
Fast Detection of Curved Edges at Low SNR

Nati Ofir Meirav Galun Boaz Nadler Ronen Basri

Weizmann Institute of Science

Rehovot, 76100 Israel

Abstract

Detecting edges is a fundamental problem in computer
vision with many applications, some involving very noisy
images. While most edge detection methods are fast, they
perform well only on relatively clean images. Unfortu-
nately, sophisticated methods that are robust to high levels
of noise are quite slow. In this paper we develop a novel
multiscale method to detect curved edges in noisy images.
Even though our algorithm searches for edges over an expo-
nentially large set of candidate curves, its runtime is nearly
linear in the total number of image pixels. As we demon-
strate experimentally, our algorithm is orders of magnitude
faster than previous methods designed to deal with high
noise levels. At the same time it obtains comparable and
often superior results to existing methods on a variety of
challenging noisy images.

1. Introduction

This paper considers the problem of detecting faint edges

in noisy images. Our key contribution is the introduction of

a new, computationally efficient algorithm to detect faint

curved edges of arbitrary shapes and lengths, under low

signal-to-noise ratios (SNRs). A key feature of our algo-

rithm is that the longer an edge is, the fainter it can be and

still be detected. This is consistent with the performance of

the human visual system, as illustrated in Fig. 1.

Edges with low signal-to-noise-ratio are common in a

variety of imaging domains, specifically when images are

captured under poor visibility conditions. Examples include

biomedical, satellite and high shutter speed imaging. As an

illustrative example, Fig. 2 shows an image of Plankton ac-

quired with an underwater imaging system [5]. Automated

algorithms that detect the boundaries of different Plankton

species, segment and classify them are fundamental in the

study of ocean ecosystems. However, segmenting Plankton

in such images is challenging due to their low contrast and

background noise.

Noise poses an obstacle to edge detection since it can

reduce the contrast of actual edges, and introduce spurious

Figure 1. A noisy binary pattern with three curved fibers at high

noise level (left, SNR=1) or low noise level (middle, SNR=2). The

clean pattern is shown on the right. While the long fiber is notice-

able already at the low SNR. the two shorter fibers can be spotted

only at the higher SNR.

Figure 2. From left to right: Noisy image of a Plankton acquired by

an underwater imaging system [5] containing several faint edges;

our result; Canny result, and Canny after BM3D denoising.

high contrasts at background pixels. Thus, detecting edges

using only local image gradients is highly sensitive to noise.

To be more robust to noise, Canny [7], for example, first

denoises the image with a Gaussian filter, before computing

its gradients. While this smoothing operation indeed atten-

uates the noise, it also blurs existing edges, thus decreasing

their contrast. Applying more sophisticated image denois-

ing algorithms before edge detection does not, in general,

solve the problem. We illustrate this point in Fig. 2. The

edges found by Canny [7] on either the noisy image or the

image denoised by the state-of-the art BM3D algorithm [9]

are shown in the two rightmost panels. Both methods fail

to accurately detect the Plankton boundaries. In contrast, as

shown in the middle-left panel, our proposed method is far

1213



more robust to noise and yields a significantly more accu-

rate result. We further illustrate this point in Sec. 6, using

additional images from different application domains.

Our approach to detect faint curved edges is based on

applying a large collection of matched filters to the image,

and retaining only those which are statistically significant.

By definition, each of these matched filters computes the

average contrast of the image pixel intensities along its cor-

responding curve. When this curve traces an actual edge,

the filter smoothes the noise on either side of the edge while

maintaining its contrast. Hence, this operation does not

suffer from the degradation of the general purpose denois-

ing approaches described above. The longer the edge and

its corresponding matched filter, the more aggressively the

noise is attenuated, allowing detection of fainter edges.

The computational challenge in applying this approach

is that the locations and shapes of the edges, and hence

the corresponding matched filters, are a-priori unknown.

Moveover, there are in general an exponential number of

candidate curves and corresponding matched filters. Hence,

a naive direct approach to compute all of them would be

prohibitively slow. The main contribution of this paper is

the development of a highly efficient algorithm to detect

curved edges. Our detection scheme is multiscale and uti-

lizes a hierarchical binary partition of the image, construct-

ing matched filters for the detected edges in a bottom-up

strategy. With this construction, even though our method

searches for edges over a huge set of candidate curves, its

runtime is nearly linear in the total number of image pixels.

As we analyze in Sec. 4, our algorithm is orders of magni-

tude faster than other edge detection methods that can deal

with high noise levels (e.g., [1]). Yet, as we demonstrate

in Sec. 6, it obtains comparable, if not better, edge detec-

tion quality on challenging noisy images from a variety of

applications.

