
Shallow and Deep Convolutional Networks for Saliency Prediction

Junting Pan∗, Elisa Sayrol and Xavier Giro-i-Nieto

Image Processing Group

Universitat Politecnica de Catalunya

Barcelona, Catalonia/Spain

xavier.giro@upc.edu

Kevin McGuinness∗ and Noel E. O’Connor

Insight Center for Data Analytics

Dublin City University

Dublin, Ireland

kevin.mcguinness@insight-centre.org

Abstract

The prediction of salient areas in images has been tra-

ditionally addressed with hand-crafted features based on

neuroscience principles. This paper, however, addresses the

problem with a completely data-driven approach by training

a convolutional neural network (convnet). The learning pro-

cess is formulated as a minimization of a loss function that

measures the Euclidean distance of the predicted saliency

map with the provided ground truth. The recent publication

of large datasets of saliency prediction has provided enough

data to train end-to-end architectures that are both fast and

accurate. Two designs are proposed: a shallow convnet

trained from scratch, and a another deeper solution whose

first three layers are adapted from another network trained

for classification. To the authors’ knowledge, these are the

first end-to-end CNNs trained and tested for the purpose of

saliency prediction.

1. Introduction

This work presents two approaches for end-to-end con-

volutional neural networks (convnets or CNNs) for saliency

prediction. Our objective is to compute saliency maps that

represent the probability of visual attention on an image,

defined as the eye gaze fixation points. This problem has

been traditionally addressed with hand-crafted features in-

spired by neurology studies. In our case we have adopted a

completely data-driven approach, using a large amount of

annotated data for saliency prediction. Figure 1 provides an

example of an image together with its ground truth saliency

map and the two saliency maps predicted by the proposed

convnets: a shallow one and a deep one.

Convnets are popular architectures in the field of deep

learning and have been widely explored for visual pattern

recognition, ranging from a global scale image classification

[16] to a more local object detection [7] or semantic segmen-

∗Equal contribution.

Figure 1. Input Image (top left) and saliency maps from the ground

truth (top right), our shallow convnet (bottom left) and our deep

convnet (bottom right).

tation [21]. The hierarchy of layers in convnets are inspired

by biological models, and some works have pointed to a

relation between the activity of certain areas in the brain and

the hierarchy of layers in the convnets [4]. Provided with

enough training data, convnets have shown impressive re-

sults, often outperforming other hand-crafted methods. The

rise of convnets originated with image classification [23]

in the context of increasing availability of annotated data.

Large datasets like ImageNet [5] or Places [33] have pro-

vided enough visual examples to train the millions of pa-

rameters that most popular convnets contain. These datasets

provide thousands of images for each discrete label typically

associated to a semantic class.

The saliency prediction problem, however, poses two

specific challenges that differentiate it from classic image

598



classification. First, collecting large amount of training data

is much more costly because it requires capturing the fixation

points of human observers instead of a textual label for each

image. Our work has benefited from recent publications of

two large datasets containing images and an annotation of

their salient points for humans [14]. Collecting this level

of of data has been possible thanks to crowdsourcing ap-

proaches, the same strategy used to annotate the ImageNet

and Places datasets.

The second challenge to address when using convnets for

saliency prediction is that a saliency score must be estimated

for each pixel in the input image, instead of a global-scale

label for the whole image. The saliency map at the output

must present a spatial coherence and a smooth transition

between neighbouring pixels.

The main contribution of this work is addressing the

saliency prediction problem from an end-to-end perspec-

tive, by using convnets for regression rather than classifica-

tion. We apply this strategy with two different architectures

trained with two different approaches: a shallow convnet

trained from scratch, and a deep convnet that reuses param-

eters from the bottom three layer of a network previously

trained for classification. To the authors’ knowledge, these

were the first convnets that formulate saliency prediction as

an end-to-end regression problem.

