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Abstract

We tackle image question answering (ImageQA) prob-

lem by learning a convolutional neural network (CNN) with

a dynamic parameter layer whose weights are determined

adaptively based on questions. For the adaptive parameter

prediction, we employ a separate parameter prediction net-

work, which consists of gated recurrent unit (GRU) taking

a question as its input and a fully-connected layer gener-

ating a set of candidate weights as its output. However, it

is challenging to construct a parameter prediction network

for a large number of parameters in the fully-connected dy-

namic parameter layer of the CNN. We reduce the complex-

ity of this problem by incorporating a hashing technique,

where the candidate weights given by the parameter pre-

diction network are selected using a predefined hash func-

tion to determine individual weights in the dynamic param-

eter layer. The proposed network—joint network with the

CNN for ImageQA and the parameter prediction network—

is trained end-to-end through back-propagation, where its

weights are initialized using a pre-trained CNN and GRU.

The proposed algorithm illustrates the state-of-the-art per-

formance on all available public ImageQA benchmarks.

1. Introduction

One of the ultimate goals in computer vision is holistic

scene understanding [30], which requires a system to cap-

ture various kinds of information such as objects, actions,

events, scene, atmosphere, and their relations in many dif-

ferent levels of semantics. Although significant progress

on various recognition tasks [5, 8, 21, 24, 26, 27, 31] has

been made in recent years, these works focus only on solv-

ing relatively simple recognition problems in controlled set-

tings, where each dataset consists of concepts with similar

level of understanding (e.g. object, scene, bird species, face

identity, action, texture etc.). There have been less efforts

made on solving various recognition problems simultane-

ously, which is more complex and realistic, even though this

is a crucial step toward holistic scene understanding.

Figure 1. Sample images and questions in VQA dataset [1]. Each

question requires different type and/or level of understanding of

the corresponding input image to find correct answers.

Image question answering (ImageQA) [1, 17, 23] aims to

solve the holistic scene understanding problem by propos-

ing a task unifying various recognition problems. ImageQA

is a task automatically answering the questions about an in-

put image as illustrated in Figure 1. The critical challenge

of this problem is that different questions require different

types and levels of understanding of an image to find correct

answers. For example, to answer the question like “how is

the weather?” we need to perform classification on multiple

choices related to weather, while we should decide between

yes and no for the question like “is this picture taken dur-

ing the day?” For this reason, not only the performance on

a single recognition task but also the capability to select a

proper task is important to solve ImageQA problem.

ImageQA problem has a short history in computer vi-

sion and machine learning community, but there already ex-

ist several approaches [10, 16, 17, 18, 23]. Among these

methods, simple deep learning based approaches that per-

form classification on a combination of features extracted

from image and question currently demonstrate the state-of-
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the-art accuracy on public benchmarks [23, 16]; these ap-

proaches extract image features using a convolutional neu-

ral network (CNN), and use CNN or bag-of-words to obtain

feature descriptors from question. They can be interpreted

as a method that the answer is given by the co-occurrence

of a particular combination of features extracted from an

image and a question.

Contrary to the existing approaches, we define a differ-

ent recognition task depending on a question. To realize

this idea, we propose a deep CNN with a dynamic param-

eter layer whose weights are determined adaptively based

on questions. We claim that a single deep CNN architecture

can take care of various tasks by allowing adaptive weight

assignment in the dynamic parameter layer. For the adap-

tive parameter prediction, we employ a parameter predic-

tion network, which consists of gated recurrent units (GRU)

taking a question as its input and a fully-connected layer

generating a set of candidate weights for the dynamic pa-

rameter layer. The entire network including the CNN for

ImageQA and the parameter prediction network is trained

end-to-end through back-propagation, where its weights are

initialized using pre-trained CNN and GRU. Our main con-

tributions in this work are summarized below:

• We successfully adopt a deep CNN with a dynamic pa-

rameter layer for ImageQA, which is a fully-connected

layer whose parameters are determined dynamically

based on a given question.

