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Abstract

Kernel approximation methods are important tools for

various machine learning problems. There are two ma-

jor methods used to approximate the kernel function: the

Nyström method and the random features method. However,

the Nyström method requires relatively high-complexity

post-processing to calculate a solution and the random fea-

tures method does not provide sufficient generalization per-

formance. In this paper, we propose a method that has good

generalization performance without high-complexity post-

processing via empirical orthogonal decomposition using

the probability distribution estimated from training data.

We provide a bound for the approximation error of the pro-

posed method. Our experiments show that the proposed

method is better than the random features method and com-

parable with the Nyström method in terms of the approxi-

mation error and classification accuracy. We also show that

hierarchical feature extraction using our kernel approxi-

mation demonstrates better performance than the existing

methods.

1. Introduction

Analyzing data with nonlinearity is one of the main tasks

in machine learning. The kernel method maps input data

into a high-dimensional feature space and computes the

similarity in the feature space without computing the co-

ordinates of data in that space. The computational com-

plexity of the kernel method is determined by the size of

data, regardless of the dimension of the feature space. The

kernel method is applied to the classifiers and dimension-

ality reduction techniques, such as the kernel support vec-

tor machine (SVM) [6], kernel principal component anal-

ysis (PCA) [23], and kernel canonical correlation analysis

(CCA) [12]. However, the complexity of kernel methods

grows quadratically or cubically with the amount of the

training data, which makes it difficult to scale directly for

large-scale datasets. A method that approximates the ker-

nel function using the inner product of the nonlinear feature

functions, which map data into a relatively low-dimensional

feature space, is useful because it is compatible with fast

linear classifiers.

There are two major methods for approximating the ker-

nel function: the Nyström method [8, 25] and the random

features method [20]. The Nyström method generates low-

rank approximations of the Gram matrix calculated from

training data. For the random features method, the kernel

function is expressed as the expectation value of the in-

ner product of feature functions, which are randomly sam-

pled from a proper probability distribution. However, the

Nyström method requires the calculation of a D × D in-

verse matrix at the learning phase, where D is the feature

dimension, and requires O(D2) post-processing at the clas-

sifying phase. Hence, we cannot use a high-dimensional

feature when using the Nyström method. To derive greater

generalization ability, the random features method requires

the feature to have the same number of dimensions as the

number of training data, making it difficult to take advan-

tage of the approximation.

In this paper, we propose a method to closely approx-

imate the kernel function via empirical orthogonal decom-

position without post-processing for the features. In the pro-

posed method, the kernel function is decomposed using the

probability distribution estimated from training data, which

enables it to have a high approximation ability. As the

proposed method directly approximates the kernel function,

post-processing for the features becomes unnecessary. We

show that the spectral norm of the approximation error of

the Gram matrix is bounded using eigenvalues and the dis-

tance between the true and approximate distributions. We

also present the calculation method of the proposed kernel

approximation using the Gaussian kernel.

Kernel approximations are also used to construct a hi-

erarchical image feature by iteratively building kernels be-

tween image patches [2, 3, 4, 5, 17]. We combine our

approximation method with convolutional kernel networks
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(CKN) architecture [17] and propose a novel method for un-

supervised feature learning without a time-consuming opti-

mization process.

The results of our experiments show that the proposed

method is better than the random features method and com-

parable with the Nyström method in terms of the approx-

imation error and classification accuracy. The proposed

method for unsupervised feature learning demonstrates bet-

ter or comparable accuracy with a shorter learning time than

CKN. Our contributions are as follows:

• We propose a method to construct the feature functions

that do not need post-processing by decomposing the

kernel function using the probability distribution esti-

mated from training data.

• We provide a bound for the approximation error of

the proposed method and present a calculation method

when we assume the Gaussian kernel and a Gaussian

distribution.

• Experimental results on artificial and real datasets

show that the proposed methods demonstrate perfor-

mance that is better than the random features method

and comparable with the Nyström method with lower

complexity.

