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Figure 1. Deblurring result on a challenging low-light image. The blur process makes the dark channel of the blurred image less sparse (c).

Enforcing sparsity on the dark channel of the recovered image favors clean images over blurred ones.

Abstract

We present a simple and effective blind image deblur-

ring method based on the dark channel prior. Our work is

inspired by the interesting observation that the dark chan-

nel of blurred images is less sparse. While most image

patches in the clean image contain some dark pixels, these

pixels are not dark when averaged with neighboring high-

intensity pixels during the blur process. This change in the

sparsity of the dark channel is an inherent property of the

blur process, which we both prove mathematically and val-

idate using training data. Therefore, enforcing the sparsity

of the dark channel helps blind deblurring on various sce-

narios, including natural, face, text, and low-illumination

images. However, sparsity of the dark channel introduces

a non-convex non-linear optimization problem. We intro-

duce a linear approximation of the min operator to com-

pute the dark channel. Our look-up-table-based method

converges fast in practice and can be directly extended to

non-uniform deblurring. Extensive experiments show that

our method achieves state-of-the-art results on deblurring

natural images and compares favorably methods that are

well-engineered for specific scenarios.

1. Introduction

Blind image deblurring aims to recover a blur kernel and

a sharp latent image from a blurred image. This is a classical

image and signal processing problem [22], which has been

an active research effort in the vision and graphics commu-

nity within the last decade. This problem becomes increas-

ingly important as more photos are taken using hand-held

cameras, particularly with smart phones. Camera shake is

often inevitable and the resulting image blur is usually un-

desirable. As captured moments are ephemeral and diffi-

cult to reproduce, it is of great interest to remove blur for a

higher-quality image.

When the blur is uniform and spatially invariant, we can

model the blur process with the convolution operation

B = I ⊗ k + n, (1)

where B, I , k, and n denote the blur image, latent image,
blur kernel, and noise, respectively, and ⊗ is the convolution

operator. As only B is available, we need to recover both

I and k simultaneously. This problem is highly ill-posed

because many different pairs of I and k give rise to the same

B, e.g., blurred images and delta blur kernels.

To make blind deblurring well posed, existing methods

make assumptions on blur kernels, latent images, or both

[2, 7, 17, 20, 26, 27, 36]. For example, numerous method-

s [2, 7, 19, 20] assume sparsity of image gradients, which

has been widely used in low-level vision tasks including de-

noising, stereo, and optical flow. Levin et al. [19] show that

deblurring methods based on this prior tend to favor blurry

images over original clear images, especially for algorithms

formulated within the maximum a posterior (MAP) frame-

work. To remedy this problem, a heuristic edge selection

step [5, 34] is often necessary to achieve state-of-the-art re-

sults in the MAP framework. New natural image priors have

also been introduced that favor clean images over blurred

ones, e.g., normalized sparsity prior [17], L0-regularized

prior [36], and internal patch recurrence [24]. However,
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these natural image models do not generalize well to spe-

cific images, such as face [25], text [3, 4, 26], and low-

illumination [12] images.

We present a deblurring algorithm that achieves competi-

tive results on both natural and specific images. Our work is

motivated by an interesting observation on the blur process:

dark channels (smallest values in a local neighborhood) of

blurred images are less dark. Intuitively, when a dark pix-

el is averaged with neighboring high-intensity pixels during

the blur process, its intensity increases. We show theoreti-

cally and empirically that this generic property of the blur

process holds for many images. This inspires us to propose

an L0-regularization term to minimize the dark channel of

the recovered image. This new term favors clean images

over blurred images in the restoration process.

Optimizing the new L0-regularized dark channel term is

challenging. The L0 norm is highly non-convex and the op-

timization involves a non-linear minimum operation. We

propose an approximate linear operator based on look-up

tables for the min operator, and solve the linearized L0 min-

imization problem by half-quadratic splitting methods. The

proposed algorithm converges quickly in practice and can

be naturally extended to non-uniform deblurring tasks.

The contributions of this work are as follows: (1) we

theoretically prove that the blur (convolution) operation in-

creases the values of the dark channel pixels; (2) we empiri-

cally confirm our analysis using a dataset of 3,200 clean and

blurred image pairs; (3) we introduce an L0-regularization

term to enforce sparsity on the dark channel of latent images

and develop an efficient optimization scheme; (4) our algo-

rithm achieves state-of-the-art performance on widely-used

natural image deblurring benchmarks [16, 19, 29], and com-

petitive results on specific deblurring tasks, including text,

face, and low-illumination images, which are not well han-

dled by most recent deblurring methods for natural images.

