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Abstract

We present a novel dataset and a novel algorithm for rec-

ognizing activities of daily living (ADL) from a first-person

wearable camera. Handled objects are crucially important

for egocentric ADL recognition. For specific examination

of objects related to users’ actions separately from other

objects in an environment, many previous works have ad-

dressed the detection of handled objects in images captured

from head-mounted and chest-mounted cameras. Neverthe-

less, detecting handled objects is not always easy because

they tend to appear small in images. They can be occluded

by a user’s body. As described herein, we mount a camera

on a user’s wrist. A wrist-mounted camera can capture han-

dled objects at a large scale, and thus it enables us to skip

the object detection process. To compare a wrist-mounted

camera and a head-mounted camera, we also developed a

novel and publicly available dataset 1 that includes videos

and annotations of daily activities captured simultaneously

by both cameras. Additionally, we propose a discrimina-

tive video representation that retains spatial and temporal

information after encoding the frame descriptors extracted

by convolutional neural networks (CNN).

1. Introduction

Recently, activity recognition from first-person camera

views has been attracting increasing interest, motivated by

advances in wearable device technology. Recognition of ac-

tivities of daily living (ADL) from first-person views is an

important task related to activity recognition. ADL are ba-

sic activities in a typical human life such as “making coffee”

or “cutting paper.” If the system recognizes ADL properly,

then it is applicable to nursing services, rehabilitation, and

lifestyle habit improvements.

To recognize ADL, it is important to examine objects

undergoing hand manipulation specifically. For example, a

cleaning activity might be recognized only by recognizing

that a user is using a vacuum cleaner. One can also recog-

1http://www.mi.t.u-tokyo.ac.jp/static/projects/miladl/
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Figure 1. Activities of daily living (ADL) captured by a wrist-

mounted camera (left) and a head-mounted camera (right).

nize coffee-making activity if it is observed that a user is

handling a mug and coffee beans. Pirsiavash and Ramanan

[26] described the importance of recognizing handled ob-

jects for ADL recognition. They developed an ADL dataset

collected using a chest-mounted camera. Then, they im-

plemented ADL recognition in different homes by detect-

ing the user’s hands and handled objects. The result sug-

gests the crucial importance of detecting the handled objects

properly in various environments for ADL recognition.

In a view from a head-mounted camera or a chest-

mounted camera, handled objects are captured at a small

scale in various positions. Furthermore, many non-handled

objects also appear in the captured image. Consequently,

many studies have examined hand detection or gaze predic-

tion to develop a means of discerning picked-up and han-

dled objects from other detected objects. However, such

approaches entail the following difficulties: (a) Despite the

advances in object-detection techniques, object detection is

not an easy task in various environments. (b) Discerning a

handled object from detected objects with hand detection or

gaze prediction is not an easy task. (c) To train object detec-

tors, it is necessary to collect numerous images with bound-

ing boxes. Building a high-quality dataset with bounding

boxes requires a considerable amount of labor, which hin-

ders us from expanding a dataset.
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To train an ADL recognition system without pixel-level

annotations or bounding boxes of objects, we consider

mounting a wearable camera on the wrist of the user’s

dominant arm because the objects are handled mainly by

the user’s dominant hand. We designate this camera as

a wrist-mounted camera in this paper. For ADL recog-

nition, a wrist-mounted camera has numerous advantages

over a head-mounted camera or a chest-mounted camera:

(a) Wrist-mounted cameras can capture a large image of the

handled objects. (b) Because handled objects are close to a

user’s dominant hand, the object positions are restricted in

the images from the wrist-mounted camera. (c) Because of

the above reasons, we can skip object detection and do not

need a dataset of ADL with bounding boxes. We only need

a dataset of ADL with annotations about the activity time

segments in the videos.

We also propose a recognition system for videos cap-

tured by a wrist-mounted camera that has strong spatial

bias and weak temporal bias. As shown in Figure 2, an

image captured by a wrist-mounted camera has strong spa-

tial bias, meaning that hand-manipulated objects tend to be

located at the central area. In addition, the order of ma-

nipulated objects is mostly fixed for each action, which we

call “weak temporal bias.” The state-of-the-art video rep-

resentation, which extracts local features containing spatial

information from pre-trained convolutional neural networks

(CNNs), strongly loses spatial information and completely

loses temporal information after encoding. Therefore, we

also propose a novel video representation that retains spa-

tial and temporal information after encoding to consider the

above mentioned biases.

