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Abstract

We explore the visual recognition problem from a main

data view when an auxiliary data view is available during

training. This is important because it allows improving the

training of visual classifiers when paired additional data

is cheaply available, and it improves the recognition from

multi-view data when there is a missing view at testing time.

The problem is challenging because of the intrinsic asym-

metry caused by the missing auxiliary view during testing.

We account for such view during training by extending the

information bottleneck method, and by combining it with

risk minimization. In this way, we establish an information

theoretic principle for leaning any type of visual classifier

under this particular setting. We use this principle to design

a large-margin classifier with an efficient optimization in

the primal space. We extensively compare our method with

the state-of-the-art on different visual recognition datasets,

and with different types of auxiliary data, and show that the

proposed framework has a very promising potential.

1. Introduction

Large amounts of good quality labeled data for training

visual classifiers are hard to obtain because they might be

expensive, or require too much time to be collected, or be-

cause of other reasons. Typically, this problem is addressed

by injecting domain, or prior knowledge, into the model-

ing framework to regularize the learning, and obtain a bet-

ter classifier [22]. On the other hand, there are situations

where training labeled samples might be easily augmented

with extra information. For instance, in object recognition,

a labeled image sample, representing the main data view,

might have been annotated also with attributes describing

semantic properties of depicted objects, or with a bounding

box that specifies the location of the target object, or with

image tags describing the context of the image. This ex-

tra information can be seen as an auxiliary data view of the

image sample. In this work, we aim at improving visual
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Figure 1. Visual recognition with auxiliary data. Visual recog-

nition entails learning classifiers based on a main data view (e.g.,

motion information for recognizing actions, or image information

for recognizing animals and objects, or video information for ges-

ture recognition). We extend the information bottleneck method to

leverage an auxiliary data view during training (e.g., color for ac-

tions, skeleton data for gestures, attributes for animals, and bound-

ing boxes for objects), for learning a better visual classifier.

recognition based on a main data view, by leveraging the

auxiliary view available only during training, thus mitigat-

ing the lack of good quality labeled data. See Figure 1.

The problem outlined above has received limited atten-

tion. It is different from domain adaptation and transfer

learning [1, 48, 32], where the source and target domains

are closely related but statistically different. Here instead,

the main view used for testing is present also in training,

along with the paired auxiliary view to form the source do-

main. Indeed, our problem is more related to multi-view

and multi-task learning [9, 40, 14, 28, 45]. However, rather

than having all views or task labels available or predicted

during testing, here one view is missing and a single task la-

bel is predicted. The fact that the auxiliary view is missing

is what makes this problem challenging, because it cannot

be combined like the others in multi-view learning.

We address the auxiliary view problem from an infor-

mation theoretic perspective, where we learn how to extract

information from the main data view, in a way that is opti-

mal for visual recognition, and that speaks also on behalf of

the missing auxiliary view. The information bottleneck (IB)
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method [36] is a tool for extracting latent information from

the main view, in a way that satisfies two complementary

goals. The first is to compress the data as much as possible.

The second is to preserve all the information that is relevant

for the task at hand (e.g., predicting the labels of a visual

recognition task). However, the IB method is not directly

applicable to our problem because the latent information is

not extracted in a way that speaks also on behalf of the aux-

iliary view. Therefore, our first contribution is to extend the

IB method to take that aspect into account. Since the auxil-

iary view is not available at testing time, it was named privi-

leged in [38], which first formalized this learning paradigm.

Thus, we refer to our IB extension as the information bot-

tleneck method with privileged information (IBPI).

The IBPI method is a sound information theoretic prin-

ciple for explicitly extracting relevant latent information,

but gives an implicit, hence computationally hard, way for

learning a visual classifier based on such information. Our

second contribution is a modified version of IBPI that al-

lows learning explicitly any type of visual classifier based

on risk minimization. Our third contribution is the appli-

cation of the modified IBPI method for learning a large-

margin classifier, called large-margin IBPI (LMIBPI), for

which it is possible to use kernels, and for which we pro-

vide an optimization procedure guaranteed to converge in

the primal space for improved computational efficiency.

Our fourth contribution is an extensive validation of

LMIBPI against the state-of-the-art. We perform experi-

ments where we improve visual recognition of gestures by

training with auxiliary 3D joint information, we improve

object classification with auxiliary object bounding box in-

formation, we improve animal recognition with auxiliary at-

tribute information, and we improve action recognition with

auxiliary visual features.

2. Related work

In computer vision auxiliary information has been incor-

porated into the learning process in several forms. For ex-

ample, in attribute based approaches [11, 8] labeled data is

used for training extra attribute classifiers to extract mid-

level features. Similarly, [37, 23] learn to extract mid-level

features by training data from additionally annotated con-

cepts. Our framework differs from those because the auxil-

iary information can be generic, and because it is used for

improving the classifier performance in a single optimiza-

tion framework, whereas attribute classifiers may be discon-

nected from the main classification task. Another form of

auxiliary information is given by the structure of the hidden

domain of latent models for object detection and gesture

recognition [10, 30]. Compared to those approaches we use

information from auxiliary labeled data.

More related to our framework are the approaches that

consider the auxiliary information to be supplied by a

teacher during training. This is the learning using privi-

leged information (LUPI) paradigm introduced in [38]. One

LUPI implementation is the SVM+ [38, 21], which uses the

privileged data as a proxy for predicting the slack variables.

This is equivalent to learning an oracle that tells which sam-

ple is easy and which one is hard to predict. The same idea

has been used in the learning to rank approach introduced

in [33], where it is shown that different types of privileged

information, such as bounding boxes, attributes, text, and

annotator rationales [7] can be used for learning a better

classifier for object recognition.