Further, our method also works on non-uniform deblurring.

2. Related Work

In recent years, we have witnessed significant advances

in single image deblurring [14, 16] mainly due to the use of

statistical priors on natural images and selection of salient

edges for kernel estimation [5, 7, 17, 20, 27, 34, 36].

Fergus et al. [7] use a mixture of Gaussians to learn

an image gradient prior via variational Bayesian inference.

Levin et al. [19] show that the variational Bayesian infer-

ence method [7] is able to avoid trivial solutions while naive

MAP based methods may not. However, the variational

Bayesian approach is computationally expensive, and effi-

cient methods require approximation [20].

Efficient methods based on MAP formulations have been

developed with different likelihood functions and image pri-

ors [1, 17, 21, 27, 31, 36, 37]. In particular, heuristic edge s-

election methods for kernel estimation [5, 15, 34] have been

proposed and demonstrated effective for the MAP estima-

tion framework [16]. However, the assumption that strong

edges exist in the latent images may not always hold.

To better reconstruct sharp edges for kernel estimation,

recent exemplar-based methods [9, 25, 29] exploit informa-

tion contained in both a blurred input and example images

from an external dataset. However, querying a large exter-

nal dataset is computationally expensive.

Numerous recent methods exploit domain-specific sta-

tistical properties for deblurring, such as text [3, 4, 26],

face [25], and low-illumination images [12]. While these

domain-specific methods generate better results than gener-

ic deblurring algorithms, each application requires specific

operations or significant engineering effort. In this work,

we propose a generic algorithm based on how the blur pro-

cess affects the dark channel.

The dark channel prior was introduced by He et al. for

single image dehazing [10] based on the assumption that

the dark channel in the haze-free outdoor image is zero. In

this work, we make the less restrictive assumption that the

dark channel of the original image is sparse instead of zero,

and we show that the proposed method is able to deblur a

large variety of images. To enforce the sparsity of the dark

channel, we develop a novel optimization scheme for the

resulting non-linear non-convex problem.

3. Convolution and Dark Channel

To motivate our work, we first describe the dark channel

and then its role in image deblurring. For an image I , the

dark channel [10] is defined by

D(I)(x) = min
y∈N (x)

(

min
c∈{r,g,b}

Ic(y)

)

, (2)

where x and y denote pixel locations; N (x) is an image

patch centered at x; and Ic is the c-th color channel. If I

is a gray-scale image, we have minc∈{r,g,b} I
c(y) = I(y).

The dark channel prior is mainly used to describe the min-

imum values in an image patch. He et al. [10] observe that

the dark channel of outdoor, haze-free images is almost ze-

ro. We find that most, although not all, elements of the dark

channel are zero for natural images (see Figure 2(a) and (c)).

However, most elements in the dark channel of blurred im-

ages are nonzero, as shown in Figure 2(b) and (d).

To explain why the dark channel of blurred images are

less sparse, we derive some properties of the blur (convolu-

tion) operation. For discrete signals (images), convolution

is defined as the sum of the product of the two signals after

one is reversed and shifted

B(x)=
∑

z∈Ωk

I(x+[
s

2
]−z)k(z), (3)

where Ωk and s denote the domain and size of blur kernel

k, k(z) ≥ 0,
∑

z∈Ωk
k(z) = 1, and [·] denotes the rounding

1629



(a) Clear (b) Blurred (c) Clear (d) Blurred

Figure 2. Blurred images have less sparse dark channels than clear

images. The blur process (convolution) outputs a weighted aver-

age of pixels in a neighborhood and tends to increase the value

of the minimum pixel. Top: images; bottom: corresponding dark

channels computed with an image patch size of 35×35.

operator. We note that (3) can be regarded as the sum of a

locally weighted linear combination of I .

Why do blurred images have fewer dark pixels? Intu-

itively, the weighted sum of pixel values in a local neighbor-

hood is larger than the minimum pixel value in the neigh-

borhood, i.e., convolution increases the values of the dark

pixels. Mathematically, we have the following proposition.