This paper is structured as follows. Section 2 presents the

previous and recent works using convolutional networks for

saliency prediction and detection. Section 3 introduces the

shallow convnet, while Section 4 presents the deep network.

Section 5 compares both networks in terms of memory re-

quirements. It also shows, prediction performance in the

MIT Saliency Benchmark and LSUN Saliency Prediction

Challenge 2015 and they are compared with other models.

Conclusions and future directions are outlined in Section 6.

Our results can be reproduced with the source code

and trained models available at https://github.com/

imatge-upc/saliency-2016-cvpr.

2. Related work

The proposed networks presents the next natural step

to two main trends in deep learning: using convolutional

neural networks for saliency prediction and training these

networks by formulating saliency prediction as an end-to-

end regression problem. This section reviews related work

in these directions.

An early attempt of predicting saliency with a convnet

was the ensembles of Deep Networks (eDN) [27], which

proposed an optimal blend of feature maps from three dif-

ferent convnet layers, that were finally combined with a

simple linear classifier trained with positive (salient) or neg-

ative (non-salient) local regions. This approach inspired

DeepGaze [17] to adopt a deeper network. In particular,

DeepGaze used the existing AlexNet network [16], where

the fully connected layers were removed to keep the feature

maps from the convolutional layers. The response of each

layer were fed into a linear model and its weights learned.

DeepGaze would be the first case of transfer learning from a

convnet for classification used for saliency, as we propose in

our deeper architecture. However, we do not train a linear

model to combine feature maps but directly train a stack

of new convolutional layers on top of the transferred ones.

Other recent works have explored the combination of dif-

ferent convnets working at different resolutions to capture

both global and local saliency. Liu et al. [20] proposed an

architecture with three convnets working in parallel where

the three final fully connected layers are combined in a sin-

gle layer to obtain the saliency map. Unlike our work the

network is trained with image regions centered on fixation

and non-fixation eye locations.

On the other hand, DeepFix model (unpublished) captures

information at different scales by using very deep networks,

inspired by the VGG network architecture proposed by Si-

monyan and Zisserman [26].

Other approaches introduce new architectures and im-

provements in salient object detection. Zhao et al. [32] use

also two parallel networks to obtain local and global context

modeling. The input image consists of a superpixel-centered

window that is preprocessed differently to feed each of the

two convnets. Fully connected layers are combined at the

end to obtain the salient objects. The work by Li and Yu [18]

proposes three nested windows as inputs to three different

convnet at different scales that are fused together to obtain an

aggregated saliency map. Wang et al. proposed a different

pipeline [28]: local estimation is carried out and the resulting

information is used as input to obtain a global search. That is,

first, to detect local saliency, a deep neural network (DNN-L)

learns local patch features to determine the saliency value

of each pixel. Second, the local saliency map together with

global contrast and geometric information are used as global

features to obtain object candidate regions. A deep neural

network (DNN-G) is then trained to predict the saliency

score of each object region based on global features.

Fully Convolutional Networks (FCNs) [21] addressed the

semantic segmentation task to predict the semantic label of

every individual pixel in the image. This approach dramati-

cally improved previous results on the challenging PASCAL

VOC segmentation benchmark [6].

Finally, the SALICON model [11] uses the same saliency

evaluation metrics as loss function. The proposed archi-

tecture is very similar to our Deep Convnet, but in their

work multiple scales are incorporated to consider selective

attention at different resolutions.

In our work we are interested in finding saliency maps

rather than salient object detection by training convnets end-

to-end. We also focus on novel databases that are annotated

for the purpose of saliency prediction.

599

https://github.com/imatge-upc/saliency-2016-cvpr
https://github.com/imatge-upc/saliency-2016-cvpr


Figure 2. Architecture of the shallow convolutional network.

3. Shallow Convnet

This section presents the first of our proposed convnets,

which is based on a lightweight architecture whose parame-

ters are trained from scratch.