2. Previous and Related Work

Edge detection is a well studied problem with a rich his-

tory. Traditional methods considered step edges and relied

on local gradients to detect them [19, 16, 7]. In contrast, re-

cent methods addressed the problem of boundary detection

in natural images [17, 3, 2, 4, 10, 15]. These methods rely

on supervised learning of complex boundary features that

account for intensity, color and texture. Despite the high

accuracy achieved by these methods on natural images, as

shown experimentally in Sec. 6, they exhibit poor perfor-

mance on images with faint edges.

In this paper we focus on the problem of detecting step

edges at high levels of noise. As mentioned in the in-

troduction, this is an important task in a variety of imag-

ing domains. One of the first proposed methods for step

edge detection was the Sobel operator [19], which does so

by thresholding the gradient magnitude at each pixel sepa-

rately. Marr & Hildreth [16] proposed to detect edges by

identifying the zero crossings of a 2D Laplacian of a Gaus-

sian filter applied to the image. These local approaches

for edge detection are very efficient, essentially with linear-

time complexity in the total number of pixels. However, due

to their local nature, they are sensitive to noise and exhibit

poor performance at low SNR. One exception is the algo-

rithm suggested by Canny [7], which extends Sobel by hys-

teresis thresholding of the local gradient magnitudes. This

post-processing operation significantly improves its robust-

ness to noise. We thus choose the Canny algorithm as one

of the baselines for comparison to our work.

A potentially promising approach to detect edges in

noisy images is to first denoise the image and then apply

some edge detection algorithm. The problem of image de-

noising received considerable attention in recent years, and

various methods were proposed, including bilateral filter-

ing [20], anisotropic diffusion [18], non-local means [6],

BM3D [9] and more. These methods, however, are not op-

timized for edge detection and typically denoise the image

based on small local patches. Hence, they may blur faint

edges, making their detection even more difficult.

Another set of edge detection algorithms utilize a

wavelet-based bank of filters that vary in length and width,

see a review in [21]. Given the availability of fast wavelet

transforms, these methods are also quite fast. However,

a key difference from our approach is that these wavelet

methods do not adapt to the shape of actual curved edges.

Hence, their performance at low SNRs is sub-optimal.

Several recent studies proposed to use matched filters to

improve the detection of faint edges. The method of Galun

et al. [12] detects straight edges using O(N logN) oper-

ations for an input image with N pixels. A significantly

faster method to detect long straight edges, with sub-linear

run-time in the image size, was proposed in [14]. An algo-

rithm for detecting faint curved edges, based on the Beam-

let data structure [11] and its corresponding quad-tree par-

tition of the input image. was proposed by Alpert et al. [1].

While their method is also multiscale, it suffers from a high

complexity of O(N2.5) operations, which translates into a

non-practical runtime of several minutes on typical images.

In our work, we detect curved edges with a significantly

reduced complexity. The two key ideas are to instead con-

struct a binary tree partition, and perform a sophisticated

processing on it. We present two variants of our algo-

rithm, which both require a memory of O(N logN). The

first, more stringent variant has time complexity O(N1.5),
whereas the second faster one incurs a slight loss of detec-

tion accuracy, but has even faster runtime at O(N logN)
operations. For illustrative purposes, the run time of our

latter algorithm, implemented in C++, is roughly 1 second

on a small 129× 129 image and 5 seconds on a 257× 257
image. In contrast, the runtime of [1], as reported in their

2214



paper, is several minutes per image.

3. The Beam-Curve Binary Tree

In this paper we develop edge detection algorithms that

efficiently examine a huge set of possible candidate curves.

This section describes in detail how we achieve this goal.

3.1. Setup and Notations

The input to our method is a noisy gray-level image

I with N = m × n pixels containing an a-priori un-

known number of curved edges at unknown locations and

shapes. In developing the algorithm and its theoretical anal-

ysis, we assume for simplicity square images with m = n
where n is a power of 2, and an additive Gaussian noise

model. Namely, the input image can be decomposed as I =
Iclean+ Inoise where Iclean is a noise free image, with step

edges of constant contrast, and Inoise(x, y)
i.i.d.∼ N(0, σ2).

An edge is a non self-intersecting curve γ, with step dis-

continuity in the pixel intensities of the unobserved Iclean.