• Experimental evaluations of the unsupervised fea-

ture learning method show that the proposed method

demonstrates better or comparable accuracy with

CKN.

2. Related work

There are many kernel approximation methods; however,

we briefly introduce the Nyström method and random fea-

tures method because we shall focus on these methods to

approximate the kernel function using the inner product of

nonlinear feature functions.

2.1. Nyström method

The Nyström method approximates the true Gram matrix

using kernel similarity to randomly sample data from train-

ing examples. Let {x1, x2, · · · , xD} denote the subset of

samples and KD = UΛU t denote the eigen-decomposition

of the Gram matrix generated by the subset of samples, then

the Nyström method maps input x in the following way:

Λ−1/2U t(k(x, x1), k(x, x2), · · · , k(x, xD))t (1)

To analyze Nyström methods, the bound of the spectral

norm of the approximation error is usually calculated.

Drineas et al. [8] showed that the approximation error is

O(D−1/2). Because Bartlett et al. [1] showed that the gen-

eralization error of the kernel method is O(N−1/2), where

N is the size of training data, the required number of sam-

ples D should be O(N) to achieve a small approximation

error. According to the analysis of Yang et al. [29], the

number of samplesD is reduced toO(N−1/2) by assuming

that there is a large gap between the eigenvalues. Kumar et

al. [11] provided a detailed comparison of various fixed and

adaptive sampling techniques. However, an O(D3) calcu-

lation of K−1/2 of the sample Gram matrix is required, and

O(D2) post-processing for each datum is required, which

is time-consuming when D is large.

2.2. Random features method

The random features method approximates the kernel

function using an inner product of randomly sampled fea-

ture functions.

Definition 2.1. For kernel k on domain X , if there are

functions fω parameterized by ω and parameter distribu-

tion p(ω) that fulfill the equality

k(x, y) = Eω[fω(x)
∗fω(y)] =

∫

dωp(ω)fω(x)
∗fω(y),

(2)

then a random feature is a method that samples D ωds i.i.d

from p(ω) and maps x→ 1√
D
(fω1

(x), ..., fωD
(x)).

If fω is uniformly bounded, then we can show that we

can approximate the original kernel with high probability

using a sufficiently large dimension D by applying Hoeffd-

ing’s inequality.

Rahimi and Recht [20] proposed a random feature using

trigonometric functions for a shift-invariant kernel in Eu-

clidean space R
d. A shift-invariant kernel is a kernel that

can be calculated using only the difference between two in-

puts, such as k(x, y) = φ(x − y). Rahimi and Recht [20]

constructed a random Fourier feature using Bochner’s theo-

rem, which connects shift-invariant kernels with probability

distributions in Fourier space.

Theorem 2.1 (Bochner [22]). For φ corresponding to a

shift-invariant kernel, there is a probability p(ω) on R
d that

k(x, y) = φ(x− y) =

∫

dωp(ω)eiω(x−y) (3)

holds.

According to Bocher’s theorem, the shift-invariant ker-

nel is a Fourier transform of some distribution. By sampling

ωd from this distribution p(ω), the mapping

x→ 1√
D

(

eiω1x, ..., eiωDx
)

(4)

approximates the original kernel. Additionally, the method

that uniformly samples bd from [0, 2π] and maps

x→ 1√
D

(√
2cos (ω1x+ b1) , ...,

√
2cos (ωDx+ bD)

)

(5)
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also becomes a random feature, which is used to make the

feature value real. We use this form for the experiments.

This feature function is uniformly bounded, so it fulfills the

condition for Hoeffding’s inequality.

The framework of Eq. (4) is simple and versatile, but be-

cause the feature is random, the feature tends to be verbose.

To solve this problem, Hamid et al. [9] proposed a method

that oversamples ω and projects it in a lower-dimensional

space, where the projection matrix is also randomly sam-

pled. Yang et al. [27] proposed a method to use quasi-

Monte Carlo instead of i.i.d. random variables. To decrease

the complexity, Le et al. [13] proposed a method to approx-

imate a feature function with complexity O(D log d).