Our three contributions are the following:

1. We propose the use of a wrist-mounted camera for

ADL recognition instead of a head-mounted camera or

a chest-mounted camera.

2. We propose a discriminative video representation that

retains spatial and temporal information. This is a

method for the dataset captured from a wrist-mounted

camera that has a large bias of spatial information and

a small bias of temporal information.

3. We developed a novel and publicly available dataset

that includes videos and annotations of ADL captured

from a head-mounted camera and a wrist-mounted

camera simultaneously.

2. Related work

2.1. Egocentric vision for ADL recognition

Various approaches for ADL recognition based on han-

dled objects have been proposed [24, 29, 35]. Because

wearable devices with cameras such as GoPro and Google

Glasses have been developed recently, ADL recognition

with viewpoint cameras has received a considerable amount

of attention. Some works on egocentric ADL recognition

have achieved results in a single environment, such as a

kitchen or an office [9, 7, 18, 19].

For more practical settings, Pirsiavash and Ramanan [26]

estimated the type of a handled object by detecting the ob-

ject and arm from a wearable camera’s viewpoint. They

demonstrated that action recognition performs well in di-

verse environments. However, it is necessary to provide po-

sitional information of all objects in all frames of the video

at the time of learning. In addition, detecting an entire han-

dled object itself is still difficult. Although their dataset has

various annotations, such as type of activity and duration of

its completion, as well as type of an object and its location,

it took over 1 month to label various annotations by 10 part-

time annotators. Consequently, expanding the dataset is not

practical. In a more practical setting, an ADL recognition

system that uses wearable devices in diverse environments

should be trained with labels obtained by simpler annotation

methods.

2.2. Video representation for action recognition

Video representation has been well studied in the ac-

tion recognition domain. Some deep-learning approaches

for action recognition have been proposed [23, 31]. How-

ever, these approaches require the use of large-scale video

datasets (e.g. Sports 1M [14]), which are difficult to address

and which require enormous amounts of time for the whole

learning process.

Motion features: The general pipeline to obtain a video

representation for action recognition models the distribution

of local features from training videos. Local features repre-

senting motion information (e.g., HOG [4], HOF [20], and

MBH [5]) are usually used. The combination of local fea-

tures and improved dense trajectory (iDT) [34], which com-

pensates for camera motion, is the de facto standard. It has

shown great performance for action recognition [33].

CNN descriptors: CNN has achieved superior results

to the standard pipeline for object recognition [16]. Jain

et al. [12] brought CNN to action recognition. They ob-

tain the state of a fully connected layer from each frame

in videos and calculate the video representation by aver-

aging all CNN features. Their method therefore exhibits

performance that is surprisingly comparable to the combi-

nation of iDT, MBH, and Fisher vector (FV) [25]. To obtain

more discriminative features containing spatial information,

Xu et al. [36] proposed the extraction of latent concept de-

scriptors (LCDs) from the pool5 layer and the application

of VLAD [13] instead of averaging. However, spatial infor-

mation is ignored when applying VLAD. Since our task is

an intermediate task of action recognition and object recog-

nition, we developed the CNN-based video representation

above to design the video representation for ADL recogni-

tion from wrist-mounted cameras, which have strong spatial

information bias.
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Figure 2. Mean images of a head-mounted camera (left) and a

wrist-mounted camera (right). Skin pixels are visible on the right

side of the wrist-mounted camera image, although we cannot see

anything in the head-mounted camera image. This implies that the

user’s hand always appears in the right side and handled objects

appear near the center of the wrist-mounted camera image.

3. Wrist-mounted cameras
Some works in the area of interface research have shed

light on wrist-mounted cameras [32, 15]. In ADL recog-

nition, Maekawa et al. [21] conducted multimodal ADL

recognition using a wrist-mounted device that has a cam-

era, microphone, acceleration sensor, illuminance meter,

and digital compass. However, the color histogram alone is

used as an image feature. This system is too simple to iden-

tify handled objects. Wrist-mounted cameras have never

been evaluated carefully in ADL recognition. Therefore,

we discuss the superiority of wrist-mounted cameras in this

section.