Proposition 1: Let N (x) denote a patch centered at pixel x
with size the same as the blur kernel. We have:

B(x) ≥ min
y∈N (x)

I(y). (4)

Proof. Based on the definition of convolution (3), we have

B(x)=
∑

z∈Ωk

I(x+
[ s

2

]

−z)k(z)≥
∑

z∈Ωk

min
y∈N (x)

I(y)k(z)

= min
y∈N (x)

I(y)
∑

z∈Ωk

k(z)= min
y∈N (x)

I(y).

Note that when x is the dark pixel in its neighborhood,

i.e., I(x) = miny∈N (x) I(y), B(x) ≥ I(x). This means

that the intensity values of dark pixels in I tend to become

larger after the convolution, as shown in Figure 2.

Proposition 1 enables us to derive two properties to de-

scribe the changes caused to blurred images by convolution:

Property 1: Let D(B) and D(I) denote the dark channel

of the blurred and clear images, we have:

D(B)(x) ≥ D(I)(x). (5)

Please see the supplementary material for the detailed proof.

Property 2: Let Ω denote the domain of an image I . If there

exist some pixels x∈Ω such that I(x) = 0, we have:

‖D(B)(x)‖0 > ‖D(I)(x)‖0, (6)
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Figure 3. Intensity histograms for dark channels of both clear and

blurred images in a dataset of 3,200 natural images. Blurred im-

ages have far fewer zero dark channel pixels than clear ones, con-

firming our analysis in the text. The dark channel of each image

has been computed with an image patch size of 35× 35.

where the L0 norm ‖ · ‖0 counts the nonzero elements of

D(I). Property 2 directly follows from Property 1.

We further validate our analysis using a dataset of 3,200

natural images.1 As shown in Figure 3, the dark channels

of clear images have significantly more zero elements than

those of blurred images. This property also holds for other

image types, such as text and saturated images (please see

Section 7 and the supplemental material for the statistics).

Thus, the sparsity of dark channels is a natural metric to

distinguish clear images from blurred images. This obser-

vation motivates us to introduce a new regularization term

to enforce sparsity of dark channels in latent images.

4. Model and Optimization

From our analysis and observations, we use the ‖D(I)‖0
norm to measure sparsity of dark channels. We add this

constraint to a standard formulation for image deblurring as

min
I,k

‖I ⊗ k−B‖22 + γ‖k‖22 + µ‖∇I‖0 + λ‖D(I)‖0, (7)

where the first term imposes that the convolution output of

the recovered image and the blur kernel should be similar

to the observation; the second term is used to regularize the

solution of the blur kernel; the third term on image gradients

retains large gradients and removes tiny details [26, 36]; γ,

µ, and λ are weight parameters. We use coordinate descent

to alternatively solve for the latent image I:

min
I

‖I ⊗ k −B‖22 + µ‖∇I‖0 + λ‖D(I)‖0, (8)

and the blur kernel k:

min
k

‖I ⊗ k −B‖22 + γ‖k‖22. (9)

1The images are from both BSDS [23] and the Internet. The datasets

are available on the authors’ websites.
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4.1. Estimating the Latent Image I

Minimizing (8) is computationally intractable because of

the L0-regularized term and the non-linear function D(·).
To tackle the L0-regularized term, we use the half-quadratic

splitting L0 minimization approach [35]. Similar to [26],

we introduce the auxiliary variables u with respect to D(I)
and g = (gh, gv) corresponding to image gradients in

the horizontal and vertical directions. The objective func-

tion (8) can be rewritten as:

min
I,u,g

‖I ⊗ k −B‖22 + α‖∇I − g‖22

+ β‖D(I)− u‖22 + µ‖g‖0 + λ‖u‖0,
(10)

where α and β are penalty parameters. When α and β

are close to infinity, the solution of (10) approaches that

of (8) [32]. We can solve (10) by alternatively minimizing

I , u, and g while fixing the other variables. Note that given

I , the subproblems of solving for the auxiliary variables u

and g do not involve the nonlinear function D(·).

Now we will explain how to deal with the nonlinear min
operator when solving for I:

min
I

‖I ⊗ k−B‖22 +α‖∇I − g‖22 + β‖D(I)−u‖22. (11)

Our observation is that the non-linear operation D(I) is e-

quivalent to a linear operator M applied to the vectorized

image I.2 Let y=argminz∈N (x)I(z). M satisfies:

M(x, z) =

{

1, z = y,
0, otherwise.

(12)

Multiplying the x-th row of M with I gives the value of the

pixel y, i.e., I(y) or equivalently D(I)(x) (see the top row in

Figure 4). Given the previous estimated intermediate latent

image, we can construct the desired matrix M according

to (12), as shown in Figure 4.