As an application for data mining, Lopez-Paz et al. [15]

combined a random feature with PCA and CCA and showed

that they approximate kernel PCA and kernel CCA. Lu et

al. [16] reported performance comparable with deep learn-

ing by combining multiple kernel learning and the compo-

sition of kernels. Dai et al. [7] and Xie et al. [26] proposed

a method that combined a random feature with stochastic

gradient descent to construct an online learning method.

Yang et al. [28] proposed the random Laplace feature for

the kernel k(x, y) = φ(x+y) on a semi-group (Rm > 0,+)
and applied it to kernels on histogram data, such as bag of

visual words.

However, Rahimi and Recht [21] reported that the gener-

alization performance using a random feature isO(N−1/2+
D−1/2). Thus, we need to sample O(N) random features

to gain sufficient generalization performance, so the com-

plexity does not decrease.

3. Proposed method

3.1. Approximation method

The Nyström method uses information from input data

as the feature function and provides good generalization

performance, but requires post-processing of the feature.

The random features method approximates the kernel func-

tion and does not require post-processing of the feature.

The information required to obtain the feature function

p(ω), eiωx requires only the kernel function, and hence, it

provides lower generalization performance. In this section,

we propose a method that approximates the kernel function

using information from input data to overcome the limita-

tions of both methods.

First, from Mercer’s theorem [18], we can represent the

kernel k on domain X with finite measure µ as

k(x, y) =
∞
∑

i=0

λiψi(x)ψ
∗
i (y), (6)

using eigenvalues λi and the normalized eigenfunctions ψi

of the positive definite operator Tk on L2(X) such that

(Tkf)(·) =
∫

X

k(·, x)f(x)dµ(x). (7)

We can regard the Nyström method as approximating this

distribution µ using the histogram of randomly sampled in-

put data. Additionally, using a shift-invariant kernel and

a Lebesgue measure, the feature corresponds to a random

Fourier feature. Because the Lebesgue measure is not finite,

the decomposition is an integral instead of a discrete sum;

therefore we need to randomly sample the feature function.

In this paper, we propose an intermediate approach that

approximates the input distribution µ using a distribution

for which its eigenfunction decomposition can be solved,

and use the eigenfunctions as feature functions. The algo-

rithm is as follows:

1. Estimate the parameter of some distribution p(x; θ) us-

ing training data.

2. Solve the eigenfunction decomposition (Tkf)(·) =
∫

X
k(·, x)f(x)p(x; θ)dx using the estimated distribu-

tion p(x; θ).

3. Use λ
1/2
i ψi corresponding to theD largest eigenvalues

as feature functions.

3.2. Analysis of the approximation error

In this section, we evaluate the expectation and high-

probability bound for the spectral norm of the approx-

imation error corresponding to the Gram matrix, which

is important for the efficiency of the kernel approxima-

tion method. We denote the Gram matrix using N data

{x1, x2, ..., xN} by Ktrue, the Gram matrix using the pro-

posed approximation method by Kapp, and assume that

the kernel function is upper bounded by some κ such that

k(x, x) ≤ κ for ∀x ∈ X . The following holds when we use

the D-dimensional feature:

Theorem 3.1. Given the true probability density ptrue(x)
and the approximated density as papp, then

Exi∼ptrue
[∥Ktrue −Kapp∥2]

≤ N

( ∞
∑

n=D

λn + κ

∫

X

|ptrue(x)− papp(x)|dx
)

, (8)

holds. Additionally, for a probability larger than 1− δ,

∥Ktrue −Kapp∥2

≤ N

( ∞
∑

n=D

λn + κ

∫

X

|ptrue(x)− papp(x)|dx
)