Wrist-mounted cameras capture handled objects very

closely, as shown in Figure 1. In addition, as shown in

Figure 2, the user’s hand invariably appears on the right

side of the image captured by a wrist-mounted camera, un-

like that by a head-mounted camera. This trend of wrist-

mounted cameras also means that handled objects always

appear near the center of the captured image. Because of

these strong spatial biases, we can recognize handled ob-

jects well even without manually annotating the bounding

boxes of objects in the dataset. We need only to annotate

the time segments of the activities. Wrist-mounted cam-

eras have limitations: they cannot take pictures of human

faces or recognize posture-defined actions such as “jump-

ing” or “skipping.” Although there are such limitations,

wrist-mounted cameras are more suitable for recognizing

ADL, which mostly involves object manipulation.

As another feature, wrist-mounted cameras can pro-

cess large motions. Because the handled objects and a

wrist-mounted camera move together, other irrelevant parts,

which move relative to the wrist-mounted camera, are

blurred, whereas the handled objects are captured clearly.

In addition, the objects, while moving, appear as static ob-

jects in the camera view, which enables robust recognition.

This blurring effect is better obtained by setting the focal

length to 10–30 cm.

4. Video representation
We propose a new video representation based on LCDs

[36] to take advantage of the strong spatial bias and weak

temporal bias of the video captured by a wrist-mounted

camera. Although LCD retains the spatial information in

each frame at the descriptor level, spatial information and

temporal information are dropped when the descriptors are

encoded and aggregated into a video representation. How-

ever, the video captured by a wrist-mounted camera has a

strong spatial bias, as described in Section 3. Although not

as strong as spatial bias, temporal bias also exists because

the order of handling objects is fixed roughly in each ac-

tion class. Therefore, we use the benefits of these spatial

and temporal biases specifically for a wrist-mounted cam-

era and ADL.

Our method encodes LCDs at each location in all frames

into single VLAD [13] vectors and optimizes the weights

for the VLAD vectors to aggregate them into a video repre-

sentation. The weight for a VLAD vector extracted from

each location is designated as a spatial weight. Further-

more, we propose a method that divides a video into short

sequences and optimizes the temporal weights for aggregat-

ing descriptors. Here, we describe the original LCD in Sec-

tion 4.1, the proposed method to optimize spatial weights

in Section 4.2, and the proposed method to optimize spatial

and temporal weights in Section 4.3.

4.1. CNN latent concept descriptors
Latent concept descriptors [36] constitute a state-of-the-

art video representation using CNN, which is obtained as

follows. (i) Given a video E including T frames E =
{I1, I2, · · · , IT }, each frame is input to VGG net [27] pre-

trained on the ImageNet2012 dataset [6] to obtain the pool5
layer’s output. The dimension of pool5 features is a×a×M ,

where a is the size of the filtered images of the last pooling

layer and M is the number of convolutional filters in the

last convolutional layer (in the case of VGG net, a = 7 and

M = 512). (ii) The responses of M filters are concatenated

for the respective locations of the pool5 layer.

Then, a set of a2 descriptors f t
(i,j) ∈ R

M is obtained

from the t-th frame as follows.

F t = {f t
(1,1),f

t
(1,2), . . . ,f

t
(a,a)}. (1)

(iii) All descriptors in {F1, . . . ,FT } are encoded with

VLAD into a video representation v. Letting {c1, . . . , cK}
denote a set of K coarse centers obtained by K-means, we

obtain uk (k = 1, . . . ,K) as follows:

uk =
∑

(t,i,j)∈{(t,i,j)|NN
(

f t

(i,j)

)

=ck}

(f t
(i,j) − ck), (2)

Therein, NN
(

f t
(i,j)

)

represents the nearest center of f (i,j).

Then, v is obtained as an MK-dimensional VLAD encod-

ing vector by concatenating uk over all K centers. (iv) Fi-

nally, v is normalized by power and L2 normalization with

intra-normalization [3].
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Figure 3. Illustration of the proposed video representation vDSTAR. For this example, we set a = 2 and L = 2.