Our approach exploits the privileged information differ-

ently. An information theoretic framework learns how to

compress the source domain for doing prediction in a way

that is as informative of the privileged source domain as

possible, regardless of the type of classifier used, and with-

out tying privileged information to slack variables. This is

done by extending the original IB method [36], often used

for clustering [35], and also used in [3] for incorporating

“negative information” that is irrelevant for the task at hand,

and that should not be learned by the representation. This is

similar to [44], where negative information is used for face

recognition with discounted pose-induced similarity.

The LUPI paradigm has recently been used for boost-

ing [4], for object localization in a structured prediction

framework [12], for facial feature detection [33], for metric

learning [13, 46], in a logistic classification framework [43],

in a max-margin latent variable model [41], and in support

of domain adaptation applications [5, 24]. In the above

methods, either the problem settings, or the approaches

taken are significantly different from the information the-

oretic principles that are driving our program. Other recent

approaches include [50, 49], which focus on the missing

view problem by discriminatively learning projections to a

shared latent subspace. This approach relates more to multi-

view learning, but only the main view pipeline is used for

testing, without considering the intrinsic asymmetry of the

LUPI framework, as pointed out in [42]. There they propose

two principles to learn with auxiliary information based on

looking at it as additional features, or as additional labels,

where they make assumptions on its informative content.

We also introduce a new principle that shares the benefits

of their framework, but by using an information theoretic

approach we have no need to make distinctions between the

types of auxiliary information, and we have no need to state

requirements on the information content.

3. Learning using privileged information

Traditional supervised learning assumes that a training

dataset made of N pairs (x1, y1), · · · , (xN , yN) is given,

where the feature xi ∈ X is a realization from a random

variable X , the label yi ∈ Y is a realization from a random

variable Y , and the pairs are i.i.d. samples from a joint

probability distribution p(X,Y ). Under this setting the goal

is to learn a prediction function f : X → Y by searching
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Figure 2. Information Bottleneck. Structural representation of

Gin and Gout used by the original two-variable information bot-

tleneck method [36].

over a space of admissible functions F .

The Learning Using Privileged Information (LUPI)

paradigm as defined in [38] assumes that every training

data pair comes with auxiliary information, augmenting

the training dataset to (x1, x
∗
1, y1), · · · , (xN , x

∗
N , yN). The

auxiliary feature x∗i ∈ X ∗ is a realization from the ran-

dom variable X∗. The triplets are now i.i.d. samples from

the joint distribution p(X,X∗, Y ). Under LUPI settings,

the goal is to learn a prediction function f∗ : X → Y by

searching F . Note that in order to predict a label y, at test-

ing time f∗ uses only data from the main space X . There-

fore, the data from the auxiliary space X ∗ is only available

during training, which is why it is called privileged. From

the same amount of training samples N , the LUPI classifier

f∗ will improve the performance of the traditional classifier

f [29]. On the other hand, how to best exploit privileged

information for learning f∗ remains an open problem.

4. The information bottleneck method
We summarize the information bottleneck (IB)

method [36] that was extended to the multivariate

case in [34]. We are given a set of random variables

X = {X1, · · · , Xn}, distributed according to a known

p(X), a set of latent variables T = {T1, · · · , Tk}, and a

Bayesian network with graph Gin over X ∪ T, defining

which subset of X is compressed by which subset of T.

Another Bayesian network,Gout, also defined over X ∪T,

is given and represents which conditional dependencies and

independencies we desire T to be able to generate. The

joint distribution q(X,T)
.
= q(T|X)p(X) is unknown.

The compression requirements defined by Gin, and the

desired independencies defined by Gout, are incompatible

in general. Therefore, the multivariate IB method computes

the optimal T by searching for the distribution q(T|X),
where T compresses X as much as possible, while the dis-

tance from q(X,T) to the closest distribution among those

consistent with the structure of Gout is minimal. This idea

is implemented with the multi-information of X, which is

the information shared by X1, · · · , Xn, i.e.,

I(X) = DKL[p(X)‖p(X1) · · · p(Xn)] , (1)

where DKL indicates the Kullback-Leibler divergence [6].

Therefore, the multivariate IB method looks for q(T|X)
that minimizes the functional

L[q(T|X)] = IGin(X,T) + γ(IGin(X,T) − IGout(X,T)) (2)

X

T

Y

Gin  

X
* X

T

Y

Gout  

X
*

Figure 3. Information Bottleneck with Privileged Information.

Structural representation of Gin and Gout used by the information

bottleneck method with privileged information.

where γ strikes a balance between compression and the abil-

ity to satisfy the independency requirements of Gout. The

multi-information IG with respect to a Bayesian networkG

defined over X ∼ p(X) is computed as in [34], i.e.,

IG(X) =
∑

i

I(Xi;Pa
G
Xi

) , (3)

where I(Xi;Pa
G
Xi

) is the mutual information between Xi

and Pa
G
Xi

, the set of variables that are parents of Xi in G.

Let us refer to Figure 2 for an example, where X =
{X,Y }, and T = T . We interpret X as the main data we

want to compress, and from which we would like to predict

the relevant information Y . This is achieved by first com-

pressing X into T , and then predicting Y from T . In Gin

the edge X → Y indicates the relation defined by p(X,Y ).
Moreover, since T will compressX , this is indicated by the

edge X → T , establishing that T is completely determined

given the variable it compresses. The graph Gout instead,

reflects the idea that we would like T to capture from X all

the necessary information to perform the best possible pre-

diction of Y . This means that knowing T makes X and Y

independent, or equivalently that I(X ;Y |T ) = 0. To evalu-

ate (2), instead, we obtain IGin = I(T ;X)+ I(Y ;X), and

IGout = I(X ;T )+I(Y ;T ), and since I(Y ;X) is constant,

(2) collapses to the original two-variable IB method [36].