3.1. Architecture

The network consists of five layers with learned weights:

three convolutional layers and two fully connected layers.

Each of the three convolutional layers is followed by a rec-

tified linear unit non-lineraity (ReLU) and a max pooling

layers. Figure 2 shows a detailed description of each layer.

The network has to a total of 64.4 million free parameters.

The network was designed considering the amount of

available saliency maps for training it from scratch. Different

strategies were considered to avoid overfitting the model.

First, we used three convolutional layers rather than the five

used in the classic AlexNet architecture [16] (and far less

than very deep networks used recently such as the thirteen

used in VGG-16 [26]). Second, the input images are resized

to [96× 96], a much smaller dimension that the [227× 227]
used in AlexNet [16]. The three max pooling layers reduce

the initial [96× 96] feature maps down to [10× 10] by the

last of the three poolings.

Even with the above constraints, the network still overfits

significantly. We found that norm constraint regularization

for the maxout layers [8], which computes the max between

pairs of of the previous layers output, was essential to mit-

igate against this overfitting. We also tested using dropout

after the first fully connected layer, with a dropout ratio of

0.5 (50% of probability to set a neuron’s output value to

zero), but this did not improve overfitting much, and so was

not included in the final model.

Notice that the 2,304-dimensional vector at the output is

mapped into a 2D array of [48× 48], which corresponds to

the saliency map. This decrease in resolution is compensated

at test time by resizing the dimensions of the output to match

the input image and posterior filtering using a Gaussian

kernel with a standard deviation of 2.0.

This shallow convnet was implemented using Python,

NumPy, and the deep learning library Theano [1]. Processing

was performed on an NVIDIA GTX 980 GPU with 2048

CUDA cores and 4GB of RAM. It took between 6 and 7

hours to train for the SALICON dataset, and 5 to 6 hours for

the iSUN dataset. Saliency prediction requires 200 ms per

image.

3.2. Training

This shallow network was trained from scratch twice,

each time from a different dataset. A first model was built

using the 10, 000 saliency maps from the SALICON dataset

[14], and a second model using the 6, 000 saliency maps

from the iSUN dataset. Both datasets are described in detail

in Section 5.2. Given the smaller amount of images available

in the iSUN dataset, a slight modification was introduced

in this second model: the depth of the third convolutional

network was of 64 instead of 128, as depicted in Figure 2.

The weights in all layers were initialized from a normal

Gaussian distribution with zero mean and a standard devi-

ation of 0.01, with biases initialized to 0.1. The network

was trained with stochastic gradient descent (SGD) and the

Nesterov momentum method, which we found helps conver-

gence. The learning rate changed over time, starting with a

higher learning rate 0.03 and decreased during training to

0.0001. We trained the network for 1,000 epochs. For valida-

tion purposes, we split the training data into 80% for training

and the rest for periodic validation. A data augmentation

technique was used by mirroring all images. All considered

saliency maps were normalized to [0, 1].
We used regularized L2 (Euclidean) loss for this network

as well the deep one presented in Section 4, with the stan-

dard L2 norm regularizer on the weights. We experimented

with several other loss functions while developing our algo-

rithm (including L1 loss and sigmoid cross entropy loss), but

found that these often resulted in vanishing gradients, sig-

nificantly slowing convergence. We considered designing a

loss function that approximated one of the evaluation metrics

directly. Unfortunately, many of these metrics are complex,

and difficult to approximate with an easily differentiable

function.

The filters learned in the first convolutional layer are

shown in Figure 3. They present a similar pattern to other

similar filters learned for classification convnets [30, 30],

where edge detectors can be identified. It is noticeable how

these type of filters arise also when training our network on

saliency maps.

4. Deep Convnet

The second approach explored in this paper is the adap-

tation of an existing very deep convnet trained for image

classification for the task of saliency prediction. Previous

600



Figure 3. Filters learned for the first convolutional layer of the

shallow convnet (best viewed from a distance).