4.2. Discriminative spatial aggregated latent con
cept descriptors

The original LCD [36] drops the spatial information in

the process of VLAD encoding because the descriptors are

equally weighted when they are encoded with VLAD into

a video representation v. We introduce spatial weights for

the VLAD encoding vectors distinguished by their locations

when we aggregate them into a final video representation.

Because of the spatial weights, we can address the spa-

tial bias such that the center area is more important than

its surroundings, for example, because hand-manipulated

objects tend to be located at the center view of a wrist-

mounted camera. Specifically, we obtain a video represen-

tation v(i, j) for each cell (i, j) over all the T frames by en-

coding the descriptors in a set F(i,j) = {f1
(i,j), . . . ,f

T
(i,j)}.

In the same manner as in [36], v(i, j) is normalized by

power and L2 normalization with intra-normalization. Let-

ting w(i,j) ∈ R
Nsp denote an Nsp-dimensional weight vec-

tor, we obtain a weighted sum of v(i, j) as

V =
a

∑

i=1

a
∑

j=1

v(i, j)w⊤
(i,j) = VspWsp, (3)

where Vsp ∈ R
MK×a2

and Wsp ∈ R
a2×Nsp are defined as

shown below.

Vsp = (v(1, 1),v(1, 2), . . . ,v(a, a)), (4)

Wsp = (w(1,1),w(1,2), . . . ,w(a,a))
⊤. (5)

As described in this paper, we obtain Wsp by arrang-

ing Nsp eigenvectors x ∈ R
a2

obtained by partial least

squares (PLS) in Nsp rows. Note that PLS is a method that

can extract common information between sets of observed

features. Therefore, Nsp represents how many eigenvec-

tors we use were obtained from PLS. Details related to

computing the eigenvectors are given in the Supplemen-

tal Materials. Finally, we obtain a video representation

vDSAR ∈ R
MKNsp , which is called discriminative spatial

aggregated LCDs (DSAR), by concatenating all elements

in V ∈ R
MK×Nsp in (3). Here, vDSAR is normalized by

power and L2 normalization.

The idea to use the eigenvectors obtained by PLS as

spatial weights was derived from the discriminative spatial

pyramid representation (D-SPR) [10]. Consequently, the

proposed method described in this section can be regarded

as the combination of LCD and D-SPR. Our method opti-

mizes the weights for a × a cells in the output of pool5,

whereas D-SPR optimizes the weights for areas in a spatial

pyramid of each frame.

4.3. Discriminative spatiotemporal aggregated la
tent concept descriptors

The wrist-mounted camera dataset not only has a strong

spatial information bias, but also has a weak temporal infor-

mation bias. The original LCD described in Section 4.1 and

the proposed DSAR described in Section 4.2 lose tempo-

ral information in the process of VLAD encoding. Inspired

by the idea of spatiotemporal pyramids [17], we introduce

temporal weights for the VLAD encoding vectors distin-

guished by their time stamps when we aggregate them into a

final video representation. Because of the temporal weights,

we can assign the importance of each frame into a whole

video representation. Specifically, we split a video into 2l

sequences consisting of equal numbers of frames T/2l. The

s-th sequence is a set of frames {I(s−1)T/2l+1, . . . , IsT/2l}

(s = 1, . . . , 2l). Then, we obtain a video representa-

tion vl
s(i, j) for each cell (i, j) over all the T/2l frames

in the s-th sequence by encoding the descriptors in a set

Fs
(i,j) = {f

(s−1)T/2l+1
(i,j) , . . . ,f

sT/2l

(i,j) }. Here, we consider

multiple levels of the splitting (l = 0, . . . , L) such that we

obtain a set of vl
s(i, j) as follows:

V = {v0
1(i, j),v

1
1(i, j), . . . ,v

L
1 (i, j), . . . ,v

L
2L(i, j)}

(i = 1, . . . , a, j = 1, . . . , a). (6)

Again, vl
s(i, j) is normalized by power and L2 normaliza-

tion with intra-normalization. Letting wl
s ∈ R

Ntmp denote

an Ntmp-dimensional weight vector, we obtain a weighted
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sum of vl
s(i, j) as follows:

V =
a

∑

i=1

a
∑

j=1

L
∑

l=0

2l
∑

s=1

vl
s(i, j)⊗w(i,j) ⊗wl

s. (7)

Here, we define V (i, j) ∈ R
MK×d, V l

s ∈ R
MK×a2

, and

Wtmp ∈ R
d×Ntmp , where d =

∑L
l=0 2

l = 2L+1 − 1 as

shown below.