For the true clear image, MI = D(I) strictly holds.

Without the clear image, we compute an approximation of

M using the intermediate result at each iteration. As the in-

termediate result becomes closer to the clear image, M ap-

proaches to the desired D. Empirically, we find that the ap-

proximation scheme converges well, as shown in Figure 15.

Given the selection matrix M, we solve for I by:

min
I

‖TkI−B‖22 + α‖∇I− g‖22 + β‖MI− u‖22, (13)

where Tk is a Toeplitz (convolution) matrix of k, B, g,

and u denote vector forms of B, g, and u, respectively.

The matrix-vector production with respect to the Toeplitz

matrix can be achieved using the Fast Fourier Transform

(FFT) [32]. The solution of (13) can be obtained according

to [26, 27, 36].

2For consistency, we use D(I) to denote the vector form of D(I).

Intermediate image I D(I)

Visualization of u u

Figure 4. Top: computing the dark channel D(I) of an image I by

the non-linear min operator is equivalent to multiplying a linear s-

election matrix M with the vectorized image I. The three squares

in the intermediate image denote adjacent image patches for com-

puting the dark channel, where the minimum intensity value in

each patch is marked with different colors. Bottom: the transpose

M
⊤ enforces identified dark pixels to be consistent with u.

Given I , we compute u and g separately by:

min
u

β‖D(I)− u‖22 + λ‖u‖0,

min
g

α‖∇I − g‖22 + µ‖g‖0.
(14)

We note that (14) is an element-wise minimization problem.

Thus, the solution of u is:

u =

{

D(I), |D(I)|2 >
λ
β
,

0, otherwise,
(15)

and similarly for the solution of g. The algorithmic details

of (10) are presented in the supplemental material.

4.2. Estimating Blur Kernel k

Given I , the kernel estimation in (9) is a least squares

problem. We note that kernel estimation methods based on

gradients have been shown to be more accurate [5, 20, 36]

(see analysis in the supplemental material). Thus, we esti-

mate the blur kernel k by:

min
k

‖∇I ⊗ k −∇B‖22 + γ‖k‖22. (16)

Similar to existing approaches [5, 26, 36], we obtain the

solution of (16) by FFTs. After obtaining k, we set the neg-

ative elements of k to 0, and normalize k so that k satisfies

our definition of the blur kernel. Similar to state-of-the-art

methods, the proposed kernel estimation process is carried

out in a coarse-to-fine manner using an image pyramid [5].

Algorithm 1 shows the main steps for the kernel estimation

algorithm on one pyramid level.

5. Extension to Non-Uniform Deblurring

Our method can be directly extended to handle non-

uniform deblurring where the blurred images are acquired

from moving cameras (e.g., rotational and translational
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Algorithm 1 Blur kernel estimation algorithm

Input: Blurred image B.

initialize k with results from the coarser level.

while i ≤ max iter do

solve for I using (10).

solve for k using (16).

end while

Output: Blur kernel k and intermediate latent image I .
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Figure 5. Quantitative evaluations on two benchmark datasets. Our

method performs competitively against the state-of-the-art.

movements) [8, 11, 28, 30, 33]. Based on the geomet-

ric model of camera motion [30, 33], the non-uniform blur

model can be expressed as:

B =
∑

t

ktHtI+ n, (17)

where I and n denote vector forms of I , n in (1); t is the

index of camera pose samples; Ht is a matrix derived from

the homography matrix in [33]; kt is the weight correspond-

ing to the t-th camera pose, which satisfies kt ≥ 0 and
∑

t kt = 1. Similar to [33], (17) can be expressed as:

B = KI+ n = Ak+ n, (18)

where k is a vector and its element is composed of the

weight kt. Based on (18), the non-uniform deblurring pro-

cess is achieved by alternatively minimizing:

min
I

‖KI−B‖22 + λ‖D(I)‖0 + µ‖∇I‖0 (19)

and
min
k

‖Ak−B‖22 + γ‖k‖22. (20)

We employ the fast forward approximation [11] to estimate

the latent image I and the weight k. The algorithmic details

are presented in the supplementary material. Our MAT-

LAB code is publicly available on the authors’ websites.