5. IB with privileged information

Here we combine the ideas of Sections 3 and 4 for de-

veloping a new information bottleneck principle, which ac-

counts for privileged information. Specifically, let us as-

sume that X , X∗, and Y are three random variables with

known distribution p(X,X∗, Y ). Also, it is assumed that

both X and X∗ contain information about Y . If properly

extracted, such information could be used for predicting Y .

However, we assume that only the information carried byX

can be used to predict Y . We pose the question of whether

by doing so it is still possible to learn a model capable of

exploiting the information carried by X∗.

If we apply the two-variable IB method, we proceed by

compressing X into a latent variable T as much as possi-

ble, while making sure that information about Y is retained.

These two competing goals are depicted by the two graphs

Gin and Gout in Figure 2. On the other hand, since X∗

has knowledge about Y , a more complete Bayesian network
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representing all the variables and the compression require-

ments, is the graphGin in Figure 3, which includes the con-

nection X∗ → Y . Therefore, the optimal representation

computed by the two-variable IB method would be given

by q(X,X∗, Y, T ) = q(T |X)p(X,X∗, Y ), where q(T |X)
is such that I(X ;Y |T ) is as close to zero as possible.

We note that the approach outlined above does not make

any effort to exploit the information carried by X∗. In-

deed, I(X∗;Y |T ) could be arbitrarily high, i.e., knowing

T still leaves with X∗ substantial knowledge about Y . On

the other hand, the multivariate IB method allows us to con-

sider more complex independency structures. In particu-

lar, we define Gout like in Figure 3, where knowing T not

only makes X and Y independent, but X∗ and Y too. In

this way, q(T |X) not only minimizes I(X ;Y |T ), but also

I(X∗;Y |T ). More precisely, the multi-informations ofGin

and Gout in Figure 3 are given by

IGin = I(T ;X) + I(Y ;X,X∗) , (4)

IGout = I(T ;X) + I(T ;X∗) + I(T ;Y ) . (5)

By plugging (4) and (5) into (2), since I(Y ;X,X∗) is con-

stant, the functional for learning the optimal representation

for T is given by

L[q(T |X)] = I(T ;X)− γI(X∗;T )− γI(T ;Y ) (6)

where γ strikes a balance between compressing X and im-

posing the independency requirements. Similarly to the

LUPI framework, since it is not possible to directly com-

press X∗ for predicting Y , we can think of X∗ as carrying

privileged information about Y . Therefore, we call learning

representations by minimizing (6) as the information bottle-

neck method with privileged information (IBPI).

6. IBPI for visual recognition

We are interested in designing a framework for visual

recognition, where we need to perform a classification task

based on a main view X of the visual data. However, at

training time, for some training samples an auxiliary view

X∗ is also available. We pose no restrictions on the type

of auxiliary data available. The task at hand falls into the

LUPI category defined in Section 3, except that we also ad-

mit training samples with missing auxiliary view.

We want to leverage the IBPI method (6) because it pro-

vides a sound principle, grounded on information theory, for

extracting information T from the main view X that is not

only the most relevant for predicting Y (representing class

labels), but also minimizes I(X∗;Y |T ), which means that

knowing T leaves with X∗ minimal information about Y .

This suggests that T is the representation of choice for pre-

dicting Y . However, similarly to the IB method [34], while

IBPI explicitly defines the compression map, T , by search-

ing for q(T |X), the computation of q(Y |T ) is much harder

Algorithm 1 Projected gradient minimization for F

1: Chose 0 < η < 1, 0 < ν < 1.

2: Initialize F 1 . Set ρ = 1.

3: for k = 1, 2, · · · do

4: if ρ satisfies (11) then

5: Repeatedly increase it by ρ← ρ/η until either ρ does not satisfy (11)

or F (ρ/η) = F (ρ)
6: else

7: Repeatedly decrease ρ by ρ← ρ/η until ρ satisfies (11)

8: end if

9: Set Fk+1 = max{0, Fk − ρ∇FDKL(X̄‖FkX̄∗)}

10: Normalize to 1 the columns of Fk+1

11: end for

in general. For this reason, we introduce a modified IBPI

method that is tailored to visual recognition.

We observe that by interpreting γ as a Lagrange mul-

tiplier, the last term in (6) corresponds to the constraint

I(T ;Y ) ≥ constant, enforcing T of carrying at least a

certain amount of information about Y . Ultimately, such

information should be used for classification purposes, by

predicting Y through a function f̃ : T → Y . Therefore,

we replace the constraint on I(T ;Y ) with the risk associ-

ated to f̃(T ) according to a loss function ℓ. Thus, for visual

recognition, (6) is modified into

L[q(T |X), f̃ ] = I(T ;X)− γI(X∗;T ) + βE[ℓ(f̃(T ), Y )] (7)

where E[·] denotes statistical expectation, and β balances

the risk versus the compression requirements. Note that the

modified IBPI criterion (7) is general, and could be used

with any classifier. Obviously, a practical implementation

of (7) would be based on the empirical risk.

6.1. Largemargin IBPI

We use (7) to develop a large-margin classifier. We focus

on the binary case to prove the validity of the framework by

comparing it with the state-of-the-art, which also focussed

on the binary case. In particular, we restrict the search space

for q(T |X) by assuming T = φ(X ;A), where A is a suit-

able set of parameters. Moreover, f̃(T ) is a binary decision

function given by Y = sign(〈w, T 〉 + b), where 〈·, ·〉 iden-

tifies a dot product, w defines the margin, and b is an offset.