Convolu'on 1 (7 × 7 ×  96) 

Input (size 320 × 240 × 3) 

Local response normaliza'on 

Max pool (kernel 3 × 3 stride 2) 

Convolu'on 2 (5 × 5 × 256) 

Max pool (kernel 3 × 3 stride 2) 

Convolu'on 3 (3 × 3 × 512) 

Convolu'on 4 (5 × 5 × 512) 

Convolu'on 5 (5 × 5 × 512) 

Convolu'on 6 (7 × 7 × 256) 

Convolu'on 7 (11 × 11 × 128) 

Convolu'on 8 (13 × 13 × 1) 

Deconvolu'on 1 (8 × 8 × 1, stride 4) 

Figure 4. Architecture of the deep convolutional network

work [30] has noted how, in image classification tasks, the

model parameters from the lowest levels in the convnets

converge in a few epochs. This observation, together with

visualization of the filters learned at these layers [25], sug-

gest that these layers perform low-level visual task in vision,

such as the detection of colors or textures. Our hypothesis

is that these lower layers trained for classification can also

be transferred for the task of saliency prediction. We pro-

pose a second convnet which adapts these pre-trained filters

and combines them with new layers specifically trained for

saliency.

4.1. Architecture

Figure 4 illustrates the layer architecture of the network,

composed of 10 weight layers and a total of 25.8 million

parameters. The architecture of the first 3 weight layers is

compatible with that of the VGG network from [3]. Each

convolutional layer is followed by a rectified linear unit non-

linearity (ReLU). Pooling layers follow the first two convolu-

tional layers, effectively reducing the width and height of the

feature maps in the intermediate layers by a factor of four. A

deconvolution layer follows the final convolution to produce

a saliency map that matches the input width and height.

To choose the final network architectures, we experi-

mented with many different different variants, testing each

on a held-out validation set of 1,000 images. In general

we found that: 1) adding more layers improves accuracy;

2) adding more feature maps per layer usually improves

accuracy too; and 3) using dropout regularization did not

significantly improve accuracy but did increase training time.

The final network design was primarily constrained in reso-

lution, number of layers, and layer depth by the amount of

available GPU memory.

We used transfer learning to initialize the weights for the

first three convolutional layers with the pre-trained weights

from the VGG CNN M network from [3]. This acts as a

regularizer and improves the final network result. The re-

maining weights were initialized randomly using the strategy

from [10].

4.2. Training

We trained our network on 9,000 of the 10,000 training

images in the SALICON dataset, setting aside 1,000 images

for validation (ground truth for the SALICON validation

set had not yet been released when this network was first

trained). We used several standard pre-processing techniques

on both the input images and the target saliency maps. We

subtracted the mean pixel value of the training set from the

image pixels to zero center them and rescaled the resulting

values linearly to be in the interval [−1, 1]. We similarly

preprocessed the saliency maps by subtracting the mean and

scaling to [−1, 1]. Both the input images and the saliency

maps were downsampled by half to 320× 240 prior to train-

ing.

The network was trained using stochastic gradient de-

scent with Euclidean loss using a batch size of 2 images for

24,000 iterations. During training, the network was validated

against the validation set after every 100 iterations to mon-

itor convergence and overfitting. We used the standard L2

weight regularizer (weight decay), and halved the learning

rate every 100 iterations. The network took approximately

15 hours to train on a NVIDIA GTX Titan GPU running the

Caffe framework [13]. We normalized the base learning rate

by the number of predictions per image, to give a learning

rate of 0.01/(320 × 240) ≈ 1.3 × 10−7. Using a larger

learning rate causes the learning to diverge.

The network was trained on inputs of size 320× 240, but

in principle, it can handle images of any size, since it only

consists of convolutional and pooling layers. In practice, the

input size is constrained by the amount of GPU memory (or

RAM) needed to store the outputs of the intermediary layers.