6. Experimental Results

We examine our method on two natural image deblurring

datasets [16, 29] and compare it to state-of-the-art natural

image deblurring methods. Then, we evaluate our method

using text [26], face [25], and low-illumination [12] images

and further compare it to methods specially designed for

these tasks. Finally, we report results on images undergoing

non-uniform blurs. Due to the comprehensive experiments

performed, we only show a small portion of the results in

the main paper. Please see the supplementary document for

more and larger result images.

Parameter setting: In all experiments, we set λ = µ =
0.004, γ = 2, and the neighborhood size to compute the

dark channel in (2) to be 35 (please see the supplemental

material for analysis). We empirically set max iter = 5 as

a trade-off between accuracy and speed. As our focus is on

the kernel estimation, We follow the practice [7, 19, 34] to

use a non-blind deblurring method to recover the final la-

tent image with our estimated kernel. We use the non-blind

method [26] unless otherwise mentioned. Our MATLAB

code is publicly available on the authors’ websites.

Natural images: We use the image dataset by Köhler et

al. [16], which contains 4 images and 12 blur kernels. The

PSNR value is computed by comparing each restored im-

age with 199 clear images captured along the camera mo-

tion trajectory. As shown in Figure 5(a), our method has

the highest average PSNR among all the methods evaluat-

ed. Figure 6 shows results on a challenging example with

heavy blur. Although state-of-the-art methods [5, 34] are

able to deal with large blur in most places, their deblurred

images contain moderate ringing artifacts. In contrast, our

result has fewer artifacts and clearer details.

Next, we evaluate our method on the dataset by Sun et

al. [29], which contains 80 images and 8 blur kernels. For

fair comparisons, we use the provided codes of state-of-the-

art methods [5, 17, 20, 24, 26, 29, 34, 36] to estimate blur k-

ernels and use the non-blind deblurring method [38] to gen-

erate the final deblurring results. We use the error ratio [19]

as the quality metric. As Figure 5(b) shows, our method

consistently outperforms state-of-the-art methods.

We further test our method using a real natural im-

age (Figure 7). We use the same non-blind deconvolution

method [26] with blur kernels estimated by each method.

While several state-of-the-art methods [17, 26, 36] produce

strong ringing artifacts and blur effects, our method gen-

erate clearer images. The deblurred image by our method

without the dark channel prior contains considerable arti-

facts, suggesting the effectiveness of the dark channel prior.

Text images: Table 1 summarizes the PSNR results on the

text image dataset [26], which contains 15 clear text images

and 8 blur kernels. The average PSNR by our method is at

least 1.7dB higher than those by other natural image deblur-

ring methods [5, 17, 20, 34, 36] and less than 0.9dB lower

than that by the specially-designed method [26]. Visually,

the recovered image by our method compares favorably to

that by [26] (Figure 8).

Low-illumination images: Blurred images captured in

low-illumination scenes are particularly challenging for

most deblurring methods, because they often have satu-

rated pixels that interfere with the kernel estimation pro-

cess [6, 12]. For example, the kernel estimate by [36] looks

like a delta kernel due to the influence of saturated regions

as shown in Figure 9(b); and the deblurred image has sig-

nificant residual blur. Compared with the clean image, the
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(a) Input (b) Cho and Lee [5] (c) Xu and Jia [34] (d) Ours without D(I) (e) Ours with D(I)

Figure 6. Visual comparisons using one challenging image from the dataset [16]. The deblurred images from other methods are from the

reported results in [16]. The recovered image by the proposed algorithm with the dark channel prior is visually more pleasing.

Table 1. Quantitative evaluations on the text image dataset [26]. Our method outperforms several recent deblurring methods for natural

images and is comparable to the method designed for text images [26].
Cho and Lee [5] Xu and Jia [34] Krishnan et al. [17] Levin et al. [20] Xu et al. [36] Pan et al. [26] Ours

Average PSNRs 23.80 26.21 20.86 24.90 26.21 28.80 27.94

(a) Input (b) Krishnan et al. [17] (c) Xu et al. [36]

(d) Pan et al. [26] (e) Ours without D(I) (f) Ours with D(I)

Figure 7. Comparisons on a real natural image. The parts in red

boxes in (b)-(e) still contain significant residual blur. (Best viewed

on high-resolution display with zoom-in.)

(a) Input (b) Xu et al. [36] (c) Pan et al. [26] (d) Ours

Figure 8. On text images, our generic method generates results

comparable to methods tailored to text. (Best viewed on high-

resolution display with zoom-in.)

blurred image with saturated regions also has a less sparse

dark channel. As a result, directly applying our method pro-

duces results comparable to [12], which has been specifical-

ly designed for low-light conditions.