Its SNR is defined as the absolute difference in image in-

tensities across the step edge, divided by the noise level. To

each candidate curve γ of total length L, passing through a

set of pixels P , we associate the following response vector

φ(γ) = [R,L,C, P ]. (1)

The response value R, determined by the matched filter cor-

responding to the curve γ, is the difference between the

sums of intensities on the two sides of the curve. The

variable C = R/m(L) is the average contrast along the

curve, where m(L) is the total number of pixels of the

matched filter of length L. Let γ1 and γ2 be two curves

with a common endpoint, and with corresponding vectors

φ(γi) = [Ri, Li, Ci, Pi], i = 1, 2. The response vector of

their concatenation is

φ(γ1+γ2) = [R1+R2, L1+L2,
R1 +R2

m(L1) +m(L2)
, P1∪P2].

(2)

To detect statistically significant curved edges in the im-

age I , we first construct its beam-curve binary tree and its

corresponding data structure, denoted BC. Geometrically,

each node of the tree corresponds to a tile in the image (a re-

gion of a prescribed shape). A tile V of area A, is split into

two sub-tiles V1, V2 of roughly equal area by an interface (a

straight line in our implementation) whose length is propor-

tional to
√
A. The root node, at level j = 0 represents the

full image, whereas at each finer level j there are 2j tiles.

The tree is constructed bottom-up, starting from a fine level

jb, whose tiles all have area approximately nmin × nmin,

where nmin (typically a few pixels) is a user chosen param-

eter.

Within each tile V , for every pair of pixels p1 and p2 on

its boundary ∂V , the beam curve data structure BC stores

a response vector φ(γ). Postponing exact definitions to

Sec. 5, this response vector corresponds to a single curve γ
between p1 and p2, which is most likely to be an edge. See

Alg. 1 for a pseudo-code of the tree construction, and Fig. 3

for its implementation based on a rectangular tile partition.

3.2. The Edge Detection Algorithm

As described in Alg. 1, the matched filter responses of

the various curves are calculated in a bottom-up fashion,

from the leaves of the tree to its root. For each leaf tile

V at the bottom level jb, we set the response of each pair

of boundary pixels p1, p2 ∈ ∂V to be the matched filter

response of the straight line segment that connects them.

See Alg. 2 for a pseudo-code of the bottom level processing.

Next, given the response vectors at level j + 1 we com-

pute responses at the next coarser level j. We do this by con-

catenating curves from sibling tiles as follows. Let V1, V2

be sibling tiles at level j + 1, with a parent tile V at level

j. We consider all pairs of pixels such that p1 ∈ ∂V1 ∩ ∂V
and p2 ∈ ∂V2 ∩ ∂V . Now, for each such pair of pixels

(p1, p2), in the stringent variant of our algorithm, we con-

sider all pixels in the joint interface V12 = ∂V1 ∩ ∂V2. For

each pixel p3 ∈ V12 we compute the response of the curve

obtained by concatenating the two curves from p1 to p3 and

p3 to p2. Among all of these concatenated curves, we store

the one with highest response score (defined explicitly in

Eq. (12) below). See Alg. 3 for pseudo-code of the coarser

level construction.

The final output of our algorithm is a soft edge map im-

age E. A value Eij = 0 means that there is no detected

edge passing through pixel (i, j), whereas the higher the

value of Eij , the stronger is the statistical evidence that an

edge passes there. This edge map E is constructed as fol-

lows: We initially set all pixels of E to zero. For every

response vector φ(γ), as detailed in Sec. 5, we assign a sig-

nificance score that depends on its mean contrast C and its

length L. A positive score indicates that the curve marks a

statistically significant edge. Then, we sort all the curves in

the tree whose score is positive from highest score to low-

est. For each curve γ in this sorted list, for each pixel p ∈ P
we set E(p) to hold the score of γ. To deal with overlapping

curves with positive scores, we apply the following simple

non-maximal suppression procedure: First, if at some pixel

p, the current value E(p) is already positive, we do not de-

crease it; and, secondly, if most of the pixels in P were

already marked by previous curves (of higher scores), we

discard the current curve γ and do not add its pixels to E.

In principle, the generic algorithm above can be imple-

mented with any binary partition of the image. In Sec. 4 we

make a detailed complexity analysis, under the assumption

that the children tiles are roughly half the area of their par-

ent tile and the length of their interface is roughly the square

root of their area. We prove that under these conditions, the

3215



algorithm complexity is O(N1.5).

Algorithm 1 BeamCurveTree(V )

Require: Tile V whose maximal side length is n.

if n ≤ nmin then

BC ← BottomLevel(V )
else

V1, V2 ← SubT iles(V ) { The tile is split into two

sub-tiles of equal area}

BC1 ← BeamCurveTree(V1)
BC2 ← BeamCurveTree(V2)
BC ← CoarserLevel(V, V1, V2, BC1, BC2)

end if

return BC

Algorithm 2 BottomLevel(V )

Require: Small tile V .