Therefore, by using the hinge loss function, from (7) we de-

rive the following classifier learning formulation, which we

refer to as the large-margin IBPI (LMIBPI)

min
A,w,b,ξi

I(T ;X)− γI(X∗;T ) +
β

2
‖w‖2 +

C

N

N
∑

i=1

ξi

s.t. yi(〈w, φ(xi, A)〉+ b) ≥ 1− ξi , (8)

ξi ≥ 0 , ∀i ∈ {1, · · · , N} .

where C is the usual parameter to control the slackness.

Kernels. We set T = φ(X,A) = Aφ(X), where we re-

quire φ(X) to have positive components and be normal-

ized to 1, and A to be a stochastic matrix, made of con-

ditional probabilities between components of φ(X) and T .
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Algorithm 2 FALM for LMIBPI

1: Chose µf > 0 and µg > 0 and A0 = B0 = E1 , set t1 = 1
2: for k = 1, 2, · · · do

3: Ak = argmin0≤A≤1 Qg(A,Ek)

4: Bk = argmin0≤B≤1 Qf (B,Ak)

5: tk+1 = (1 +
√

1 + 4t2
k
)/2

6: Ek+1 = Bk +
tk−1

tk+1
(Bk − Bk−1)

7: end for

This assumption greatly simplifies computing mutual in-

formations. X can be mapped to a feature space with

ψ(X). In this case we set φ(X) = ρ(Ψψ(X))⊤, where

Ψ = [ψ(x1), · · · , ψ(xN )], and ρ(·) is the additive logistic

transformation that maps u ∈ R
N to the N + 1 dimen-

sional simplex v =
[

eu1

1+
∑

i e
ui
, · · · , euN

1+
∑

i e
ui
, 1
1+

∑

i e
ui

]

,

with positive components and normalized to 1. Thus, with-

out loss of generality, in the sequel we set T = AX . X∗ can

be mapped to a feature space ϕ(X∗) with the same strategy.

Mutual informations. I(T ;X) is given by

I(T ;X) = E
[

∑

i,j A(i, j)X(j) log A(i,j)
T (i)

]

(9)

whereA(i, j) is the entry ofA in position i, j, whereas T (i)
and X(j) are the components in position i and j of T and

X respectively. Obviously, during training the expectation

is replaced by the empirical average.

To compute I(T ;X∗), let t(i), x∗(j), and x(h) be his-

togram realizations for T , X∗, and X , where i, j, and h

index the histogram bins. The mutual information I(t, x∗)

is given by
∑

i,j p(i, j) log
p(i,j)

t(i)x∗(j) . By the low of total

probability, p(i, j) is rewritten as
∑

h p(i|j, h)p(h|j)x
∗(j),

where p(i|j, h) = p(i|h) = A(i, h) because t(i) is com-

pletely defined by x(h). In addition, we call F (h, j) =
p(h|j), from which it follows that X = FX∗, where F is

also a stochastic matrix. Therefore, I(T ;X∗) is given by

I(T ;X∗) = E
[

∑

i,j A(i, ·)F (·, j)X
∗(j) log A(i,·)F (·,j)

T (i)

]

(10)

Learning F . F is learned from training data. Specifi-

cally, let’s indicate with X̄ = [x1, · · · , xN ] and X̄∗ =
[x∗1, · · · , x

∗
N ] the training data points corresponding to

the main and privileged domains, then F is learned by

solving the following constrained optimization problem:

minF DKL(X̄‖FX̄∗) s.t. F is a stochastic matrix with nor-

malized columns. We compute F with Algorithm 1, which

is a projected gradient method [26] with Armijo’s condition

DKL(X̄‖F k+1X̄∗)−DKL(X̄‖F kX̄∗) (11)

≤ ν〈∇FDKL(X̄‖F kX̄∗), F k+1 − F k〉

where k is the iteration index. The computation of

∇FDKL(X̄‖FX̄∗) is fairly simple, and can be found as

a special case in [47].

Algorithm 3 Projected gradient minimization forQf orQg

1: Chose 0 < η < 1, 0 < ν < 1.

2: Initialize A1 for Qg (or B1 for Qf ). Set ρ = 1.

3: for k = 1, 2, · · · do

4: if ρ satisfies (16) for Qg (or (17) for Qf ) then

5: Repeatedly increase it by ρ← ρ/η until either ρ does not satisfy (16)

(or (17)) or A(ρ/η) = A(ρ) (or B(ρ/η) = B(ρ))

6: else

7: Repeatedly decrease ρ by ρ← ρ/η until ρ satisfies (16) (or (17))

8: end if

9: Set Ak+1 = max{0, Ak − ρ∇AQg(A
k, B)}

10: (Set Bk+1 = max{0, Bk − ρ∇BQf (B
k, A)})

11: Normalize to 1 the columns of Ak+1 (or Bk+1)

12: end for

Missing auxiliary views. Training samples with missing

auxiliary view affect only I(T ;X∗). The issue is seam-

lessly handled by estimating F and the average in (10) by

using only the samples that have the auxiliary view.

6.1.1 Optimization

When A is known, (8) is a soft-margin SVM problem. In-

stead, when the SVM parameters are known, (8) becomes

min
A

I(T ;X)− γI(X∗;T ) +
C

N

N
∑

i=1

ξi (12)

s.t. ξi = max {0, 1− yi(〈w, φ(xi, A)〉 + b)} .