Nevertheless, the network has the advantage that it can be

sized to match the aspect ratio of any image, and indeed use

this approach for the images in the MIT300 benchmark in

the next section.

5. Experiments

5.1. Memory requirements

The architectures of the two networks present different

requirements in terms of memory resources. These resources

are dedicated to two different tasks: the parameters that de-

601



Shallow Deep

Data 2.29 MB 123.65 MB

Parameters 244.64 MB 98.44 MB

Total (train) 249.22 MB 345.74 MB

Total (test) 246.93 MB 222.09 MB

Table 1. Approximate memory requirements for each convnet.

fine the network, and the blob data that characterizes network

response at the different processing stages.

The parameters that define the network are fit during train-

ing, and, together with the architecture layout, correspond

to the actual characterization of the network. These parame-

ters characterize the output of each neuron in the net, which

can be defined as f(wTx+ b), where w describes the filter

parameters in the convolutional layers, b corresponds to the

biases and f is the non-linearity. Each neuron, therefore, has

parameters w and b, which are fit during backpropagation.

The data associated to the input image is the second

source of memory requirements. The input image is hi-

erarchically process in the convnet, creating multiple inter-

mediate feature maps (or data blobs) after each processing

stage.

Table 1 presents the complementary memory require-

ments for each of the two convnets. These values have been

obtained from the architectures of the shallow and very deep

networks described in Figures 2 and 4, respectively. The

estimation assumes 32-bit floating points to store parameters

and layer output (4 bytes per value). The memory estimate

for blob data assumes test time (forward pass only): at train

time this value is doubled to account for the error signal

during backpropagation.

The number of parameters for both networks are much

lower than the very deep networks used in classification. For

example, the 19 layers version of VGG net requires 144

million parameters [26].

Our shallow network requires far less memory for the

layer outputs, but has significantly more parameters (due

to the fully connected layers). This explains why our deep

network does not overfit, whereas stronger regularization is

necessary to fit the shallow one. Since the shallow network

needs less memory for the layer outputs, it is possible to

make batch size on this network very large at test time,

allowing it to process many more images at once.

5.2. Datasets

We used three datasets, presented in Table 2:

SALICON [14]: This is the largest dataset available for

saliency prediction and was used to train our models. It was

built from images of the Microsoft CoCo: Common Objects

in Context [19] dataset, which inspired the SALICON nam-

ing: SALIency in CONtext. However, the saliency maps in

SALICON were not collected with eyetrackers as in most

popular datasets for saliency prediction, but with mouse

clicks captured in a crowdsourcing campaign. iSUN The

iSUN dataset has been built with an online game using web-

cams to track player eye gaze. The dataset uses natural scene

images from the SUN database [29], a large dataset orga-

nized in 397 scene categories. MIT1003 and MIT300 [15]

This dataset is the most well-known among saliency predic-

tion researchers. It is accompanied by an online benchmark

maintained by its authors. The MIT1003 dataset consists of

both images and fixation points that can be used for training.

The fixation points for the MIT300 dataset are not public:

the dataset can only be used for benchmarking. The stimuli

images in these datasets consist of indoor and outdoor natu-

ral scenes from the Flickr Creative Commons and LabelMe

[24] datasets.

Our two models were tested on a total of 7,300 images

coming from three different datasets. The dataset sizes and

diversity in terms of observers and nature (eye gaze and

clicks) provide a higher statistical significance than previous

works [18, 20, 28]. Although larger in size, SALICON

and iSUN datasets are more exposed to quality degradation

because they were built via crowdsourcing. On the other

hand, MIT1003 and MIT300 are considered cleaner because

fixations points were captured in a controlled environment.

5.3. Results

The evaluation of saliency prediction has received the

attention of several researchers, resulting in various proposed

approaches. Our experiments consider several of these, in

a similar way to the MIT saliency benchmark [2]. Some of

these metrics compare the predicted saliency maps with the

maps generated from the fixation points of the ground truth,

while some other metrics directly compare with the fixation

points. In the result tables that follow, we have sorted the

different techniques based on the AUC Judd metric.