• To predict a large number of weights in the dynamic

parameter layer, we apply hashing trick [3], which re-

duces the number of parameters significantly with little

impact on network capacity.

• We fine-tune GRU pre-trained on a large-scale text cor-

pus [14] to improve generalization performance of our

network. Pre-training GRU on a large corpus is natural

way to deal with a small number of training data, but

no one has attempted it yet to our knowledge.

• This is the first work to report the results on all cur-

rently available benchmark datasets such as DAQUAR,

COCO-QA and VQA. Our algorithm achieves the

state-of-the-art performance on all the three datasets.

The rest of this paper is organized as follows. We first

review related work in Section 2. Section 3 and 4 describe

the overview of our algorithm and the architecture of our

network, respectively. We discuss the detailed procedure

to train the proposed network in Section 5. Experimental

results are demonstrated in Section 6.

2. Related Work

There are several recent papers to address ImageQA [1,

10, 16, 17, 18, 23]; the most of them are based on deep

learning except [17]. Malinowski and Fritz [17] propose

a Bayesian framework, which exploits recent advances in

computer vision and natural language processing. Specif-

ically, it employs semantic image segmentation and sym-

bolic question reasoning to solve ImageQA problem. How-

ever, this method depends on a pre-defined set of predicates,

which makes it difficult to represent complex models re-

quired to understand input images.

Deep learning based approaches demonstrate competi-

tive performances in ImageQA [18, 10, 23, 16, 1]. Most

approaches based on deep learning commonly use CNNs to

extract features from image while they use different strate-

gies to handle question sentences. Some algorithms em-

ploy embedding of joint features based on image and ques-

tion [1, 10, 18]. However, learning a softmax classifier on

the simple joint features—concatenation of CNN-based im-

age features and continuous bag-of-words representation of

a question—performs better than LSTM-based embedding

on COCO-QA [23] dataset. Another line of research is to

utilize CNNs for feature extraction from both image and

question and combine the two features [16]; this approach

demonstrates impressive performance on DAQUAR [17]

dataset by allowing to fine-tune the whole parameters.

The prediction of the weight parameters in deep neural

networks has been explored in [2] in the context of zero-

shot learning. To perform classification of unseen classes,

it trains a multi-layer perceptron to predict a binary clas-

sifier for class-specific description in text. However, this

method is not directly applicable to ImageQA since finding

solutions based on the combination of question and answer

is a more complex problem than the one discussed in [2],

and ImageQA involves a significantly larger set of candidate

answers, which requires much more parameters than the bi-

nary classification case. Recently, a parameter reduction

technique based on a hashing trick is proposed by Chen et

al. [3] to fit a large neural network in a limited memory

budget. However, applying this technique to the dynamic

prediction of parameters in deep neural networks is not at-

tempted yet to our knowledge.

3. Algorithm Overview

We briefly describe the motivation and formulation of

our approach in this section.

3.1. Motivation

Although ImageQA requires different types and levels of

image understanding, existing approaches [1, 10, 18] pose

the problem as a flat classification task. However, we be-

lieve that it is difficult to solve ImageQA using a single deep

neural network with fixed parameters. In many CNN-based

recognition problems, it is well-known to fine-tune a few

layers for the adaptation to new tasks. In addition, some

networks are designed to solve two or more tasks jointly
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Figure 2. Overall architecture of the proposed Dynamic Parameter Prediction network (DPPnet), which is composed of the classification

network and the parameter prediction network. The weights in the dynamic parameter layer are mapped by a hashing trick from the

candidate weights obtained from the parameter prediction network.

by constructing multiple branches connected to a common

CNN architecture. In this work, we hope to solve the het-

erogeneous recognition tasks using a single CNN by adapt-

ing the weights in the dynamic parameter layer. Since the

task is defined by the question in ImageQA, the weights

in the layer are determined depending on the question sen-

tence. In addition, a hashing trick is employed to predict

a large number of weights in the dynamic parameter layer

and avoid parameter explosion.