BC ← EmptySet
for ∀p1, p2 ∈ ∂V do

γ ← straight line from p1 to p2
BC.add(φ(γ))

end for

return BC

Algorithm 3 CoarserLevel(V, V1, V2, BC1, BC2)

Require: V is an image tile, V1 and V2 are its sub-tiles.

Require: BC1 is a set of the responses of sub-tile V1.

Require: BC2 is a set of the responses of sub-tile V2.

BC ← BC1 ∪BC2

if BasicMode then

InterfaceSet← ∂V1 ∩ ∂V2

else if OptimizedMode then

InterfaceSet← BestP ixels(∂V1 ∩ ∂V2)
end if

for ∀p1, p2 : p1 ∈ ∂V ∩ ∂V1, p2 ∈ ∂V ∩ ∂V2 do

AllResponses← EmptySet
for ∀p3 ∈ InterfaceSet do

γ1 ← curve from p1 to p3 in set BC1

γ2 ← curve from p3 to p2 in set BC2

φ(γ)← concatenate(φ(γ1), φ(γ2))
AllResponses.add(φ(γ))

end for

BC.add(AllResponses.bestResponse())
end for

return BC

Rectangular partition. In this partition, we split the

square image into two rectangles of equal size. We next split

each rectangle into two squares and continue recursively un-

til squares of size nmin × nmin are obtained. Specifically in

our implementation, we used nmin = 5. We call the ob-

Figure 3. Left: The 3 topmost levels of a RPT. Right: The n × n
image at level j = 0 is partitioned into two rectangles of size

n × n/2 at level j = 1. Each rectangle is then partitioned into

two n/2 × n/2 squares at level j = 2. A curve connecting two

boundary pixels p1, p2 of level j = 0 is a concatenation of up to 2

curves of level j = 1, and up to 4 curves of level j = 2.

Figure 4. Triangle-Partition-Tree, an alternative implementation of

the beam-curve binary-tree. Left: The 4 topmost levels of the TPT.

Right: The partitioning embedded in the 2D image grid, every

triangle is divided into two sub-triangles.

tained data structure Rectangle-Partition-Tree (RPT). See

Fig. 3 for an illustration of the RPT levels.

Triangular Partition. A second possible beam curve

binary tree, which we denote as the Triangle-Partition-Tree
(TPT), is based on triangular tiles, see Fig. 4. Here, at the

topmost level we split the image along its diagonal into two

triangles. Then, at any subsequent level we split each tri-

angle into two sub-triangles recursively. For a square im-

age, the triangles obtained are all right angled isosceles. It

can be shown that the TPT-based edge detection algorithm

is slightly faster than the RPT-based one. Specifically, for

a square image of N pixels, the TPT algorithm requires

≈ 14N1.5 operations (derivation omitted due page limit re-

strictions). In contrast, as we analyze in detail in Sec. 4

below, the RPT construction requires ≈ 18N1.5 operations.

In addition, the set of potential curves scanned by both par-

titions is of comparable size. Hence, both partitions yield a

similar edge detection performance.

3.3. An Optimized Version

A run-time complexity of O(N1.5) operations may still

be too slow when processing large images. Hence, it

is of interest to develop even faster algorithms. Below

we introduce an efficient variant of our algorithm with an

O(N logN) complexity, at a statistical price of slightly

worse detection quality.

4216



Let V be a tile at level j with children tiles V1, V2 and

let p1, p2 ∈ ∂V . In this variant, the algorithm still seeks

to compute the curve with best response between p1, p2.

However, instead of scanning all pixels in the joint inter-

face V12 = ∂V1∩∂V2, it only considers a subset of k pixels

for some fixed constant k. To select this subset, for each

pixel p3 ∈ V12 we look at the curve with highest response,

that starts at either ∂V1 or ∂V2 and ends at p3, as previously

computed at level j+1. We then keep only the k pixels with

highest responses. As we prove in Sec. 4, the overall num-

ber of operations of this variant is significantly smaller. Our

experiments in Sec. 6 indicate that in practice this results in

a negligible decrease in edge detection quality.