V (i, j)= (v0
1(i, j),v

1
1(i, j), . . . ,v

L
1 (i, j), . . . ,v

L
2L(i, j)),(8)

V l
s =(vl

s(1, 1),v
l
s(1, 2), . . . ,v

l
s(a, a)), (9)

Wtmp=(w0
1,w

1
1, . . . ,w

L
1 , . . . ,w

L
2L)

⊤. (10)

As described in this paper, we optimize spatial weights

Wsp and temporal weights Wtmp iteratively and alternately.

Specifically, we repeat the following two steps.

Step 1: optimizing Wsp

In this step, we fix Wtmp and optimize Wsp. We obtain

MKNtmp-dimensional vectors g(i,j) by concatenating all

the elements in V (i, j)Wtmp. Letting V ′ ∈ R
MKNtmp×a2

denote (g(1,1), g(1,2), . . . , g(a,a)), we can rewrite (7) as

V = V ′Wsp. (11)

This formulation is identical to (3). Therefore, we optimize

Wsp in the manner described in Section 4.2.

Step 2: optimizing Wtmp

In this step, we fix Wsp and optimize Wtmp. We obtain

MKNsp-dimensional vectors hl
s by concatenating all the

elements in V l
sWsp. Letting V ′′ ∈ R

MKNsp×d denote

(h0
1,h

1
1, . . . ,h

L
1 , . . . ,h

L
2L), we can then rewrite (7) as

V = V ′′Wtmp. (12)

This formulation is identical to (3). Therefore, we optimize

Wtmp in the manner presented in Section 4.2.

We iterate Step 1 and Step 2 several times. Finally, we

obtain a video representation vDSTAR ∈ R
MKNspNtmp ,

which is called discriminative spatiotemporal aggregated

LCDs (DSTAR), by concatenating all the elements in V ∈
R

MK×Nsp×Ntmp in (7) with power and L2 normalization.

An illustration of vDSTAR is shown in Figure 3.

5. Dataset: MILADL
We created a new ADL dataset that uses both a wrist-

mounted camera and a head-mounted camera because there

are as yet no published ADL datasets that use wrist-

mounted cameras. In this section, we present the details

of our dataset.

Note that it is also important to compare a wrist-mounted

camera with a chest-mounted camera instead of with a head-

mounted one since a chest-mounted camera is closer to the

user’s hands. We encourage to compare wrist-mounting to

other mountings [22] for ADL recognition as future work.

Action name
Mean of Number of

length (s) occurrences

vacuuming 38.1 17

empty trash 11.5 22

wipe desk 35.7 23

turn on air-conditioner 6.9 27

open and close door 6.4 34

make coffee 88.2 24

make tea 70.0 22

wash dishes 31.3 29

dry dishes 15.7 27

use microwave 33.7 26

use refrigerator 6.8 42

wash hands 11.9 32

dry hands 7.9 29

drink water from a bottle 13.8 26

drink water from a cup 7.8 31

read book 28.5 28

write on paper 16.6 29

open and close drawer 6.0 30

cut paper 14.7 28

staple paper 7.8 28

fold origami 68.7 23

use smartphone 23.1 29

watch TV 21.6 22

Table 1. Duration of each class and the distribution of the 23

classes in our dataset.

5.1. Activity class
We chose activity classes by referring to previous stud-

ies of ADL [26, 30, 8]. First, we removed some classes

that many users were reluctant to record on video such as

“brushing teeth” and “laundry.” Next, to introduce more

variety into our dataset, we added some actions referring

to other ADL recognition studies [30] and an evaluation of

Alzheimer rehabilitation [8]. As Table 1 shows, we strove

to recognize 23 ADL classes in this study. Detailed infor-

mation is given in the Supplemental Materials.