Where not otherwise stated, our convnets were trained

with images from the SALICON [14] dataset and tested on

images from iSUN and MIT300 datasets to avoid overfitting.

The one exception to this is our submission for the LSUN

2015 challenge, where our shallow network was trained with

training and validation data from iSUN, and assessed on the

test partition.

Figure 5 presents a qualitative comparison of the two

networks, showing the predicted saliency maps alongside the

ground truth fixation maps. These examples show a different

behaviour between the two networks, with the shallow one

presenting a bias towards the central part of the image. The

deep network, on the other hand, offers a higher spatial

resolution thanks to its architecture with larger feature maps.

Our shallow convnet was the winner of the 2015 LSUN

saliency prediction challenge. This challenge required par-

ticipants to evaluate their algorithms on the test partitions

602



Dataset Description Capture device Observers Train Validation Test

SALICON [14] Microsoft CoCo [19] Mouse clicks Crowd 10,000 5,000 5,000

iSUN SUN [29] Eyetracker Crowd 6,000 926 2,000

MIT300 [2] Flickr and LabelMe [24] Eyetracker 39 - - 300

Table 2. Description of the three datasets used in our experiments.

Figure 5. Saliency maps generated by our shallow and deep network on the SALICON and iSUN validation data.

of the iSUN and the SALICON datasets. Our network was

trained only with images from the training and validation

partitions of each dataset separately, so images from differ-

ent datasets were never mixed for these experiments. Table 3

and Table 4 include the results provided by the organizers

of the challenge for the iSUN and SALICON datasets. The

scores obtained for every measure considered demonstrate

the superior performance of our shallow network compared

with the other participants.

The presented shallow and deep convnets are compared

quantitatively in Tables 5 and 6. The deep convnet usually

outperforms shallow in all cases but on iSUN validation. We

hypothesize this better results are because: 1) it retains the

aspect ratio of the input image (there are no fully connected

layers), and 2) that it produces a higher resolution output,

which can often better match more complex patterns in the

saliency map.

Table 6 also compares our results with some other top

performers in the MIT300 benchmark. Our deep convnet

achieves similar results to the ones obtained by Deep Gaze

1 [17] at the upper part of the table. The shallow convnet per-

forms worse but still in the upper part of a table which, in its

full version, compares 47 different models. SALICON [11]

and DeepFix obtain better scores than our deep convnet in

MIT300, but their complexity is also higher. DeepFix re-

quires 22 layers and SALICON uses 16 layers and multiple

scales of the image, while our simpler models are defined

with 10 (deep) or 5 (shallow) layers on a single scale.

Results also indicate a robustness of our models across

datasets. A detailed analysis of Table 6 suggests a robust

behaviour of our convnets across datasets. Our networks

were trained purely on SALICON data but still obtained top

603



Similarity CC AUC shuffled AUC Borji AUC Judd

Shallow Convnet (iSUN) 0.6833 0.8230 0.6650 0.8463 0.8693

Xidian 0.5713 0.6167 0.6484 0.7949 0.8207
WHU IIP 0.5593 0.6263 0.6307 0.7960 0.8197
LCYLab 0.5474 0.5699 0.6259 0.7921 0.8133
Rare 2012 Improved [22] 0.5199 0.5199 0.6283 0.7582 0.7846

Baseline: BMS [31] 0.5026 0.3465 0.5885 0.6560 0.6914
Baseline: GBVS [9] 0.4798 0.5087 0.6208 0.7913 0.8115
Baseline: Itti [12] 0.4251 0.3728 0.6024 0.7262 0.7489

Table 3. Results for the iSUN test set, according to the LSUN Challenge 2015.