4. Complexity Analysis

In this section we study the computational complexity of

the beam-curve algorithm of Sec. 3.2. We begin with an

analysis of the general scheme. Denote by t(A) the number

of operations performed by our algorithm on a tile V of

area A. The step of populating the responses of V involves

computing responses for every triplet of pixels, p1 ∈ ∂V1,

p2 ∈ ∂V2 and p3 ∈ ∂V1∩∂V2 where V1 and V2 the children

tiles of V . The length of each of these three boundaries is

O(
√
A), and so the complexity of this step is proportional

to A1.5. The operation is then repeated for the sub-tiles V1

and V2 whose areas are ≈ A/2. Therefore, t(A) satisfies

the following recursion,

t(A) = 2t(A/2) +O(A1.5). (3)

The total complexity t(A) can be determined using the mas-

ter theorem [8], which considers recursions of the form

t(n) = at(n/b) + f(n). (4)

The asymptotic behavior of t(n) is obtained by comparing

f(n) to nlogb a±ǫ. Specifically, if f(n) = O(nlogb a−ǫ)
for some constant ǫ > 0 then t(n) = Θ(nlogb a), while

if f(n) = Ω(nlogb a+ǫ) for some constant ǫ > 0 and in

addition if af(n/b) ≤ cf(n) for some constant c < 1
then t(n) = Θ(f(n)). In (3), a = b = 2 and A1.5 =
Ω(Alog

2
2+0.5). In addition, 2f(A/2) = (1/

√
2)f(A), im-

plying that t(A) = Θ(f(A)) = Θ(A1.5). Finally, as the

area of the root tile equals the total number of image pix-

els N , the overall complexity of the beam-curve binary tree

algorithm is O(N1.5) operations.

RPT Space and Time Complexity. Next, for the case

of a rectangular partition we now bound the multiplicative

constant hidden in the above O notation, and compute its

required memory. Recall that in the RPT, the root level j =
0 represents the original n×n image, whereas the next level,

j = 1, contains two equal rectangles of size n × n/2. In

general, every even level j includes squares of size n/2j/2×

n/2j/2 pixels, while every odd level j includes rectangles

of size n/2(j−1)/2 × n/2(j+1)/2.

We next derive the number of stored responses per level.

At every tile of even level j, we store the edge responses of

curves that pass from one side of a tile to a different side.

The number of stored responses thus equals the product of

4 choose 2 (pairs of rectangle sides) times the tile area,

(

4

2

)

· n

2
j

2

· n

2
j

2

=
6N

2j
. (5)

Consequently, multiplying Eq. (5) by the number of tiles,

gives that the total number of stored curves at level j is

6N

2j
· 2j = 6N. (6)

At odd levels, it can be shown that the above equations hold

with a constant 6.5 instead of 6. Finally, as the number

of levels is bounded by logN and the storage per curve is

constant, the total required space is O(N logN).

Stringent Algorithm Complexity. First, recall that at

the bottom level, for every leaf we scan all the straight lines

that begin on one side of the tile and end on another side.

Since the number of operations required to compute each

such response is bounded by a constant, the total number of

operations at this level is O(N).
Next, at every coarser level j, we build each curve by

concatenating two shorter curves of level j + 1, that share

a common endpoint at the joint interface. The work done at

level j is thus bounded by the number of calculated curves

times the length of the joint interface. Since the former is

6N , the overall number of operations in an even level is

6N × n/2j/2 = 6N1.5/2j/2, (7)

while the number of operations in an odd level is

6N × n/2(j+1)/2 = 6N1.5/2(j+1)/2. (8)

Denote by C(N) the time complexity of the algorithm that

considers all the possible points on the interface. By sum-

ming these over all scales we get the following,

C(N) ≈ 6N1.5





jb
∑

j even

2−j/2 +

jb
∑

j odd

2−(j+1)/2



 . (9)

Consequently,

C(N) ≤ 6N1.5

[

∞
∑

l=0

2−l +

∞
∑

l=1

2−l

]

= 18N1.5. (10)

Optimized Algorithm Complexity. As described in

Sec. 3.3, the optimized variant scans, for each of the 6N
pairs of start and end points, only the best k pixels in the

5217



joint interface. Overall, it goes over 6Nk curves at each

level j. Additional work is required to select the best k pix-

els. Since the number of tiles equals 2j and the interface

length is ≈ n/2j/2, the number of operations of this step

is bounded by log k · 2j · n/2j/2 < N for every level j.

To conclude, the total number of operations at each level is

no more than (6k + 1)N. Thus, the overall complexity is

bounded by (6k+1)N logN , which leads to a significantly

faster runtime.

5. Detection Threshold and Search Space Size

As described in Sec. 3, our method scans a huge set of

candidate curves. For suitable pairs of start and end pixels,

the algorithm stores in the data structure BC, the curved

edge with highest edge score, as defined by Eq. (12) be-

low. Clearly, for most images, the vast majority of these

responses do not trace actual image edges and should be

discarded. This task requires the determination of a suitable

threshold, possibly dependent on edge length, such that only

edge responses above it are retained.