3.2. Problem Formulation

ImageQA systems predict the best answer â given an im-

age I and a question q. Conventional approaches [16, 23]

typically construct a joint feature vector based on two inputs

I and q and solve a classification problem for ImageQA us-

ing the following equation:

â = argmax
a∈Ω

p(a|I, q;θ) (1)

where Ω is a set of all possible answers and θ is a vector

for the parameters in the network. On the contrary, we use

the question to predict weights in the classifier and solve the

problem. We find the solution by

â = argmax
a∈Ω

p(a|I;θs,θd(q)) (2)

where θs and θd(q) denote static and dynamic parameters,

respectively. Note that the values of θd(q) are determined

by the question q.

4. Network Architecture

Figure 2 illustrates the overall architecture of the pro-

posed algorithm. The network is composed of two sub-

networks: classification network and parameter prediction

network. The classification network is a CNN. One of the

fully-connected layers in the CNN is the dynamic parame-

ter layer, and the weights in the layer are determined adap-

tively by the parameter prediction network. The parame-

ter prediction network has GRU cells and a fully-connected

layer. It takes a question as its input, and generates a real-

valued vector, which corresponds to candidate weights for

the dynamic parameter layer in the classification network.

Given an image and a question, our algorithm estimates

the weights in the dynamic parameter layer through hash-

ing with the candidate weights obtained from the parameter

prediction network. Then, it feeds the input image to the

classification network to obtain the final answer. More de-

tails of the proposed network are discussed in the following

subsections.

4.1. Classification Network

The classification network is constructed based on VGG

16-layer net [24], which is pre-trained on ImageNet [6]. We

remove the last layer in the network and attach three fully-

connected layers. The second last fully-connected layer is

the dynamic parameter layer whose weights are determined

by the parameter prediction network, and the last fully-

connected layer is the classification layer whose output di-

mensionality is equal to the number of possible answers.

The probability for each answer is computed by applying a

softmax function to the output vector of the final layer.

We put the dynamic parameter layer in the second last

fully-connected layer instead of the classification layer be-

cause it involves the smallest number of parameters. As the

number of parameters in the classification layer increases in

proportion to the number of possible answers, predicting the

weights for the classification layer may not be a good op-

tion to general ImageQA problems in terms of scalability.

Our choice for the dynamic parameter layer can be inter-

preted as follows. By fixing the classification layer while
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Figure 3. Comparison of GRU and LSTM. Contrary to LSTM that

contains memory cell, GRU updates the hidden state directly.

adapting the immediately preceding layer, we obtain the

task-independent semantic embedding of all possible an-

swers and use the representation of an input embedded in

the answer space to solve an ImageQA problem. Therefore,

the relationships of the answers globally learned from all

recognition tasks can help solve new ones involving unseen

classes, especially in multiple choice questions. For exam-

ple, when not the exact ground-truth word (e.g., kitten) but

similar words (e.g., cat and kitty) are shown at training time,

the network can still predict the close answers (e.g., kit-

ten) based on the globally learned answer embedding. Even

though we could also exploit the benefit of answer embed-

ding based on the relations among answers to define a loss

function, we leave it as our future work.

4.2. Parameter Prediction Network

As mentioned earlier, our classification network has a

dynamic parameter layer. That is, for an input vector of

the dynamic parameter layer f i =
[

f i1, . . . , f
i
N

]

T

, its output

vector denoted by fo = [fo1 , . . . , f
o
M
]
T

is given by

fo = Wd(q)f
i + b (3)

where b denotes a bias and Wd(q) ∈ R
M×N denotes the

matrix constructed dynamically using the parameter predic-

tion network given the input question. In other words, the

weight matrix corresponding to the layer is parametrized by

a function of the input question q.