Since the soft-margin problem is convex, if also (12) is con-

vex, then an alternating direction method is guaranteed to

converge. In general, the mutual informations in (12) are

convex functions of q(T |X) [6]. The last term is also con-

vex, however, the constraints define a non-convex set due

to the discontinuity of the hinge loss function. Smooth-

ing the hinge loss turns (12) into a convex problem, and

allows to use an alternating direction method with variable

splitting combined with the augmented Lagrangian method.

This is done by setting f(A) = I(T ;X) − γI(X∗;T ),

g(B) = C
N

∑N
i=1 ξi, and then solving minA{f(A)+g(B) :

A−B = 0}.

For smoothing the hinge loss we use the Nesterov

smoothing technique [27], used also in [51], which re-

quires choosing a proximal function, and then comput-

ing the smoothed slack variables in this way ξi,σ =
max0≤ui≤1 ui(1−yiw

⊤Axi)−
σ
2 ‖wx

⊤
i ‖∞u

2
i , which gives

ξi,σ =



















0 yiw
⊤Axi > 1 ,

(1− yiw
⊤Axi)−

σ
2 ‖wx

⊤
i ‖∞ yiw

⊤Axi < 1
−σ‖wx⊤i ‖∞,

(1−yiw
⊤Axi)

2

2σ‖wx⊤
i ‖∞

otherwise.

(13)

where σ is a smoothing parameter. In this way, the mini-

mization can be carried out with the Fast Alternating Lin-

earization Method (FALM) [15]. This allows simpler com-

putations, and has performance guarantees when ∇f and

∇g are Lipschitz continuous, which is the case, given the

smoothing technique that we used.
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LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

brush hair 78.49 ± 4.99 78.50 ± 6.68 79.67 ± 4.25 78.16 ± 4.40 79.17 ± 6.40 77.50 ± 5.78 77.00 ± 6.79 80.66 ± 4.85 84.48 ± 5.03 85.00 ± 5.93 78.00 ± 8.08

dive 78.83 ± 4.23 80.66 ± 3.00 73.63 ± 4.11 79.66 ± 7.97 79.83 ± 3.64 82.50 ± 2.63 83.00 ± 2.33 83.16 ± 5.23 90.79 ± 5.94 87.16 ± 3.14 85.00 ± 2.07

drink 69.37 ± 6.62 69.16 ± 6.00 68.5 ± 5.43 75.50 ± 6.18 69.17 ± 5.80 69.50 ± 6.13 68.50 ± 5.41 72.36 ± 5.83 81.98 ± 7.48 74.33 ± 7.16 69.83 ± 6.20

eat 67.04 ± 5.86 67.66 ± 4.00 69.63 ± 5.00 75.08 ± 2.10 71.00 ± 5.16 71.50 ± 6.35 67.50 ± 6.58 74.85 ± 4.61 81.98 ± 4.95 76.00 ± 6.62 69.00 ± 6.19

golf 78.83 ± 3.68 81.50 ± 4.11 70.43 ± 4.02 74.66 ± 3.01 80.67 ± 7.25 80.00 ± 6.23 78.66 ± 4.76 85.47 ± 5.66 90.45 ± 3.68 85.33 ± 6.92 78.16 ± 5.29

hug 80.66 ± 3.35 81.83 ± 4.18 80.43 ± 4.66 82.82 ± 3.90 81.50 ± 3.72 83.33 ± 5.03 81.33 ± 4.83 85.97 ± 3.44 91.11 ± 5.61 87.83 ± 3.93 82.66 ± 4.91

jump 74.16 ± 3.70 74.16 ± 4.30 69.90 ± 2.87 75.66 ± 2.81 76.33 ± 6.42 77.00 ± 6.17 76.16 ± 6.03 79.83 ± 2.65 84.52 ± 3.62 81.16 ± 4.90 78.33 ± 7.37

pick 65.59 ± 3.88 63.83 ± 5.42 67.53 ± 3.67 78.33 ± 3.56 66.83 ± 4.19 65.16 ± 5.52 63.83 ± 5.15 79.83 ± 3.56 85.42 ± 3.79 68.50 ± 3.88 64.33 ± 6.09

punch 83.76 ± 3.20 83.66 ± 4.10 81.20 ± 5.72 87.33 ± 4.90 84.33 ± 5.89 84.83 ± 4.47 83.33 ± 4.37 92.06 ± 3.54 95.38 ± 3.54 86.16 ± 4.30 83.83 ± 4.23

sit 75.33 ± 3.10 75.16 ± 4.83 71.66 ± 9.8 76.33 ± 3.67 74.00 ± 4.60 75.16 ± 5.95 73.50 ± 5.05 76.99 ± 3.58 85.29 ± 4.05 77.50 ± 5.78 75.33 ± 5.92

Table 1. HMDB dataset. Classification accuracies for one-vs-all binary classifications. The HOF features represent the main view, and the

HOG features the auxiliary view. Best accuracies are highlighted in boldface.

FALM splits the minimization of the augmented La-

grangian function into two simpler functions to be mini-

mized alternatively, which are given by

Qg(A,B) = f(A) + g(B) + 〈∇g(B), A−B〉+ 1
µg
DKL(A||B) (14)

Qf(B,A) = f(A) + g(B) + 〈∇f(A), B −A〉+ 1
µg
DKL(B||A) (15)

The FALM iteration is given in Algorithm 2. Since A is a

stochastic matrix, the KL-divergence regularization is used

in place of the squared Frobenius norm.