Previous work [1] introduced an approximate theoreti-

cal formula for this threshold, designed to control the av-

erage number of false positive detections. The deriva-

tion of the threshold is related to the a-contrario approach,

see, e.g., [13]. To this end, consider a pure noise image

I = Inoise, where Inoise(x, y) ∼ N(0, σ2). By definition,

this image contains no real edges, and so, with high prob-

ability, all of its edge responses should be discarded. Sup-

pose that there are KL distinct candidate edges of length L.
Then, the corresponding threshold, T (L,KL), is approxi-

mately the maximal edge contrast expected in Inoise among

KL statistically independent curves of length L. Alpert et

al. [1] showed that

T (L,KL) ≈ σ

√

2 lnKL

wL
, (11)

where w is the width of the matched filter. Thus, to each

curve of length L, we assign an edge score ϕ, defined as the

difference between its mean contrast and the threshold,

ϕ(γ) = C(γ)− T (L,KL). (12)

A positive score indicates that the candidate curve traces

an edge. Moreover, higher scores represent stronger confi-

dence for this indication.

To compute the edge score function of Eq. (12), we thus

need to know, for each curve length L the size of the cor-

responding search space size, KL. As shown below in

Eq. (20), for the RPT construction, this quantity is approxi-

mately given by KL ≈ 6N × 2βL for a suitable constant β.

Inserting this expression into Eq. (11) gives

T (L) = σ

√

2 ln(6N × 2βL)

wL
. (13)

Figure 5. Contrast threshold as a function of curve length. The

dashed theoretical curve, based on (13), is designed to have few

false positive detections. The empirical threshold is produced by

applying our algorithm on over 100 pure noise images, and storing

the median of the maximal response for each curve length.

Minimal Detectable Contrast. An interesting question,

already raised by [1], is how faint can an edge be and still be

detected. In our case, note that as N and L tend to infinity,

the threshold in Eq. (13) converges to a finite limit,

T∞ = Ω(
σ√
w
). (14)

Namely, due to the exponential size of the search space,

our threshold is bounded from below by a positive constant.

Hence, our ability to detect faint edges of unknown shape

and location in low SNR is limited. Fig. 5 compares the

theoretical threshold of Eq. (13) to empirical results. The

latter was computed by running our algorithm on over 100

pure noise images and storing for each curve length the me-

dian of the 100 maximal responses obtained. It can be seen

that both curves are close to each other, and that the graphs

converge to ≈ 1/2. This value is the asymptotic bound T∞

for the selected parameters in this simulation: width w = 4,

image size N = 1292, noise level σ = 1 and β = 0.65.

5.1. Search Space Size

We now compute the size of the search space KL of can-

didate curves of length L in the RPT. This quantity directly

affects the contrast threshold (11).

We first calculate the search space size at level j of the

RPT, and then show its connection to KL. Denote by S(j)
the upper bound of the total number of candidate curves at

level j, and denote by S′(j) the same number, but for given

fixed start and end points. Since by Eq. (6), the total number

of stored curves at any level is approximately 6N , then

S(j) = 6N × S′(j). (15)

Next, to compute S′(j), recall that in the RPT, we split a

tile V of level j into two sub-tiles V1, V2 of level j + 1, by

a joint interface ∂V1 ∩ ∂V2, whose length is ≈ n/2j/2. For

fixed endpoints p1, p2 ∈ ∂V , the quantity S′(j) satisfies the

following recursive formula

S′(j) = S′(j + 1)× S′(j + 1)× n/2j/2. (16)

In order to apply the master theorem [8], we take logarithm

6218



on both sides

logS′(j) = 2 logS′(j + 1) +
1

2
log(N/2j). (17)

Substitute A = N/2j , which is exactly the number of pixels

in a tile at level j, and define S̃(A) = S′(j). Then,

log S̃(A) = 2 log S̃(A/2) +
1

2
logA. (18)

According to (4), denote t(A) = log S̃(A) and f(A) =
0.5 log(A). Therefore, in this case a = b = 2 and

f(A) = O(Alog
2
2−0.5), and using the master theorem

t(A) = log S̃(A) = Θ(A). Subsequently, S′(j) =

2O(N/2j) and combining this with Eq. (15),

S(j) = 6N × 2O(N/2j). (19)

To derive an expression for KL, it can be shown, that the

average length over all candidate curves in a given tile at

level j is proportional to the tile’s area: L = O(N/2j).
Therefore we can approximate KL, by

KL ≈ 6N × 2βL (20)

for some constant β. As mentioned above, we showed by

empirical fitting that β = 0.65.

We remark that although the search space is exponen-

tial in L, there are nonetheless various curves that cannot

be found by the RPT. Examples include closed curves like

a circle, self-intersecting curves like a cross, and also any

curve that begins and ends in the same side of a tile, like a

narrow ’V’ shape. Such geometric objects are detected by

our algorithm as union of shorter valid curved edges.