Similarity CC AUC shuffled AUC Borji AUC Judd

Shallow Convnet 0.5198 0.5957 0.6698 0.8291 0.8364

WHU IIP 0.4908 0.4569 0.6064 0.7759 0.7923
Rare 2012 Improved [22] 0.5017 0.5108 0.6644 0.8047 0.8148
Xidian 0.4617 0.4811 0.6809 0.7990 0.8051

Baseline: BMS [31] 0.4542 0.4268 0.6935 0.7699 0.7899
Baseline: GBVS [9] 0.4460 0.4212 0.6303 0.7816 0.7899
Baseline: Itti [12] 0.3777 0.2046 0.6101 0.6603 0.6669

Table 4. Results for the SALICON test set, according to the LSUN Challenge 2015.

iSUN (validation) CC AUC Shuffled AUC Borji

Shallow Convnet 0.59 0.64 0.79

Deep Convnet 0.53 0.63 0.80

SALICON (val.)

Shallow Convnet 0.58 0.67 0.83

Deep Convnet 0.61 0.73 0.86

SALICON (test)

Shallow Convnet 0.60 0.67 0.83

Deep Convnet 0.62 0.72 0.86

Table 5. Comparison of our shallow and deep convnets.

performing results on the MIT benchmark when compared

with other models trained on MIT1003 Deep Gaze 1 [17],

eDN [27], and Judd [15]).

6. Conclusions

We propose a novel end-to-end approach for training con-

vnets in the task of saliency prediction. The excellent results

of both architectures in state-of-the-art benchmarks demon-

strate the superior performance of our convnets with respect

to hand-crafted solutions and highlight the importance of an

end-to-end formulation of saliency prediction.

The comparison between our shallow and deep networks

trained on SALICON data has provided similar results for

the iSUN dataset, but a better result for the deep network on

MIT300. On the other hand, the shallow network requires

less memory at train time and generates saliency maps much

faster because it has fewer layers. Both networks rank highly

in the MIT300 benchmark despite not being trained on this

dataset. This clearly demonstrates the generalization perfor-

mance of the networks and robustness to dataset biases.

Acknowledgements

This publication has emanated from research conducted

with the financial support of Science Foundation Ireland

(SFI) under grant number SFI/12/RC/2289, project Big-

Graph TEC2013-43935-R, funded by the Spanish Ministerio

de Economı́a y Competitividad and the European Regional

Development Fund (ERDF), and SGR14 Consolidated Re-

search Group sponsored by the Catalan Government (Gener-

alitat de Catalunya) through its AGAUR office. We gratefully

acknowledge the support of NVIDIA Corporation with the

donation of the GeForce GTX Titan Z used in this work.

References

[1] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.

Theano: a cpu and gpu math expression compiler. In Confer-

ence on Python for Scientific Computing, volume 4, page 3,

2010.

604



Similarity CC AUC shuffled AUC Borji AUC Judd

Baseline: Infinite Humans 1.00 1.00 0.80 0.87 0.91
SALICON [11] 0.60 0.74 0.74 0.85 0.87
DeepFix 0.67 0.78 0.71 0.80 0.87
Deep Gaze 1 [17] 0.39 0.48 0.66 0.83 0.84
Deep Convnet 0.52 0.58 0.69 0.82 0.83

BMS [31] 0.51 0.55 0.65 0.82 0.83
eDN [27] 0.41 0.45 0.62 0.81 0.82
GBVS [9] 0.48 0.48 0.63 0.80 0.81
Judd [15] 0.42 0.47 0.60 0.80 0.81
Shallow Convnet 0.46 0.53 0.64 0.78 0.80

Mr-CNN [20] 0.48 0.48 0.69 0.75 0.79
Rare 2012 Improved [22] 0.46 0.42 0.67 0.75 0.77
Baseline: One human 0.38− 0.46 0.52− 0.65 0.63− 0.67 0.66− 0.71 0.80− 0.83

Table 6. Results of the MIT300 dataset.

