly

from [17]. The salient points to note here are that: (i) their

improvement over the NMS baseline is considerably lower

than ours, at around only 3-4%; (ii) our method is orthog-

onal to the value added by the better proposals that are the

key to their good performance. We therefore believe that

with access to [17]’s object proposals, our method would

provide a further boost in performance.

6. Conclusion

We have proposed a general framework for large-scale

object detection. We formulate the object detection prob-

lem using a point process probabilistic model whose density

function includes object confidences and spatial object pat-

terns. These two terms can be arbitrarily defined depending

on the specific applications. As the point process inference

is difficult and expensive, we developed a highly efficient

point process inference based on a fine discretization of the

object state space and discrete energy minimization. We

showed that our algorithm is just as accurate, but signifi-

cantly faster than a state-of-the-art point process inference

that uses a GPU implementation. We also demonstrated

the superior performance of our algorithm over the standard

non-maximal suppression (widely used for object detection)

using a crowd human detection application. As our frame-

work is general, it could be extended to detect objects in

3D or higher dimensional spaces, which we consider in our

future work.
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