5.2. Collection and annotation
To assemble the dataset, we used a GoPro HERO3+ 2 as

the head-mounted camera and an HX-A100 3 as the wrist-

mounted camera. Each user wore these two cameras, as

shown in Figure 4. Each user therefore recorded two videos

simultaneously. As in a previous ADL egocentric dataset

[26], we did not instruct the users in detail how to act to

obtain realistic data. After taking videos, all users manu-

ally annotated the duration and the action class in their own

videos. The definition of an action includes some initial and

final actions related to the action. For example, the action

“cutting paper” is defined as follows: The initial action of

“cutting paper” is to take scissors from the table and the fi-

nal action is to put it on the table. We recruited 20 people to

perform these tasks. All users were right handed. Our wrist-

2http://jp.shop.gopro.com/cameras
3http://panasonic.jp/wearable/a100
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Figure 4. Wearing a head-mounted camera and a wrist-mounted

camera

Figure 5. Example images from our head-mounted dataset (top-

half) and wrist-mounted dataset (bottom-half). We present a wide

variety of scenes and ADL classes.

mounted camera and head-mounted camera dataset respec-

tively produced 6.5 h (about 690,000 frames) of images.

5.3. Characteristics
Various objects are handled in daily life. Therefore, for

ADL recognition, it is important to be able to recognize

them in diverse environments. For this study, we asked

users to take videos in their own homes. As shown in the

examples in Figure 5, the environments caught on camera

differ depending on the user. More examples are shown in

the Supplemental Materials.

6. Experiments
6.1. Experiment protocols

We used 16-layer VGG net [27] pre-trained on the Ima-

geNet 2012dataset [6] for the CNN architecture in the same

manner as the LCD [36]. Motion features are also important

in action recognition. Therefore, we evaluated our dataset

not only with CNN descriptors but also with iDT [34]. Fol-

lowing [34], we reduced the dimensions of the descriptors

(HOG, HOF, and MBH) by a factor of 2 with PCA and en-

code them with FV, where the component number of the

Gaussian mixture model was 256. We applied power and

L2 normalization to aggregated vectors. As a classifier, we

used a one-vs.-all SVM with linear kernel, setting C = 100.

We used leave-one-user-out cross-validation for the evalu-

ation so that the same person does not appear across both

Video Features WCD HCD

LCD+VLAD [36] 78.6 62.4

LCDspp+VLAD [36] 73.4 51.3

DSAR (ours) 82.0 61.6

DSTAR (ours) 83.7 62.0

STAR∗ 77.0 53.5

Table 2. Mean classification accuracy of the proposed methods on

the wrist-mounted camera dataset (WCD) and the head-mounted

camera dataset (HCD). STAR∗ is the method without weight opti-

mization, which is equivalent to a spatiotemporal pyramid [17].

training and test data for ADL recognition. The iteration

number of our methods is fixed at five because it usually

converges in a few iterations.

6.2. Evaluating DSTAR and our dataset
We evaluated our approach on our wrist-mounted camera

dataset (WCD) and head-mounted camera dataset (HCD).

For fair comparison, we reduced the LCD dimensions

from 512-D to a various range of dimensions such as 64-

D, 128-D, and 256-D with PCA, and encoded them with

various numbers of centers K in VLAD such as K =
64, 128, 256, 512, 1024 as in [36] to find the best ones. We

also explored the best choice of dimensions, K, Nsp, and

Ntmp, for our method. We describe the best parameters and

how they are determined in the Supplemental Materials be-

cause of the limited space here.