+

√

Nκ2

2
log

1

δ
, (9)

holds.
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Proof. It holds that Kdiff = Ktrue − Kapp is also a Gram

matrix using kernel k(x, y) =
∑∞

i=D λiψi(x)ψ
∗
i (y), so

Kdiff is a symmetric positive semidefinite matrix. Note

that this does not hold for a random Fourier feature, which

uses an integral instead of discrete sum and does not use its

eigenvalues directly. Hence,

∥Ktrue −Kapp∥2 = λmax(∥Kdiff∥) (10)

≤ trace∥Kdiff∥ =
N
∑

i=1

kdiff(xi, xi),

holds. Hence, Exi∼ptrue
[∥Ktrue − Kapp∥2] ≤

NEx∼ptrue
[kdiff(x, x)]. Moreover,

Ex∼ptrue
[kdiff(x, x)]

=

∫

X

(ptrue(x)− papp(x))kdiff(x, x)dx

+ Ex∼papp
[kdiff(x, x)], (11)

The former is bounded by
∫

X
|(ptrue(x) −

papp(x))||kdiff(x, x)|dx ≤ κ
∫

X
|(ptrue(x) − papp(x))|dx,

and using the property of eigenfunction decomposition,

Ex∼papp
[ψi(x)ψ

∗
i (y)] = 1, (12)

the latter becomes
∑∞

n=D λn. Thus, the inequality for the

expectation Eq. (8) holds.

Because 0 ≤ kdiff(x, x) ≤ κ, applying Hoeffding’s in-

equality to Eq. (11), we obtain

P (
N
∑

i=1

kdiff(xi, xi)−NEx∼ptrue
[kdiffx]≥Nt)≤exp

(

−2Nt2

κ2

)

.

(13)

Thus, a high probability bound Eq. (9) is obtained.

From the discussion in the work by Yang et al. [29],

we require that ∥Ktrue − Kapp∥2 = O(N1/2) holds

for good generalization performance; that is, we require
∑∞

n=D λn,
∫

X
|ptrue(x)− papp(x)|dx to be O(N−1/2) for

sufficient performance.

3.3. Gaussian case

As an example of an analytic solution for eigenfunc-

tion decomposition, we consider the Gaussian kernel and

a Gaussian distribution as an approximate distribution. If

the dimension d = 1, setting k(x, y) = exp(−b(x −
y)2), p(x) = N(0, 1

4a ), and using c =
√
a2 + 2ab, A =

a+ b+ c, and B = b/A, the eigensystem is as presented by

Zhu et al. [30]:

λn =

√

2a

A
Bn (14)

ψn(x) = exp(−(c− a)x2)Hn(
√
2cx), (15)

where Hn denotes a Hermite polynomial of integer order n
and is defined as Hn(x) = (−1)n exp(x2) dn

dxn exp(−x2).
The feature function is localized and better reflects the prop-

erties of the Gaussian kernel, for which the similarity di-

minishes if the data are distant, than a random Fourier fea-

ture, which does not attenuate. Additionally, as n increases

higher resolutional information can be obtained. There are

studies that use this solution for kernel learning [24, 30], but

to the best of our knowledge, the present research is the first

to learn the distribution from data and apply it to unsuper-

vised feature learning.

When the input dimension d is larger than 1 and the

covariance matrix is diagonal, the eigensystem is a prod-

uct of the above Hermite solution. Even if the covariance

is non-diagonal, the solution reduces to the case in which

covariance is diagonal by rotating the axis. To evaluate

the approximation error, we denote the feature dimension

by D and simplify the calculation by assuming a is the

same for each dimension. This bounds the general case.

Thus,
∑∞

n=D λn = ( 2aA )d/2(( 1
1−B )d − ( 1−BD/d

1−B )d) ≃
( 2aA )d/2( 1

1−B )ddBD/d = dBD/d and we can see that the

error decreases exponentially with D.