6. Experiments

We tested our algorithm both on simulated artificial im-

ages as well as on challenging real images from several ap-

plication domains. Our code is implemented in Matlab, yet

we developed another preliminary implementation in C++.

Furthermore, as our tree construction can be easily paral-

lelized, our code utilizes multi-threading. We ran our ex-

periments on a single 8-core Intel i7, 16 GB RAM machine.

For an input image of size 129× 129 pixels the run time in

C++ is≈ 0.6 second for the O(N logN) version and≈ 0.9
seconds for the O(N1.5), both including the post processing

step of computing the final edge map image E. For an input

image of 257×257 pixels the corresponding C++ run-times

are ≈ 5 and ≈ 8 seconds respectively. More CPU cores can

reduce these run times significantly. The runtime graphs are

shown in Fig. 6. Note, that our implementation outputs the

edge image along with a list of all the curved edges that

passed the statistical threshold. We compared our solution

to the classical Canny [7] algorithm, and to several state of

Figure 6. Empirical run-time of our implementation compared to

the theoretical run-time for both O(N logN) and O(N1.5) algo-

rithms.

Figure 7. Simulation results. Left: A binary pattern used in simu-

lation experiments. Right: F-measures obtained with various edge

detection algorithms as a function of SNR.

the art algorithms for boundary detection in natural images,

including Multiscale-Combinatorial-Grouping (MCG) [4],

Crisp Pointwise-Mutual-Information (PMI) [15] and Dollar

and Zitnick’s Structured-Edges (SE) [10].

Simulations. For the simulations, we used a binary pat-

tern of size 129×129 pixels that contains a narrow triangle,

straight lines, concentric circles and an ’S’ shape, see Fig. 7.

We then scaled the intensities and added additive Gaussian

noise with 0.1 standard deviation to produce images with

SNRs between 0 and 2 in intervals of 0.2. In addition, we

added very weak salt and pepper noise that affects only 1%

of the pixels in the images. We used the result of Canny

on the clean binary pattern as the ground truth. We quanti-

tatively compared the various edge detection algorithms by

computing their Precision (P ), Recall (R), and F-scores,

using the popular F-measure for image segmentation de-

scribed in [17].

Algorithm \ SNR Range 0.0-0.8 1.0-1.6 1.8-2.0

Our O(N1.5) detector 0.14 0.73 0.85

Our O(N logN) detector 0.12 0.7 0.83

Canny 0.11 0.57 0.71

BM3D+Canny 0.04 0.57 0.75

SE 0.03 0.09 0.14

MCG 0.02 0.04 0.23

PMI 0.02 0.06 0.09

Table 1. Average F-measures obtained in simulations computed

over images in three SNR ranges.

Table 1 shows the average F-scores obtained for each al-

gorithm. A graph of the F-scores as a function of SNR is

shown in Fig. 7. All methods are tuned to detect no edges

when the image includes pure noise (SNR=0). For that sake,

7219



Figure 8. Result of applying various edge detection algorithms to

the noisy simulation image, at SNR 2 (top), and SNR 3 (bottom).

From left to right: Input image, our O(N1.5), Canny and PMI.

Figure 9. Simulation results with the noisy BSDS-500 images.

Left: Precision vs. Recall (PR) of contour detection by various al-

gorithms. Right: Performance table. ODS refers to the F-Measure

at the optimal threshold across the entire dataset, OIS to the best

per image F-measure, and AP to the area under the PR curve.

we modified the Canny’s thresholds to be [low, high] =
[0.28, 0.7]. For the other methods, we used a fixed thresh-

old on the soft edge map. As expected, algorithms geared

to detecting boundaries in natural images do not perform

well in such noisy conditions. Canny manages to obtain

fairly high F-scores. Still, our O(N1.5) algorithm achieves

the best F-scores at all SNR levels, while our O(N logN)
variant achieves only slightly lower scores. These results

suggest that high quality detections can be obtained by our

faster method, in spite of the significant reduction of com-

plexity. Fig. 8 shows representative results of Canny, PMI

and our method at SNR=2 and 3.

We also made an extensive evaluation of our algorithm

on the dataset of 63 artificial images containing various

straight and curved edges, as studied by [1]. On this dataset

our O(N1.5) algorithm achieved an average F-score of ≈
0.79, compared to ≈ 0.74 achieved by [1]. This demon-

strates that our algorithm is not only significantly faster, but

also at least as accurate as [1].