Note that lines 3 and 4 of Algorithm 2 are constrained

optimizations, requiring A and B to be stochastic matrices

with normalized columns. They are implemented by Algo-

rithm 3, a projected gradient method [26] with Armijo’s rule

that for Qg and Qf is given by

Qg(A
k+1, B)−Qg(A

k, B) ≤ ν〈∇AQg(A
k, B), Ak+1 −Ak〉 (16)

Qf(B
k+1, A)−Qf (B

k, A) ≤ ν〈∇BQf (B
k, A), Bk+1 −Bk〉 (17)

where k is the iteration index. From (13), (9), (10) it is

straightforward to compute ∇AQg, and ∇BQf . We leave

those expressions out due to the limited space.

7. Experiments

We have performed experiments with four different

datasets. With each dataset we train and test the following

binary classifiers.

Single-view classifiers: Using only the main view, we

train the SVM-Light [17] (indicated as SVM), the SVM-

Rank [18] (indicated as SVM-R), and LMIBPI where we

eliminate the use of auxiliary information by setting γ = 0
(indicated as LB-LMIBPI).

LUPI classifiers: We train the SVM+ [38] (indicated as

SVM+, implemented by [25]), the Rank Transfer [33] (in-

dicated as RankTr, and reimplemented by us), and our

LMIBPI approach (indicated as LMIBPI). We also train the

SVM2k [9] and test only the SVM that uses the main view

(indicated as SVM2k-LUPI), and we perform kernel CCA

(KCCA) [16] between main and auxiliary views, map the

main view in feature space and train an SVM (indicated as

KCCA-LUPI).

Two-view classifiers: Using main and auxiliary views, we

train the SVM2k (indicated as SVM2k), and we also use

KCCA between views to map them in feature space, train
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Figure 4. Linear vs. non-linear kernel. Plots representing the dif-

ferences between the classification accuracy of the winner LUPI

method against the average accuracy over the following meth-

ods: RankTr (yellow), SVM+ (magenta), SVM2k-LUPI (cyan),

KCCA-LUPI (red), and LMIBPI (green). The linear kernel was

used on the left plots, and the histogram intersection kernel on the

right plots. The top row come from the HMDB dataset, the middle

row from ImageNet, and the last row from CGD2011.

two SVMs and average the outputs (indicated as KCCA).

Finally, we also extend LMIBPI (details are omitted for

lack of space) to fuse main and auxiliary views (indicated

as UB-LMIBPI). Note that for these classifiers main and

auxiliary views are used also during testing. So, their per-

formances represent the upper bound for the corresponding

LUPI versions.

Model selection: We use the same joint cross validation

and model selection procedure described in [33], based on

5-fold cross-validation to select the best parameters and use

them to retrain on the complete set. The main parameters to

select are C, β, γ, andm, the number of columns ofA. The

C’s and β’s were searched in the range {10−3, · · · , 103},

the γ’s in the range {0.1, 0.3, 0.5}, and the m’s in the range

{50, 70, 90}.

Performance: For each binary classification experiment we
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LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

Thunder snake 56.84 ± 3.21 57.09 ± 3.14 52.42 ± 2.53 57.88 ± 3.57 60.17 ± 2.29 59.12 ± 2.00 56.79 ± 2.33 59.70 ± 2.62 63.31 ± 3.23 61.70 ± 1.35 57.05 ± 2.39

Ringneck snake 62.03 ± 2.62 63.31 ± 2.76 53.55 ± 3.78 62.25 ± 1.46 63.14 ± 2.45 63.93 ± 2.82 63.47 ± 2.03 64.72 ± 2.36 68.36 ± 2.65 67.49± 2.43 64.46 ± 2.55

Hognose snake 57.71 ± 1.56 60.11 ± 1.34 55.74 ± 2.36 55.33 ± 2.77 59.10 ± 1.81 59.73 ± 2.10 60.55 ± 0.96 60.63 ± 1.58 65.32 ± 4.25 61.53± 1.36 60.03 ± 1.32

Green snake 68.11 ± 2.85 71.46 ± 1.39 55.43 ± 6.54 62.20 ± 2.99 70.66 ± 1.83 71.12 ± 1.40 70.03 ± 2.20 72.72 ± 2.17 77.82 ± 5.36 72.64± 1.45 68.80 ± 2.59

King snake 62.75 ± 1.57 60.20 ± 1.83 61.14 ± 3.53 59.70 ± 3.74 63.84 ± 2.07 59.81 ± 1.54 59.92 ± 2.01 61.70 ± 4.96 65.38 ± 2.36 64.89± 1.41 60.70 ± 1.78

Garter snake 66.72 ± 5.23 69.02 ± 3.25 57.07 ± 4.79 66.47 ± 2.58 66.02 ± 2.34 69.17 ± 2.90 69.21 ± 2.86 68.23 ± 1.79 70.23 ± 5.36 72.97± 2.37 69.65 ± 3.31

Water snake 70.26 ± 1.47 71.94 ± 1.91 64.80 ± 9.72 67.86 ± 3.40 68.82 ± 2.86 72.21 ± 1.83 71.34 ± 1.95 72.72 ± 4.96 73.21 ± 3.42 72.50± 2.13 70.11 ± 1.54

Vine snake 67.85 ± 3.52 78.92 ± 2.04 73.04 ± 5.00 69.97 ± 4.87 74.86 ± 2.09 79.05 ± 2.14 78.45 ± 1.95 77.91 ± 1.77 78.92 ± 4.02 80.15± 2.58 78.45 ± 1.72