3.4. Gaussian mixture case

To approximate a more complex distribution, we con-

sider a Gaussian mixture. The analytic solution using this

Gaussian mixture is not known, so we consider approxi-

mating it using the result for a Gaussian distribution. We

denote the number of components by K and set p(x) =
∑K

k=1 γkN (µk,Σk). Let (λkn, ψ
k
n) be the eigensystem for

N (µk,Σk). Because the kernel can be decomposed as

k(x, y) =
K
∑

k=1

ωkk(x, y) =
K
∑

k=1

∞
∑

n=0

ωkλ
k
nψ

k
n(x)ψ

k∗
n (y),

(16)

we consider using (ωkλ
k
n)

1/2ψk
n(x) for larger ωkλ

k
n as fea-

ture functions.

Next we analyze the performance of this method. As the

feature function is not the true eigenfunction, the above dis-

cussion does not hold in its current form. However, we can

see that Kdiff is a symmetric positive semidefinite matrix,

and we have only to bound Ex∼p[kdiff(x, x)]. To simplify

this, we assume that ωk = 1
K and a, b are the same for

each distribution and dimension, and each µk is well sepa-

rated such that Ex∼N (µk,Σk)[ψ
k′

(x)ψk∗(y)] < R for some

R. In this case, using the result from the previous section,

Ex∼p[kdiff(x, x)] < (1+(k−1)R)dB
D
dk is obtained. Thus,

we infer that this method has an exponential gain in perfor-

mance with D.

3.5. Relation to kernel PCA

When we apply kernel methods, we often use PCA in

the projected high-dimensional space to obtain uncorrelated
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useful features. The proposed methods, which use eigen-

functions, are automatically projected in the feature spaces,

so correlations between features are small. Thus, it is ex-

pected that our methods demonstrate a similar effect to

PCA.

When we use the proposed method with Gaussian distri-

bution, we rotate the input space so that each input element

is uncorrelated. Then, the axis with a large variance has

large B, so even high-order eigenfunctions with a high res-

olution are used. Conversely, the axis with a small variance

makes a small contribution to the feature vector. In partic-

ular, the axis on which only the 0-th order eigenfunction is

used only contributes to the norm of the feature, thus we can

ignore it when, for example, the features are normalized.

Thus, we can say that the proposed method also applies di-

mensionality reduction in the input space. When the input

space is d dimensional, the number of substantial dimen-

sions is d′, and we extract the D dimensional feature, the

complexity of the proposed method is O(dd′) for rotation

plus an O(d′D) calculation of Hermite polynomials. We

replace d′ with d when we use the full input vector. In all

cases, it is much smaller than the Nyström method, which

requires anO(D) calculation of kernel values between d di-

mension vectors plus an O(D2) whitening step when D is

large.

3.6. Application to unsupervised feature learning

We can combine the proposed method with CKN [17]

architecture for unsupervised feature learning. The CKN

hierarchically defines the kernel between image patches as

the summation of kernels between 2-d positions of points in

the patches multiplied by the kernels between feature vec-

tors of points. The kernel value between patches Ω,Ω′ can

be represented as follows:

K(Ω,Ω′)

=
∑

z∈Ω

∑

z′∈Ω′

∥φ(z)∥∥φ′(z′)∥e−
1

2β2 ∥δz∥2

e−
1

2σ2 ∥δφ∥2

, (17)

where z and z′ are positions of the points, φ(z) and φ′(z′)
denote feature vectors of the points, and δz and δφ denote

z−z′ and φ(z)−φ′(z′) respectively. When we approximate

the kernel between positions as ξpos(z)
T ξpos(z

′) and the

kernel between feature vectors as ξfeat(φ(z))
T ξfeat(φ

′(z′)),
the convolutional kernel is approximated as the linear inner

product of
∑

z∈Ω

∥φ(z)∥ξpos(z)⊗ ξfeat(φ(z)), (18)

where ⊗ denotes the Kronecker product. CKN hierarchi-

cally applies this mapping and uses the feature vector of the

final layer for recognition.