[2] Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and

A. Torralba. Mit saliency benchmark. http://saliency.mit.edu/.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convolu-

tional nets. In British Machine Vision Conference, 2014.

[4] R. Cichy, A. Khosla, D. Pantazis, A. Torralba, and A. Oliva.

Mapping human visual representations in space and time by

neural networks. Journal of vision, 15(12):376–376, 2015.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2009.

[6] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams,

J. Winn, and A. Zisserman. The pascal visual object classes

challenge: A retrospective. International Journal of Com-

puter Vision, 111(1):98–136, 2014.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 580–587, 2014.

[8] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and

Y. Bengio. Maxout networks. In Proceedings of The 30th

International Conference on Machine Learning, pages 1319–

1327, 2013.

[9] J. Harel, C. Koch, and P. Perona. Graph-based visual saliency.

In Advances in Neural Information Processing Systems, pages

545–552, 2006.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 1026–1034, 2015.

[11] X. Huang, C. Shen, X. Boix, and Q. Zhao. Salicon: Reducing

the semantic gap in saliency prediction by adapting deep

neural networks. In Proceedings of the IEEE International

Conference on Computer Vision, pages 262–270, 2015.

[12] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE Transactions

on Pattern Analysis & Machine Intelligence, (11):1254–1259,

1998.

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.

Girshick, S. Guadarrama, and T. Darrell. Caffe: Convo-

lutional architecture for fast feature embedding. In ACM

Multimedia, volume 2, page 4, 2014.

[14] M. Jiang, S. Huang, J. Duan, and Q. Zhao. SALICON:

Saliency in context. In IEEE conference on Computer Vi-

sion and Pattern Recognition, 2015.

[15] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to

predict where humans look. In IEEE International conference

on Computer Vision, pages 2106–2113, 2009.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[17] M. Kümmerer, L. Theis, and M. Bethge. Deep gaze i: Boost-

ing saliency prediction with feature maps trained on imagenet.

In International Conference on Learning Representations,

2015.

[18] G. Li and Y. Yu. Visual saliency based on multiscale deep

features. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 5455–5463, 2015.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common

objects in context. In Computer Vision–ECCV, pages 740–

755. 2014.

[20] N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting

eye fixations using convolutional neural networks. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 362–370, 2015.

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 3431–3440,

2015.

[22] N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini,

B. Gosselin, and T. Dutoit. Rare2012: A multi-scale rarity-

based saliency detection with its comparative statistical anal-

605



ysis. Signal Processing: Image Communication, 28(6):642–

658, 2013.

[23] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both worlds:

human-machine collaboration for object annotation. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2121–2131, 2015.

[24] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman.

Labelme: a database and web-based tool for image annotation.

International Journal of Computer Vision, 77(1-3):157–173,

2008.

[25] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside con-

volutional networks: Visualising image classification models

and saliency maps. In International Conference on Learning

Representations, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015.

[27] E. Vig, M. Dorr, and D. Cox. Large-scale optimization of

hierarchical features for saliency prediction in natural im-

ages. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 2798–2805, 2014.

[28] L. Wang, H. Lu, R. Xiang, and M.-H. Yang. Deep networks

for saliency detection via local estimation and global search.

In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 3183–3192, 2015.

[29] J. Xiao, J. Hays, K. Ehinger, A. Oliva, A. Torralba, et al.

Sun database: Large-scale scene recognition from abbey to

zoo. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 3485–3492, 2010.

[30] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In Computer Vision–ECCV, pages

818–833. 2014.

[31] J. Zhang and S. Sclaroff. Saliency detection: A boolean map

approach. In IEEE International Conference on Computer

Vision, pages 153–160, 2013.

[32] R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detec-

tion by multi-context deep learning. In IEEE Conference on

Computer Vision and Pattern Recognition, pages 1265–1274,

2015.

[33] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In Advances in Neural Information Processing

Systems, pages 487–495, 2014.

606