Night snake 52.42 ± 6.32 53.97 ± 3.62 54.01 ± 2.25 52.96 ± 3.23 55.19 ± 1.76 55.26 ± 3.39 55.00 ± 3.44 57.09 ± 2.14 60.17 ± 4.23 55.48± 3.35 54.51 ± 3.32

Boa constrictor 61.90 ± 2.41 61.76 ± 1.87 59.03 ± 4.80 59.64 ± 3.40 62.66 ± 1.23 62.92 ± 1.65 61.60 ± 2.08 60.86 ± 1.72 63.76 ± 6.03 63.46± 2.10 61.19 ± 1.48

Rock python 57.88 ± 6.85 60.39 ± 2.36 56.84 ± 2.83 57.71 ± 2.59 58.43 ± 2.92 60.14 ± 2.46 59.50 ± 1.44 60.59 ± 1.54 61.14 ± 2.36 60.92± 2.16 58.78 ± 1.81

Indian cobra 61.90 ± 3.56 65.21 ± 2.84 59.04 ± 6.87 63.76 ± 3.92 65.88 ± 2.55 66.88 ± 2.83 64.92 ± 3.55 63.19 ± 2.97 64.53 ± 4.02 68.80± 1.52 65.42 ± 3.39

Green mamba 65.24 ± 1.69 68.50 ± 2.33 62.71 ± 9.11 66.77 ± 5.23 67.56 ± 2.39 68.36 ± 1.95 67.09 ± 2.47 68.72 ± 3.50 71.46 ± 5.36 70.14± 1.67 67.27 ± 2.16

Sea snake 72.72 ± 2.56 77.42 ± 1.64 68.36 ± 4.46 77.22 ± 2.03 76.17 ± 1.61 77.55 ± 1.84 77.10 ± 1.54 77.22 ± 1.70 78.53 ± 2.39 78.51± 1.41 73.06 ± 1.66

Horned viper 67.90 ± 1.49 69.92 ± 1.25 63.95 ± 5.17 67.74 ± 2.75 67.41 ± 1.94 69.49 ± 2.39 69.54 ± 1.01 71.46 ± 3.21 74.86 ± 6.45 71.80± 2.72 68.98 ± 1.31

Diamondback 64.27 ± 2.53 66.18 ± 2.56 61.90 ± 3.09 64.07 ± 2.60 63.48 ± 3.12 66.60 ± 1.81 65.89 ± 2.12 69.92 ± 2.42 71.94 ± 5.01 69.32± 1.59 65.69 ± 2.60

Sidewinder 67.41 ± 3.92 69.55 ± 2.34 60.28 ± 4.82 68.11 ± 3.21 67.85 ± 2.64 68.93 ± 5.54 68.70 ± 2.50 70.66 ± 3.19 72.77 ± 4.03 69.88± 7.25 66.46 ± 1.84

Table 2. ImageNet dataset. Classification accuracies for one-vs-all binary classifications. The BoW from the whole image is the main

view, and the BoW from the bounding box region is the auxiliary view. Best accuracies are highlighted in boldface.

randomly select the same number of positive and negative

samples for training, and the same for testing. Each exper-

iment is repeated 10 times and average classification accu-

racy and standard deviation are reported.

Kernels: We use the linear and the histogram intersection

(HIK). Due to space constraints we report table results for

the linear case, and include figures for the HIK. Tables for

more non-linear kernels are omitted for lack of space.

HMDB dataset: The HMDB dataset [19] is a video dataset

for action recognition, composed of 51 classes. Each class

has approximately 100 videos. We have randomly selected

10 classes, and we have considered the binary classifica-

tion between one class versus the rest. With this experiment

we test whether computing an auxiliary feature only during

training, can be used to improve the recognition during test-

ing. This would mean a performance improvement while

saving computing power. For every video we extracted two

bag-of-word (BoW) representations, one given by HOF de-

scriptors, and one by HOG descriptors. We used dictio-

naries of size 400, learned with VLFeat [39]. We used 70

samples per class for training and 30 for testing. The HOF

descriptors were set to the main view, and the HOG’s rep-

resented auxiliary information. Table 1 collects the classifi-

cation accuracies for the linear kernel. As expected, LUPI

classifiers improve upon single-view, and LMIBPI outper-

forms the others 8 out of 10 times in the linear case, and 6

times with HIK. See Figure 4 (top row).

Time complexity: LMIBPI estimates F only once, and

then iterates between optimizing A and a SVM. Both com-

ponents are fast, also thanks to the derivation in the primal

space. In addition, Figure 5 shows the accuracy conver-

gence for the drink class of the HMDB dataset for dif-

ferent m’s. We observed that less than 10 iterations were

enough to reach convergence most of the time.

ImageNet dataset: We use the ImageNet [31] object cate-

gories of the 2012 challenge, also used in [33]. This sub-

set has bounding box annotations, and we test whether they

can improve recognition when used as auxiliary informa-

tion. We use the group of snakes, which has 17 classes,

for a total of 7746 images (some bounding boxes did not

have images). For each sample we extracted a BoW from

the entire image to be used as main view, and a BoW from

the image portion in the bounding box to be used as auxil-

iary view. The descriptor used was dense SIFT [39] with a

vocabulary size of 400. The classification task is between

one snake class versus all the others. We use 200 samples

per class for training and the rest for testing. Table 2 sum-

marizes the classification accuracy results. Even here LUPI

classifiers improve upon single-view, and LMIBPI outper-

forms the others 10 out of 17 times in the linear case, and

13 times with HIK. See Figure 4 (middle row).