The original CKN uses the approximated feature for the

kernel between positions as ξpos(z) = e
1

β2 ∥z∥2

, and uses

the approximated feature for the kernel between features in

the form of η
1/2
d e

1

σ2 ∥φ(z)−wd∥2

, and then learns ηd, wd so

that the reconstruction error of kernel values

n
∑

i=1

(

e−
1

2σ2 ∥δφ∥2−
D
∑

d=1

ηde
1

σ2 ∥φ(zi)−wd∥2

e
1

σ2 ∥φ(z′

i)−wd∥2

)2

,

(19)

is minimized, where (zi, z
′
i)

n
i=1 are patch pairs sampled

from training data and D is the dimension of the feature.

Instead of learning feature with a gradient descent, we

can use other kernel approximation methods. We propose

using eigenfunctions with distribution learned from zi, z
′
i

as an approximation function. The proposed method does

not experience a long optimization time and local minima.

4. Experiments

To test the efficiency of our methods, we compared the

approximation error of the Gram matrices, the classification

accuracy, and performance for unsupervised feature learn-

ing.

4.1. Approximation error of the Gram matrices

First, we evaluated the approximation performance us-

ing synthesized data. We set the dimensionality of the input

data to d = 10, number of samples to N = 5000, and

kernel parameter to b = 1
2d , and compared the Nyström

method (Nyström), random Fourier feature (Random), and

proposed methods (Proposed) using data sampled from the

Gaussian distribution with mean equal to 0 and a covariance

identity matrix, from the Laplace distribution with location

parameter equal to 0 and scale parameter equal to 1 as a

super-Gaussian distribution, and from a uniform distribu-

tion from [-1,1] as a sub-Gaussian distribution. For each

method, we evaluated the normalized spectral norm of the

error matrix
∥Ktrue−Kapp∥2

∥Ktrue∥2
. We set the feature dimension

D = 40, 160, 640, 2560, and the number of mixture com-

ponents to 1, 4, 16, 64. Note that if the number of mixture

components is 1, the situation is equivalent to the Gaussian

case. To estimate the parameter of the data distribution, we

used another set of N data sampled from the same distri-

bution. For preprocessing, we rotated the data so that the

estimated covariance was diagonal and used the diagonal

Gaussian mixture. This rotation did not change the kernel

value. We performed the experiment 10 times for each set-

ting and calculated the mean value.

Figure 1 shows the results. The number in the “Pro-

posed” label indicates the number of mixture compo-

nents. The figure shows that for each distribution, the

proposed method that assumed a Gaussian distribution

yielded the best approximation performance if the dimen-

sion was low. Even if the dimension was high, the pro-

posed method yielded a performance comparable with the
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Figure 1. Comparison of the approximation error for the Gram matrix on synthesized data sampled

from (left) a Gaussian distribution, (center) Laplace distribution, and (right) uniform distribution.
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Figure 2. Comparison of the

approximation error for the

Gram matrix on GoogLeNet

features extracted from the

ILSVRC2015 dataset.

TASK DATA # TRAIN # TEST # Attr. TASK DATA # TRAIN # TEST # Attr.

Reg. CPUSMALL 7392 800 12 Class. ADULT 32561 16281 123

Reg. CADATA 18640 2000 8 Class. IJCNN1 49990 91701 22

Reg. YEARMSD 463715 51630 90 Class. COVTYPE 522910 58102 54

Table 1. Statistics for the datasets.

Nyström method. Better performance for low feature di-

mensions occurred because the rough estimation of the pro-

posed method approximated the true distribution better than

the estimation using a small sample histogram from the

Nyström method. The random Fourier feature demonstrated

similar performance for each distribution, which agrees

with the fact that random features method does not use dis-

tribution information. By contrast, when we assumed a

Gaussian mixture, the performance was lower and the per-

formance gain was also smaller than the case that assumed

a Gaussian distribution in each case. The uncertainty asso-

ciated with the parameter estimation and the decrease of de-

cay speed of eigenvalues influenced the performance more

than the approximation accuracy of the true distribution.