The parameter prediction network is composed of GRU

cells [4] followed by a fully-connected layer, which pro-

duces the candidate weights to be used for the construction

of weight matrix in the dynamic parameter layer within the

classification network. GRU, which is similar to LSTM,

is designed to model dependency in multiple time scales.

As illustrated in Figure 3, such dependency is captured by

adaptively updating its hidden states with gate units. How-

ever, contrary to LSTM, which maintains a separate mem-

ory cell explicitly, GRU directly updates its hidden states

with a reset gate and an update gate. The detailed proce-

dure of the update is described below.

Let w1, ..., wT be the words in a question q, where T

is the number of words in the question. In each time step

t, given the embedded vector xt for a word wt, the GRU

encoder updates its hidden state at time t, denoted by ht,

using the following equations:

rt = σ(Wrxt +Urht−1) (4)

zt = σ(Wzxt +Uzht−1) (5)

h̄t = tanh(Whxt +Uh(rt ⊙ ht−1)) (6)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̄t (7)

where rt and zt respectively denote the reset and update

gates at time t, and h̄t is candidate activation at time t. In

addition, ⊙ indicates element-wise multiplication operator

and σ(·) is a sigmoid function. Note that the coefficient

matrices related to GRU such as Wr, Wz , Wh, Ur, Uz ,

and Uh are learned by our training algorithm. By applying

this encoder to a question sentence through a series of GRU

cells, we obtain the final embedding vector hT ∈ R
L of the

question sentence.

Once the question embedding is obtained by GRU, the

candidate weight vector, p = [p1, . . . , pK ]
T

, is given by

applying a fully-connected layer to the embedded question

hT as

p = WphT (8)

where p ∈ R
K is the output of the parameter prediction net-

work, and Wp is the weight matrix of the fully-connected

layer in the parameter prediction network. Note that even

though we employ GRU for a parameter prediction network

since the pre-trained network for sentence embedding—

skip-thought vector model [14]—is based on GRU, any

form of neural networks, e.g., fully-connected and convo-

lutional neural network, can be used to construct the pa-

rameter prediction network.

4.3. Parameter Hashing

The weights in the dynamic parameter layers are deter-

mined based on the learned model in the parameter predic-

tion network given a question. The most straightforward

approach to obtain the weights is to generate the whole ma-

trix Wd(q) using the parameter prediction network. How-

ever, the size of the matrix is very large, and the network

may be overfitted easily given the limited number of train-

ing examples. In addition, since we need quadratically more

parameters between GRU and the fully-connected layer in

the parameter prediction network to increase the dimension-

ality of its output, it is not desirable to predict full weight

matrix using the network. Therefore, it is preferable to con-

struct Wd(q) based on a small number of candidate weights

using a hashing trick.

We employ the recently proposed random weight sharing

technique based on hashing [3] to construct the weights in

the dynamic parameter layer. Specifically, a single param-

eter in the candidate weight vector p is shared by multiple

elements of Wd(q), which is done by applying a predefined

hash function that converts the 2D location in Wd(q) to the

1D index in p. By this simple hashing trick, we can reduce
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the number of parameters in Wd(q) while maintaining the

accuracy of the network [3].

Let wdmn be the element at (m,n) in Wd(q), which cor-

responds to the weight between mth output and nth input

neuron. Denote by ψ(m,n) a hash function mapping a key

(m,n) to a natural number in {1, . . . ,K}, where K is the

dimensionality of p. The final hash function is given by

wdmn = pψ(m,n) · ξ(m,n) (9)

where ξ(m,n) : N× N → {+1,−1} is another hash func-

tion independent of ψ(m,n). This function is useful to re-

move the bias of hashed inner product [3]. In our imple-

mentation of the hash function, we adopt an open-source

implementation of xxHash1.

We believe that it is reasonable to reduce the number of

free parameters based on the hashing technique as there are

many redundant parameters in deep neural networks [7] and

the network can be parametrized using a smaller set of can-

didate weights. Instead of training a huge number of pa-

rameters without any constraint, it would be advantageous

practically to allow multiple elements in the weight matrix

to share the same value. It is also demonstrated that the

number of free parameter can be reduced substantially with

little loss of network performance [3].