Table 2 presents the action classification accuracy of

our dataset. Comparing the cameras, we found the accu-

racy on WCD to be superior to that on HCD for every

method. Next, we compared each method on WCD. Actu-

ally, DSAR, which retains spatial information after encod-

ing, showed superior performance to LCD; DSTAR, which

retains not only spatial information but also temporal infor-

mation, exhibited superior performance to DSAR on both

datasets. Results showed that an LCD with a spatial pooling

layer (LCDspp) did not improve performance on our dataset,

unlike TRECVID MEDTest 13 and 14 [1, 2]. The im-

ages captured by a wrist-mounted camera have strong spa-

tial bias, and ADL actions have weak temporal bias, as de-

scribed in Section 3. From the obtained results, we can con-

firm that using spatial and temporal bias improves recogni-

tion accuracy on WCD. However, DSAR and DSTAR did

not improve HCD performance. As shown in Figure 2, we

cannot confirm strong spatial bias in the images captured

by a head-mounted camera. Cutting features in every cell

only made the features sparse. Aggregated video represen-

tation does not get more discriminative than without cutting

if images have no strong spatial bias. Consequently, DSAR

and DSTAR can be shown to improve recognition accuracy

more for WCD than for HCD. Through these recognition

results, we can confirm that using a wrist-mounted camera

and considering spatial and temporal information improved

ADL recognition performance.
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Figure 6. Visualization example of iDT on a head-mounted cam-

era (left) and a wrist-mounted camera (right). These images were

captured simultaneously. Green lines are trajectories that were re-

moved from the backgrounds with iDT. It is apparent that many

background points in the image of a wrist-mounted camera are re-

garded as the foreground because of large motion on the camera.

Dataset LCD [36] DSAR DSTAR

UCIADL [26] 73.7 71.8 72.6

UCF101 [28] 76.8 78.7 79.3

MILADL (WCD) 78.6 82.0 83.7

Table 3. Mean classification accuracy on existing datasets.

Video Features WCD HCD

iDT+FV [34] 73.6 78.1

LCD & iDT+FV 84.1 80.5

DSTAR & iDT+FV 85.5 80.2

DSTAR (WCD) & iDT+FV (HCD) 89.7

Table 4. Mean classification accuracy of combining CNN-based

descriptors with motion features, and a wrist-mounted camera with

a head-mounted camera.

6.3. Applicability in existing datasets
Table 3 shows how wide our methods can be applied. We

first evaluated LCD and our methods on UCIADL [26]. As

shown in the table, our methods did not improve the perfor-

mance since this dataset has low spatial bias. Moreover, we

evaluated them on UCF101 [28], which is one of the rep-

resentative datasets of typical action recognition. Although

not as strong as our wrist-mounted dataset, this dataset has

substantial bias. Therefore, DSTAR showed better perfor-

mance on this dataset than LCD did. Details are shown in

the Supplemental Materials.

6.4. Fusing motion features and cameras
From Tables 2 and 4, we can confirm that iDT features

are less discriminative than CNN-based features on WCD.

Comparing the iDT on both cameras, we found that iDT

on HCD showed better performance than on WCD unlike

the CNN descriptors. We can ascertain this reason from

Figure 6. As the figure shows, iDT failed to remove the

backgrounds from the video captured by a wrist-mounted

camera compared with a head-mounted camera because of

the large motion of the camera. Therefore, iDT on HCD is

superior to that on WCD.

Jain et al. [11] showed that combining object features

extracted by CNN with motion features such as iDT boosts

0.2!

0.15!

0.05!

0!

0.1!

Figure 7. Visualization of DSTAR spatial weights on the wrist-

mounted camera dataset 4.

Level 1!
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Level 0!

Time axis!

0.5!

0.4!

0!

0.1!

0.2!
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Figure 8. Visualization of DSTAR temporal weights on the wrist-

mounted camera dataset 4.

action classification accuracy. Following their conclusion,

we also demonstrate how our method was affected by the

combination of motion features. We fused our methods

with iDT on each dataset by simply averaging the score ob-

tained using our methods and the mean score obtained by all

iDT scores. As Table 4 shows, the performance of motion

features was boosted by our methods more than by LCD.

Although iDT features were more discriminative on HCD

than on WCD, the combined features showed better perfor-

mance on WCD than on HCD. Unlike action recognition,

object features are more effective than motion features in

ADL recognition because the critical key is the handled ob-

ject. Therefore, we can find that wrist-mounted cameras

are more suitable for ADL recognition than head-mounted

cameras.

In case the user wears both a head-mounted camera and a

wrist-mounted camera, we can choose superior information

from wrist-mounted cameras and head-mounted cameras.

Better object information is obtainable from wrist-mounted

cameras, but better motion information is obtainable from

head-mounted cameras. Therefore, we combined DSTAR

on WCD with iDT on HCD to achieve the best accuracy of

89.7% on our dataset.