Face images: Blurred face images are also challenging for

methods designed for natural images, because they con-

tain fewer edges or textures [25] for kernel estimation. As

shown in Figure 10, our method compares favorably a-

gainst [25], which explicitly explores facial structures using

an examplar dataset.

Non-uniform deblurring: As our method can naturally be

(a) Input (b) Xu et al. [36]

(c) Hu et al. [12] (d) Ours

Figure 9. Results on a saturated image. The deblurring results are

all generated by the non-blind deconvolution method [12]. Resid-

ual blur and ringing artifacts exist in the red boxes in (b)-(c). (Best

viewed on high-resolution display with zoom-in.)

(a) Input (b) Pan et al. [25] (c) Xu et al. [36] (d) Ours

Figure 10. Comparisons on blurred face images. Our method com-

pares favorably with [25], which uses a face datasest to explore

face structures for deblurring face images.

extended to deal with non-uniform blur, we also report re-

sults on an image degraded by spatially-variant motion blur

in Figure 11 (please see the supplemental material for more

examples and large images). Compared with the state-of-

the-art non-uniform deblurring method [36], our method

generates images with fewer artifacts and clearer textures.

7. Analysis and Discussions

It is surprising that the dark channel prior enables us to

design a method that outperforms state-of-the-art methods

on natural images but also obtains competitive results on
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(a) Input (b) Krishnan et al. [17] (c) Whyte et al. [33]

(d) Xu et al. [36] (e) Ours (f) Our kernels

Figure 11. The dark channel prior directly applies to images with

non-uniform blur. The parts in red boxes in (b)-(d) still con-

tain ringing artifacts and residual blurs. (Best viewed on high-

resolution display with zoom-in.)

specific scenarios without using domain knowledge. In this

section, we further analyze the proposed method, compare

it with related methods, and discuss its limitations.

Effectiveness of the dark channel prior: Our method

without the dark channel prior reduces to the deblurring

method of Xu et al. [36]. To ensure fair comparison, we

disable the dark channel prior in our implementation. As

shown in Figure 12(f) and (g), using the dark channel prior

generates intermediate results with more sharp edges, which

favors clear images and facilitates kernel estimation. Al-

so, the dark channel of the intermediate results becomes s-

parser with more iterations (Figure 12(h)). We quantitative-

ly evaluate our method with and without the dark channel

prior using two benchmark datasets [16, 19]. The results

in Figure 13 show that the dark channel prior consistent-

ly improves deblurring. In particular, our method with the

dark channel prior has 100% success rate on the dataset by

Levin et al. [19]. All these results concretely demonstrate

the effectiveness of the dark channel prior.

Favored minimum of the energy function: The dark

channel prior is effective because it has lower energy for

clear images than for blurred ones. Two notable method-

s [17, 24] also have energy functions with similar proper-

ties. However, they are mainly designed for natural images

and are less effective for specific scenarios (e.g., text and

low-illumination images). For example, the normalized s-

parsity prior [17] gives lower energy to clear natural images

than blurred images, but does not always favor clear text im-

ages (Figure 14(b)). In contrast, the dark channel prior fa-

vors clear text images (Figure 14(a)). In [24], internal patch

recurrence is exploited for image deblurring. The method

performs well when images have repeated patterns among

patches, but may fail otherwise. Our analysis and observa-

tion suggest that the dark channel prior can broadly apply

to scenarios where blur makes the dark channel less sparse.

He et al. [10] first introduce the dark channel prior for

image dehazing. They assume that all elements of the dark

channel are zero, which mainly holds for outdoor haze-free

(a) Input (b) Xu et al. [36] (c) Pan et al. [26] (d) Ours

(e) Intermediate results of [26]

(f) Intermediate results of our method without using dark channel prior

(g) Intermediate results of our method using dark channel prior

(h) The intermediate dark channel results

Figure 12. Deblurred images by several methods are shown in (a)-

(d), and the intermediate results over iterations (from left to right)

are shown in (e)-(h). With the dark channel prior, our method re-

covers intermediate results containing more sharp edges for kernel

estimation. The dark channels of the intermediate results become

darker, which favor clear images and facilitate kernel estimation.

images. In contrast, our analysis shows that, generally, the

blur operation makes the dark channel of clean images less

sparse. Therefore, we assume that the dark channel of clear

images is sparse. Empirically, this assumption holds not

only for natural images, but also for specific scenarios, in-

cluding text (Figure 14(a)) and saturated images (Figure 1).