We next applied our O(N1.5) to the natural images of the

BSDS-500 [17] to which we added Gaussian noise with σ =
0.1. The performance of the various methods is summarized

in Fig. 9. Our results are superior to those of PMI [15] and

SE [10] and are comparable to MCG [4]. We emphasize

that while our method is better suited to deal with noise it

is currently not designed to handle natural textures that are

ubiquitous in these images.

Real Images. We further tested our algorithms on vari-

ous real images taken under relatively poor conditions, see

results in Figure 10. It can be seen that our method manages

Figure 10. Real images: Each row shows the original image and

a comparison of our binary result, with those obtained by Canny

(middle) and by PMI (right).

to accurately detect details in these challenging images be-

yond those detected by existing approaches. Specifically,

our method depicts nearly all the growth rings of the tree,

the branchings of the nerve cell, and the blood vessels in the

retina. Accurate detection of such structures can for exam-

ple facilitate high throughput biomedical research.

7. Conclusion

We presented efficient algorithms for detecting faint

curved edges in noisy images that achieve state-of-the-art

results at low SNRs. Our novel approach detects curved

edges in only O(N logN) operations. The algorithm is

adaptive to various parameters such as edge length, shape,

and SNR and can be applied with various filters. Thus it

may be applicable in a variety of imaging domains.

8220



References

[1] S. Alpert, M. Galun, B. Nadler, and R. Basri. Detecting faint

curved edges in noisy images. In Proceedings of the 11th Eu-
ropean conference on Computer vision: Part IV, ECCV’10,

pages 750–763, Berlin, Heidelberg, 2010. Springer-Verlag.

2, 6, 8

[2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. pami,
33(5):896–916, 2011. 2

[3] P. Arbelaez, M. Maire, C. C. Fowlkes, and J. Malik. From

contours to regions: An empirical evaluation. In CVPR,

2009. 2

[4] P. Arbeláez and J. Pont-tuset. Multiscale combinatorial

grouping. In CVPR, 2014. 2, 7, 8

[5] H. Bi, S. Cook, H. Yu, M. Benfield, and E. Houde. Deploy-

ment of an imaging system to investigate fine-scale spatial

distribution of early life stages of the ctenophore mnemiop-

sis leidyi in chesapeake bay. Journal of Plankton Research,

35:270–280, 2013. 1

[6] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm

for image denoising. CVPR ’05, pages 60–65, 2005. 2

[7] J. Canny. A computational approach to edge detection. IEEE
Trans. Pattern Anal. Mach. Intell., 8(6):679–698, June 1986.

1, 2, 7

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to algorithms. MIT press Cambridge, 2001. 5,

6

[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Im-

age denoising with block-matching and 3d filtering. In Elec-
tronic ImagingŠ06, 2006. 1, 2

[10] P. Dollár and C. L. Zitnick. Structured forests for fast edge

detection. In ICCV, 2013. 2, 7, 8

[11] D. L. Donoho and X. Huo. Beamlets and multiscale image

analysis. In in Multiscale and Multiresolution Methods, vol-

ume 20, pages 149–196, 2001. 2

[12] M. Galun, R. Basri, and A. Brandt. Multiscale edge detection

and fiber enhancement using differences of oriented means.

In Computer Vision, 2007. ICCV 2007. IEEE 11th Interna-
tional Conference on, pages 1–8, 2007. 2

[13] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and

G. Randall. Lsd: A line segment detector. Image Processing
On Line, 2:35–55, 2012. 6

[14] I. Horev, B. Nadler, E. Arias-Castro, M. Galun, and R. Basri.

Detection of long edges on a computational budget: A

sublinear approach. SIAM Journal on Imaging Sciences,

8(1):458–483, 2015. 2

[15] P. Isola, D. Zoran, D. Krishnan, and E. H. Adelson. Crisp

boundary detection using pointwise mutual information. In

ECCV, 2014. 2, 7, 8

[16] D. Marr and E. Hildreth. Theory of Edge Detection. Pro-
ceedings of the Royal Society of London. Series B, Biological
Sciences, 207(1167):187–217, 1980. 2

[17] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to de-

tect natural image boundaries using local brightness, color,

and texture cues. IEEE Trans. Pattern Anal. Mach. Intell.,
26(5):530–549, May 2004. 2, 7, 8

[18] P. Perona and J. Malik. Scale-space and edge detection using

anisotropic diffusion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:629–639, 1990. 2

[19] I. Sobel. Camera models and machine perception. In PhD
thesis, Electrical Engineering Department, Stanford Univer-
sity., 1970. 2

[20] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In Computer Vision, 1998. Sixth International
Conference on, pages 839–846, 1998. 2

[21] P. S. P. Wang and J. Yang. A review of wavelet-based edge

detection methods. IJPRAI, 26(7), 2012. 2

9221