We then compared the performance of the proposed ker-

nel approximation method assuming Gaussian distribution

using the ILSVRC2015 classification dataset. The dataset

contained approximately 1,200,000 images and we used the

output of the global average pooling layer of GoogLeNet

as input features, which are 1,024 dimensional per im-

age. We used 100,000 samples for model inference and

evaluated the normalized spectral norm of the error matrix
∥Ktrue−Kapp∥2

∥Ktrue∥2
using 5,000 randomly chosen samples. We

plotted the mean of five trials. We set the feature dimension

D = 40, 160, 640, 2560, 10240
Figure 2 shows that the proposed approximation method

demonstrates better performance even for a real image

dataset.

4.2. Classification Accuracy

We compared regression performance and classification

accuracy using real data. We used the data from the LIB-

SVM site 1. We scaled each element of the input data to

[0,1] for the classification task and [-1,1] for the regres-

sion task. Table 1 shows the statistics for the datasets.

We set the kernel parameter b = 1
2d and used LIBLIN-

EAR2 with C = 100 to compare the classification accu-

racy of the test data for classification tasks and ridge regres-

sion minw ∥Ψtw − t∥22 + λ∥w∥22 with λ = 0.01 to com-

pare the mean squared error of the test data 1
n

∑n
i=1 ∥ti −

wtψ(xi)∥22 for regression tasks. We set the feature di-

mension D = 40, 160, 640, 2560 for CPUSMALL, CA-

DATA, ADULT and IJCNN1, and 40, 160, 640 for the larger

datasets YEARMSD and COVTYPE. We set the number of

mixture components to 1, 4, 16. For parameter estimation,

we sampled 1000 data for CPUSMALL, CADATA, and

10000 data for ADULT, IJCNN1, YEARMSD and COV-

TYPE. For each setting, we conducted 10 experiments and

calculated the mean.

Figure 3 and Figure 4 show the results. The result for

Nyström is overlapped by that for Proposed1 in CPUS-

MALL. We omitted the results for Proposed4 and Pro-

posed16 in YEARMSD because, in some cases, they had

a mean squared error that was too large. The figures show

that the proposed method assuming a Gaussian distribution

demonstrated better performance than the random Fourier

feature, especially when the dimension was small. Addi-

tionally, they demonstrated comparable performance with

the Nyström method for each dimension. Because the

Nyström method requires O(D2) post-processing for each

feature, our method is more efficient considering the com-

putation complexity. Generally, the proposed method as-

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2https://www.csie.ntu.edu.tw/ cjlin/liblinear/
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Figure 3. Comparison of the mean squared error for the datasets (left) CPUSMALL, (middle) CADATA, and (right) YEARMSD.
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Figure 4. Comparison of the classification accuracy for the datasets (left) ADULT, (middle) IJCNN1, and (right) COVTYPE.

suming a Gaussian mixture demonstrated poorer perfor-

mance than the other methods. However, the differences

between each performance were small when the dimen-

sion was high, and Proposed16 demonstrated the best per-

formance in ADULT. The proposed methods assuming the

mixture model work well if the feature dimension is not

small and the model fits the data distribution. Generally,

when assuming a Gaussian distribution, the data distribu-

tion was sufficiently approximated and our method demon-

strated comparable performance with the Nystöm method.

4.3. Unsupervised feature learning

Next, we used the random features method, Nyström

method, and proposed method with Gaussian distribution,

which demonstrated good performance in previous experi-

ments as kernel approximation methods for CKN architec-

ture, and compared the accuracy with the original CKN.

We used MNIST [14], CIFAR-10 [10], CIFAR-100 [10],

and SVHN [19] as datasets and adopted similar network ar-

chitectures to those of Mairal et al. [17]. We denote the de-

tail of the architectures in the Appendix. We used 300,000

patch pairs for feature learning, LIBLINIEAR as a linear

classifier and determined the regularization parameter using

5-fold crossvalidation from 2i,i = −15, ..., 15.
We show the results in Table 2. In most cases, the

proposed method demonstrated better performance than

the original CKN. This is because the proposed method

did not experience local minima of the optimization and

could use the input information more efficiently. The pro-

posed method did not require a time-consuming optimiza-

tion phase, therefore it was a good choice to adopt the pro-

posed kernel approximation method for CKN architecture.