Note that the dark channel prior and domain knowledge are

more likely to be complementary than contradictory. Fu-

ture work could study the relationship between these com-

plementary priors.

Relation with L0-regularized deblurring methods: Two

previous methods [26, 36] have used L0-regularized priors

for deblurring. The method [36] assumes L0 sparsity on im-

age gradients, which performs well on natural images but is

less effective for text images (Figure 8(b)). The method [26]

assumes L0 sparsity on both the intensity and gradients for

deblurring text images. The L0-regularized intensity term

plays a key role in text image deblurring, because the in-

tensity values (histograms) of text images are close to two-
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Figure 13. Quantitative results of our method with and without the

dark channel prior on two benchmark datasets. The dark channel

prior consistently improves the results. In particular, our method

with the dark channel prior has 100 % success at error ratio 2 on

the dataset by Levin et al. [19].
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Figure 14. Statistics of different priors on the text image deblur-

ring dataset [26]. The normalized sparsity prior [17] (i.e., L1/L2)

sometimes favors blurred text images.

tone. However, the intensity histograms of natural images

are more complex than those of text images, and this pri-

or is not applicable to natural image deblurring problems

(Figure 7(d)). The intermediate results in Figure 12(e) also

show that although this L0-regularized intensity term helps

preserve significant contrast compared to (f), it fails to re-

cover useful structures for kernel estimation.

Convergence property: As our energy function is non-

linear and highly non-convex, a natural question is whether

our optimization method converges (to a good local min-

imum). We quantitatively evaluate convergence properties

of our method on the benchmark dataset by Levin et al. [19].

Figure 15(a) and (b) suggest that the proposed method con-

verges after less than 50 iterations, in terms of the aver-

age kernel similarity values [13] and the energies computed

from (7). Note that the kernel estimation methods based on

image intensity (i.e., (9)) and gradients (i.e., (16)) have sim-

ilar convergence properties. More discussions are included

in the supplemental material.

Computational complexity: Compared to the L0-

regularized methods [26, 36], our method additionally re-

quires computing the dark channel and look-up table. The

complexity of this step is O(N) and independent of patch

size [18], where N is the number of pixels. This is the main

bottleneck. Other steps can be accelerated by FFTs. Our

method takes about 17 seconds for a 255 × 255 image on

a computer with an Intel Core i7-4790 processor and 28 G-
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Figure 15. Fast convergence property of our method, which empir-

ically validates our approximation of the non-linear operator.

B RAM (see supplemental material for the running time of

other methods and more discussions).

Limitations: Despite its robust performance on a variety

of challenging datasets, our method has limitations. When

a clear image has no dark pixels, the dark channel prior is

less likely to help kernel estimation. In this situation, Prop-

erty 2 does not hold and ‖D(B)(x)‖0 = ‖D(I)(x)‖0. The

solution of u given by (15) is likely to be D(I) as the val-

ue of λ
β

will be much smaller than that of D(I). Thus, the

constraint ‖D(I)‖0 would have no effect on the intermedi-

ate latent image estimation. As a result, our method with

and without the dark channel have almost the same result

(see the supplemental material). In addition, our method

assumes that only the blur process changes the sparseness

of the dark channel. Significant noise may affect the dark

pixels of an image, which accordingly interferes with the

kernel estimation (see the supplemental material for exam-

ples and more discussions). Future work will consider joint

deblurring and denoising using the dark channel prior.

8. Concluding Remarks

Based on an analysis of the convolution operation and

its effect on the dark channel of blurred images, we have

introduced a simple and effective blind image deblurring

algorithm. The proposed dark channel prior captures the

changes to blurred images caused by the blur process, and

favors clear images over blurred ones in the deblurring pro-

cess. To restore images regularized by the dark channel pri-

or, we develop an effective optimization algorithm based on

a half-quadratic splitting strategy and look-up tables. The

proposed algorithm does not require heuristic edge selec-

tion steps or any complex processing techniques in kernel

estimation, e.g., shock filtering and bilateral filtering. Fur-

thermore, the proposed algorithm is easily extended to han-

dle non-uniform blur. Our algorithm achieves state-of-the-

art results on deblurring natural images, and performs favor-

ably against specialized methods for faces, texts, and low-

illumination conditions.
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