5. Training Algorithm

This section discusses the error back-propagation algo-

rithm in the proposed network and introduces the tech-

niques adopted to enhance performance of the network.

5.1. Training by Error Back­Propagation

The proposed network is trained end-to-end to minimize

the error between the ground-truths and the estimated an-

swers. The error is back-propagated by chain rule through

both the classification network and the parameter prediction

network and they are jointly trained by a first-order opti-

mization method.

Let L denote the loss function. The partial derivatives of

L with respect to the kth element in the input and output of

the dynamic parameter layer are given respectively by

δik ≡
∂L

∂f ik
and δok ≡

∂L

∂fok
. (10)

The two derivatives have the following relation:

δin =

M
∑

m=1

wdmnδ
o
m (11)

Likewise, the derivative with respect to the assigned weights

in the dynamic parameter layer is given by

∂L

∂wdmn
= f inδ

o
m. (12)

1https://code.google.com/p/xxhash/

As a single output value of the parameter prediction net-

work is shared by multiple connections in the dynamic

parameter layer, the derivatives with respect to all shared

weights need to be accumulated to compute the derivative

with respect to an element in the output of the parameter

prediction network as follows:

∂L

∂pk
=

M
∑

m=1

N
∑

n=1

∂L

∂wdmn

∂wdmn
∂pk

=

M
∑

m=1

N
∑

n=1

∂L

∂wdmn
ξ(m,n)I[ψ(m,n) = k], (13)

where I[·] denotes the indicator function. The gradients of

all the preceding layers in the classification and parame-

ter prediction networks are computed by the standard back-

propagation algorithm.

5.2. Using Pre­trained GRU

Although encoders based on recurrent neural networks

(RNNs) such as LSTM [11] and GRU [4] demonstrate im-

pressive performance on sentence embedding [19, 25], their

benefits in the ImageQA task are marginal in comparison to

bag-of-words model [23]. One of the reasons for this fact

is the lack of language data in ImageQA dataset. Contrary

to the tasks that have large-scale training corpora, even the

largest ImageQA dataset contains relatively small amount

of language data; for example, [1] contains 750K questions

in total. Note that the model in [25] is trained using a corpus

with more than 12M sentences.

To deal with the deficiency of linguistic information in

ImageQA problem, we transfer the information acquired

from a large language corpus by fine-tuning the pre-trained

embedding network. We initialize the GRU with the skip-

thought vector model trained on a book-collection corpus

containing more than 74M sentences [14]. Note that the

GRU of the skip-thought vector model is trained in an un-

supervised manner by predicting the surrounding sentences

from the embedded sentences. As this task requires to un-

derstand context, the pre-trained model produces a generic

sentence embedding, which is difficult to be trained with

a limited number of training examples. By fine-tuning our

GRU initialized with a generic sentence embedding model

for ImageQA, we obtain the representations for questions

that are generalized better.

5.3. Fine­tuning CNN

It is very common to transfer CNNs for new tasks in

classification problems, but it is not trivial to fine-tune the

CNN in our problem. We observe that the gradients below

the dynamic parameter layer in the CNN are noisy since its

weights are predicted by the parameter prediction network.

Hence, a naı̈ve approach to fine-tune the CNN typically fails
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to improve performance, and we employ a slightly differ-

ent technique for CNN fine-tuning to sidestep the observed

problem. We update the parameters of the network using

new datasets except the part transferred from VGG 16-layer

net at the beginning, and start to update the weights in the

subnetwork if the validation accuracy is saturated.

5.4. Training Details

Before training, questions are converted to lower cases

and preprocessed by a simple tokenization as in [29]. We

also convert answers to lower cases and regard a whole an-

swer in a single or multiple words as a separate class.

The network is trained end-to-end by back-propagation.