Additionally, the proposed method demonstrated better per-

formance than the random features method and compara-

ble or better performance than the Nyström method in most

settings, which demonstrated a similar tendency to that of

previous experiments. This indicates the effectiveness of

hierarchically approximating the kernel, and the proposed

method is reasonable and effective.

Additionally, we showed the covariance of the rescaled

first 400-dimensional feature in the final layer learned from

CIFAR-10 with setting 1 in Figure 5. The figure shows

that while CKN had relatively large non-diagonal covari-

ance, the proposed method demonstrated uniformly small

non-diagonal covariance, which agrees with the argument

that the proposed method demonstrated a similar effect to

PCA.

Additionally, we varied the number of feature maps in

the final layer to 200, 400, 600, 800 and evaluated the per-

formance using CIFAR-10 with setting 1. We show the re-

sult in Figure 6. As the dimension decreased, the method

using random features demonstrated poorer performance
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Setting CKN Random Nyström Proposed

MNIST

1 99.34 99.49 99.38 99.36

2 99.28 99.46 99.48 99.43

3 99.42 99.45 99.47 99.51

CIFAR-10

1 74.59 75.93 75.72 76.00

2 79.19 80.73 81.52 81.27

3 77.41 77.68 78.57 78.29

CIFAR-100

1 43.25 43.64 43.36 43.66

2 53.37 55.20 54.44 55.01

3 50.41 51.02 50.53 51.04

SVHN

1 91.80 91.54 91.96 91.98

2 90.79 90.75 91.18 91.36

3 85.52 85.60 85.88 86.05

Table 2. Classification accuracy for MNIST, CIFAR-10, CIFAR-

100, STL-10, and SVHN.

Figure 5. Covariance of learned feature for (top left) CKN, (top

right) Random, (bottom left) Nyström, and (bottom right) Pro-

posed. The proposed method shows less non-diagonal covariance.

than the proposed method and Nyström method, which

illustrates the importance of using input information for

approximation. Conversely, these three methods demon-

strated similar performance when the dimension was 200.

This suggests that when the dimension was very small,

the input information was not sufficient and we needed

to include discriminative information in learning. In any

case, the proposed method demonstrated much better per-

formance than the original CKN.
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Figure 6. Accuracy of CKN with fewer feature maps.

5. Conclusion

We proposed an approximation method that first inferred

the distribution of input data and then used the eigenfunc-

tions of the operator using the kernel function and the ap-

proximated distribution as feature functions. The proposed

method used information from the input data for the fea-

ture function and therefore exhibited better performance

than the random features method, which only used infor-

mation from the kernel. Additionally, because the proposed

method directly approximated the kernel function instead

of the Gram matrix, no post-processing of the feature was

required. The approximation error for the proposed method

can be bounded using the divergence of the true and approx-

imated distribution and the eigenvalue of the integral opera-

tor using the kernel. We showed how to calculate the feature

function for a Gaussian kernel and the approximation dis-

tribution was a Gaussian distribution or Gaussian mixture.

Experiments using synthesized and real data demonstrated

that our proposed method yielded a performance that was

better than the random features method while comparable

with the Nyström method.

There are two alternatives to expand this research. The

first is to apply our method to another kernel. In the Gaus-

sian case, we can obtain an analytic solution, but generally,

the solution is not known. However, if the kernel and dis-

tribution can be decomposed into a product of functions for

each dimension, we only need to consider a 1-dimensional

case. Additionally, if the input dimension is high, the de-

gree of the eigenfunction does not need to be high; hence,

we can approximate the eigenfunction using, for example,

series expansions. The second alternative is to approximate

more accurately the eigenfunction using a mixture distribu-

tion. In this paper, we assumed that each distribution was

sufficiently distant and used eigenfunctions for each distri-

bution. However, we need to correct the original eigenfunc-

tion, for example, by adding another eigenfunction for a

better approximation.
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