7. Discussion
7.1. Visualized weights of DSTAR

Figures 7 and 8 show the absolute values of spatial and

temporal weights Wsp and Wtmp calculated using DSTAR

on WCD. This figure presents the optimal discriminative

weights for the respective cells.

Spatial weight: In Figure 7, it is apparent that cells near

the center are important for classification, whereas cells on

the right side are less important. The user’s palm always

appears. No object appears on the right side of a wrist-

4These weights were obtained when we dealt with subject nos. 2–20

for training and no. 1 for testing.
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Figure 9. This figure represents the recognition accuracy of each ADL class. It also shows the differences between the models.

mounted camera image. Therefore, the right side area in

the image has less information for recognition. The fea-

tures obtained from the upper left cell and the bottom left

cell are also less discriminative because backgrounds unre-

lated to the user’s action are often captured in these cells.

However, handled objects often appear in the middle area

of a wrist-mounted camera image. Discriminative features

can be obtained from the cells of these areas.

Temporal weight: Although not as strong as the spa-

tial bias of the image captured by a wrist-mounted cam-

era, each ADL class has weak temporal bias. As Figure

8 shows, although full-length features (level 0) are the most

important, temporally cut features (levels 1 and 2) have dif-

ferent weights. Using temporally cut pyramids improved

the recognition performance, as presented in Table 2. Addi-

tionally, slight differences are apparent at the same level. At

level 2, the beginning and the end of the action are slightly

more important than the middle of the action.

7.2. Analysis of ADL classification results

We analyze the classification results here. Figure 9

presents the results of four different methods: LCD on

HCD, LCD on WCD, DSTAR on WCD, and, finally,

DSTAR on WCD and iDT on HCD.

Comparing HCD with WCD: We first compared both

cameras using LCD. Results showed that 18 classes showed

superior performance on WCD over HCD; these classes im-

proved by 28.1% on average. Especially, “write on paper,”

“cut paper,” and “staple paper” were improved significantly.

These classes are actions wherein users use small objects

such as a pen, scissors, and a stapler. A head-mounted

camera captures these objects at a small scale. However, a

wrist-mounted camera can capture large-scale images even

of small objects. Four classes, however, showed inferior

performance on WCD compared to HCD, and “dry dishes”

is the class in which the classification accuracy declined

considerably: 18.5%. On WCD, “dry dishes” was more

often confused with “wash dishes” than on HCD, although

all actions of “wash dishes” were recognized correctly.

Comparing LCD with DSTAR: Next, we compared

DSTAR with LCD on WCD. Using DSTAR instead of LCD

improved the accuracy on 14 classes. Its average improve-

ment rate was 10.1%. One significantly improved action

class was “vacuuming.” When we used a vacuum cleaner

with a wrist-mounted camera, the floor and other unrelated

backgrounds appeared on the left side of the wrist-mounted

camera image. Actually, DSTAR was considered to im-

prove the performance by reducing the importance of the

features extracted from these areas. On five classes, the ac-

curacy decreased, but the average rate of decrease was only

5.5%.

Adding iDT on HCD with DSTAR on WCD: Fi-

nally, we noticed how adding iDT affected HCD. Actually,

14 classes improved their performance by adding iDT on

HCD; these classes improved by 10.4% on average. Es-

pecially, “wipe desk” was highly improved. Because the

object information of “wipe desk” on HCD was often con-

fused with other actions done near the table, using a wrist-

mounted camera improved the performance. However, the

“wipe desk” motion was distinctive. Consequently, adding

iDT on HCD boosted the performance again. Only on five

classes did the accuracy decline, the average of which was

only 4.7%. In case the user wears both cameras, we can

obtain better recognition.

8. Conclusion
This study examined the recognition of ADL with a

wrist-mounted camera. We developed a publishable dataset

of videos taken with a head-mounted camera and a wrist-

mounted camera. Additionally, we proposed a novel video

representation that aggregated CNN descriptors spatially

and temporally, and optimized their weights both iteratively

and alternately. Finally, using the proposed dataset, we

quantitatively demonstrated the benefits of a wrist-mounted

camera over a head-mounted camera and those of our pro-

posed method over previous methods. We believe that our

work will help spread the use of cameras attached to wrist-

mounted devices.
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