Adam [13] is used for optimization with initial learning rate

0.01. We clip the gradient to 0.1 to handle the gradient ex-

plosion from the recurrent structure of GRU [22]. Training

is terminated when there is no progress on validation accu-

racy for 5 epochs.

Optimizing the dynamic parameter layer is not straight-

forward since the distribution of the outputs in the dynamic

parameter layer is likely to change significantly in each

batch. Therefore, we apply batch-normalization [12] to the

output activations of the layer to alleviate this problem. In

addition, we observe that GRU tends to converge fast and

overfit data easily if training continues without any restric-

tion. We stop fine-tuning GRU when the network start to

overfit and continue to train the other parts of the network;

this strategy improves performance in practice.

6. Experiments

We now describe the details of our implementation and

evaluate the proposed method in various aspects.

6.1. Datasets

We evaluate the proposed network on several public Im-

ageQA benchmark datasets such as DAQUAR [17], COCO-

QA [23] and VQA [1]. They collected question-answer

pairs from existing image datasets and most of the answers

are single words or short phrases.

DAQUAR is based on NYUDv2 [20] dataset, and pro-

vides two benchmarks. DAQUAR-all consists of 6,795 and

5,673 questions for training and testing respectively, and

includes 894 categories in answer. DAQUAR-reduced in-

cludes only 37 answer categories for 3,876 training and 297

testing questions. Some questions in this dataset are associ-

ated with a set of multiple answers.

The questions in COCO-QA are automatically gener-

ated from the image descriptions in MS COCO dataset [15]

using the constituency parser with simple question-answer

generation rules. The questions in this dataset are typi-

cally long and explicitly classified into 4 types depending

on the generation rules: object questions, number questions,

color questions and location questions. All answers are with

one-words and there are 78,736 questions for training and

38,948 questions for testing.

VQA [1], which is also based on MS COCO dataset [15],

contains the largest number of questions: 248,349 for train-

ing, 121,512 for validation, and 244,302 for testing, where

the testing data is split into test-dev, test-standard, test-

challenge and test-reserve. Each question is associated with

10 answers annotated by different people. About 90% of

answers have single words and 98% of answers do not ex-

ceed three words.

6.2. Evaluation Metrics

DAQUAR and COCO-QA employ both classification ac-

curacy and its relaxed version based on word similarity,

WUPS [17]. It uses thresholded Wu-Palmer similarity [28]

based on WordNet [9] taxonomy to compute the similarity

between words. For predicted answer set Ai and ground-

truth answer set T i of the ith example, WUPS is given by

WUPS =

1

N

N
∑

i=1

min

{

∏

a∈Ai

max
t∈T i

µ (a, t),
∏

t∈T i

max
a∈Ai

µ (a, t)

}

, (14)

where µ (·, ·) denotes the thresholded Wu-Palmer similarity

between prediction and ground-truth. We use two threshold

values (0.9 and 0.0) in our evaluation.

VQA dataset provides open-ended task and multiple-

choice task for evaluation. For open-ended task, the answer

can be any word or phrase while an answer should be cho-

sen out of 18 candidate answers in the multiple-choice task.

In both cases, answers are evaluated by accuracy reflecting

human consensus. For predicted answer ai and target an-

swer set T i of the ith example, the accuracy is given by

AccVQA =
1

N

N
∑

i=1

min

{
∑

t∈T i I [ai = t]

3
, 1

}

(15)

where I [·] denotes an indicator function. In other words, a

predicted answer is regarded as a correct one if at least three

annotators agree, and the score depends on the number of

agreements if the predicted answer is not correct.

6.3. Results

We test three independent datasets, VQA, COCO-QA,

and DAQUAR, and first present the results for VQA dataset

in Table 1. The proposed Dynamic Parameter Prediction

network (DPPnet) outperforms all existing methods non-

trivially. We performed controlled experiments to ana-

lyze the contribution of individual components in the pro-

posed algorithm—dynamic parameter prediction, use of

pre-trained GRU and CNN fine-tuning, and trained 3 addi-

tional models, CONCAT, RAND-GRU, and CNN-FIXED.
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Table 1. Evaluation results on VQA test-dev in terms of AccVQA

Open-Ended Multiple-Choice

All Y/N Num Others All Y/N Num Others

Question [1] 48.09 75.66 36.70 27.14 53.68 75.71 37.05 38.64

Image [1] 28.13 64.01 00.42 03.77 30.53 69.87 00.45 03.76

Q+I [1] 52.64 75.55 33.67 37.37 58.97 75.59 34.35 50.33

LSTM Q [1] 48.76 78.20 35.68 26.59 54.75 78.22 36.82 38.78

LSTM Q+I [1] 53.74 78.94 35.24 36.42 57.17 78.95 35.80 43.41

CONCAT 54.70 77.09 36.62 39.67 59.92 77.10 37.48 50.31

RAND-GRU 55.46 79.58 36.20 39.23 61.18 79.64 38.07 50.63

CNN-FIXED 56.74 80.48 37.20 40.90 61.95 80.56 38.32 51.40

DPPnet 57.22 80.71 37.24 41.69 62.48 80.79 38.94 52.16

Table 2. Evaluation results on VQA test-standard

Open-Ended Multiple-Choice

All Y/N Num Others All Y/N Num Others

Human [1] 83.30 95.77 83.39 72.67 - - - -

LSTM Q+I [1] 54.06 - - - - - - -

DPPnet 57.36 80.28 36.92 42.24 62.69 80.35 38.79 52.79

Table 3. Evaluation results on COCO-QA

Acc WUPS 0.9 WUPS 0.0

IMG+BOW [23] 55.92 66.78 88.99

2VIS+BLSTM [23] 55.09 65.34 88.64

Ensemble [23] 57.84 67.90 89.52

ConvQA [16] 54.95 65.36 88.58

DPPnet 61.19 70.84 90.61

CNN-FIXED is useful to see the impact of CNN fine-tuning

since it is identical to DPPnet except that the weights in

CNN are fixed. RAND-GRU is the model without GRU

pre-training, where the weights of GRU and word embed-

ding model are initialized randomly. It does not fine-tune

CNN either. CONCAT is the most basic model, which

predicts answers using the two fully-connected layers for

a combination of CNN and GRU features. Obviously, it

does not employ any of new components such as parameter

prediction, pre-trained GRU and CNN fine-tuning.

The results of the controlled experiment are also illus-

trated in Table 1. CONCAT already outperforms LSTM

Q+I by integrating GRU instead of LSTM [4] and batch

normalization. RAND-GRU achieves better accuracy by

employing dynamic parameter prediction additionally. It is

interesting that most of the improvement comes from yes/no

questions, which may involve various kinds of tasks since

it is easy to ask many different aspects in an input image

for binary classification. CNN-FIXED improves accuracy

further by adding GRU pre-training, and our final model

DPPnet achieves the state-of-the-art performance on VQA

dataset with large margins as illustrated in Table 1 and 2.

Table 3, 4, and 5 illustrate the results by all algorithms in-

cluding ours that have reported performance on COCO-QA,

DAQUAR-reduced, DAQUAR-all datasets. The proposed

algorithm outperforms all existing approaches consistently

in all benchmarks. In Table 4 and 5, single answer and mul-

tiple answers denote the two subsets of questions divided

by the number of ground-truth answers. Also, the numbers

Table 4. Evaluation results on DAQUAR reduced

Single answer Multiple answers

Acc 0.9 0.0 Acc 0.9 0.0

Multiworld [17] - - - 12.73 18.10 51.47

Askneuron [18] 34.68 40.76 79.54 29.27 36.50 79.47

IMG+BOW [23] 34.17 44.99 81.48 - - -

2VIS+BLSTM [23] 35.78 46.83 82.15 - - -

Ensemble [23] 36.94 48.15 82.68 - - -

ConvQA [16] 39.66 44.86 83.06 38.72 44.19 79.52

DPPnet 44.48 49.56 83.95 44.44 49.06 82.57

Table 5. Evaluation results on DAQUAR all

Single answer Multiple answers

Acc 0.9 0.0 Acc 0.9 0.0

Human [17] - - - 50.20 50.82 67.27

Multiworld [17] - - - 07.86 11.86 38.79

Askneuron [18] 19.43 25.28 62.00 17.49 23.28 57.76

ConvQA [16] 23.40 29.59 62.95 20.69 25.89 55.48

DPPnet 28.98 34.80 67.81 25.60 31.03 60.77

(0.9 and 0.0) in the second rows are WUPS thresholds.

To understand how the parameter prediction network un-

derstand questions, we present several representative ques-

tions before and after fine-tuning GRU in a descending or-

der based on their cosine similarities to the query ques-

tion in Table 6. The retrieved sentences are frequently de-

termined by common subjective or objective words before

fine-tuning while they rely more on the tasks to be solved

after fine-tuning.

The qualitative results of the proposed algorithm are pre-

sented in Figure 4. In general, the proposed network is suc-

cessful to handle various types of questions that need differ-

ent levels of semantic understanding. Figure 4(a) shows that

the network is able to adapt recognition tasks depending on

questions. However, it often fails in the questions asking the

number of occurrences since these questions involve the dif-

ficult tasks (e.g., object detection) to learn only with image

level annotations. On the other hand, the proposed network

is effective to find the answers for the same question on dif-

ferent images fairly well as illustrated in Figure 4(b). Refer

to our project website2 for more detailed results.

7. Conclusion

We proposed a novel architecture for image question an-

swering based on two subnetworks—classification network

and parameter prediction network. The classification net-

work has a dynamic parameter layer, which enables the

classification network to adaptively determine its weights

through the parameter prediction network. While predicting

all entries of the weight matrix is infeasible due to its large

dimensionality, we relieved this limitation using parame-

ter hashing and weight sharing. The effectiveness of the

proposed architecture is supported by experimental results

showing the state-of-the-art performances on three different

2http://cvlab.postech.ac.kr/research/dppnet/
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Table 6. Retrieved sentences before and after fine-tuning GRU

Query question What body part has most recently contacted the ball? Is the person feeding the birds?

Before fine-tuning

What shape is the ball? Is he feeding the birds?

What colors are the ball? Is the reptile fighting the birds?

What team has the ball? Does the elephant want to play with the birds?

How many times has the girl hit the ball? What is the fence made of behind the birds?

What number is on the women’s Jersey closest to the ball? Where are the majority of the birds?

What is unusual about the ball? What colors are the birds?

What is the speed of the ball? Is this man feeding the pigeons?

After fine-tuning

What body part is the boy holding the bear by? Is he feeding the birds?

What body part is on the right side of this picture? Is the person feeding the sheep?

What human body part is on the table? Is the man feeding the pigeons?

What body parts appear to be touching? Is she feeding the pigeons?

What partial body parts are in the foreground? Is that the zookeeper feeding the giraffes?

What part of the body does the woman on the left have on the ramp? Is the reptile fighting the birds?

Name a body part that would not be visible if the woman’s mouth was closed? Does the elephant want to play with the birds?

(a) Result of the proposed algorithm on multiple questions for a single image

(b) Results of the proposed algorithm on a single common question for multiple images

Figure 4. Sample images and questions in VQA dataset [1]. Each question requires a different type and/or level of understanding of the

corresponding input image to find correct answer. Answers in blue are correct while answers in red are incorrect. For the incorrect answers,

ground-truth answers are provided within the parentheses.

datasets. Note that the proposed method achieved outstand-

ing performance even without more complex recognition

processes such as referencing objects. We believe that the

proposed algorithm can be extended further by integrating

attention model [29] to solve such difficult problems.
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