CGD2011 dataset: The CGD2011 dataset [2] contains

20 gesture classes, each of which has about 400 RGB-D

videos, along with skeleton tracking data. Since skele-

ton tracking is typically more expensive to obtain, we test

whether by using it as auxiliary data it can boost perfor-

mance. We perform one-vs-all classification with 100 sam-

ples per class for training and 90 for testing. We used a

BoW with dictionary size 100 based on HOF features as

main view. For the auxiliary view, from a video we ex-

tract a histogram of the joint positions, accumulated over

all the frames of the sequence. Specifically, at every frame

we place a spatial grid aligned with the head position of an

individual and bin the position of each of the joints with

respect to the grid. The resulting count is normalized and

produces a histogram with 100 bins Table 3 shows the clas-

sification accuracies. The LUPI classifiers improve upon

single-view, and LMIBPI outperforms the others 11 out of

20 times in the linear case, and all the times with HIK. See

Figure 4 (bottom row).

AwA dataset: We use the Animals with Attributes (AwA)

dataset [20], which contains images of animal categories,

and repeat the same experiment performed in [33, 42]. We

use the 10 test classes for which the attribute annotations are

provided, for a total of 6180 images. The attributes capture

85 properties of the animals. We use the same set of fea-

tures used in [33]. The main view is given byL1 normalized

2000 dimensional SURF descriptors, and the attributes are

the auxiliary view obtained from the DAP model [20]. We

train 45 binary classifiers for each class pair combination.
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LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

vieniqui 52.89 ± 1.98 49.72 ± 4.96 52.83 ± 6.24 52.11 ± 4.83 50.27 ± 4.20 51.16 ± 4.50 48.33 ± 4.84 54.00 ± 1.32 56.50 ± 5.06 50.72 ± 2.99 52.66 ± 3.38

prendere 53.95 ± 4.23 52.39 ± 3.00 56.38 ± 4.10 54.50 ± 3.87 58.05 ± 2.34 54.83 ± 3.16 52.44 ± 3.34 57.28 ± 4.18 61.61 ± 8.32 56.50± 3.54 57.50 ± 2.72

sonostufo 55.95 ± 2.56 52.27 ± 3.97 57.00 ± 4.61 57.11 ± 4.19 59.44 ± 3.74 54.05 ± 4.29 51.33 ± 3.56 59.28 ± 2.19 66.33 ± 7.25 58.88± 4.47 57.00 ± 4.55

chevuoi 60.00 ± 5.62 57.55 ± 4.16 57.72 ± 5.12 55.22 ± 3.16 54.77 ± 4.24 59.22 ± 4.22 57.00 ± 3.45 61.11 ± 2.84 65.83 ± 6.10 67.05± 2.12 61.11 ± 2.27

daccordo 61.53 ± 5.25 65.83 ± 3.34 67.00 ± 3.87 63.61 ± 2.34 65.50 ± 5.28 67.00 ± 3.59 63.27 ± 3.40 64.86 ± 3.94 67.33 ± 8.25 74.83± 3.54 65.66 ± 4.69

perfetto 66.61 ± 4.05 64.55 ± 4.54 62.05 ± 3.46 60.11 ± 4.60 64.16 ± 2.40 64.94 ± 4.79 65.83 ± 4.26 67.72 ± 7.71 68.11 ± 7.23 64.05± 3.78 66.16 ± 5.14

vattene 61.83 ± 7.02 65.66 ± 3.19 62.27 ± 2.16 61.83 ± 5.43 64.55 ± 4.07 65.72 ± 1.88 63.88 ± 3.24 65.11 ± 5.07 68.70 ± 4.21 67.44± 3.47 66.83 ± 2.74

basta 67.00 ± 6.56 65.11 ± 5.18 65.44 ± 3.35 63.38 ± 4.37 64.11 ± 2.55 65.27 ± 3.91 62.72 ± 5.42 68.11 ± 4.28 69.22 ± 6.32 74.94± 6.21 72.11 ± 4.87

buonissimo 56.56 ± 8.02 52.44 ± 12.1 58.64 ± 6.57 58.55 ± 5.18 55.94 ± 5.17 56.05 ± 5.82 54.50 ± 4.52 57.67 ± 5.71 61.50 ± 2.35 65.38± 6.76 55.11 ± 5.00

cheduepalle 63.89 ± 2.01 66.27 ± 2.29 66.44 ± 2.82 65.83 ± 2.87 67.33 ± 3.33 66.66 ± 1.81 64.94 ± 2.47 67.72 ± 2.01 68.11 ± 3.05 76.05± 2.67 70.72 ± 2.85

cosatifarei 58.78 ± 6.20 61.99 ± 3.29 62.33 ± 4.03 61.50 ± 4.17 61.61 ± 4.40 64.50 ± 3.55 61.50 ± 5.25 62.11 ± 4.98 67.17 ± 6.24 64.88± 4.40 63.94 ± 5.75

fame 61.11 ± 5.23 59.55 ± 2.98 60.66 ± 2.87 61.38 ± 3.34 62.66 ± 3.90 63.38 ± 3.47 58.33 ± 1.50 60.55 ± 2.35 66.61 ± 7.22 65.94± 3.52 61.44 ± 4.40

noncenepiu 53.83 ± 1.99 52.61 ± 4.39 53.11 ± 3.55 53.83 ± 2.70 52.94 ± 3.21 54.94 ± 4.71 51.33 ± 3.73 54.94 ± 3.01 58.55 ± 5.23 55.83± 5.57 56.44 ± 4.21

furbo 63.39 ± 5.06 67.27 ± 3.56 65.22 ± 3.65 63.00 ± 3.10 66.33 ± 1.53 68.66 ± 3.30 66.05 ± 2.93 68.70 ± 4.65 72.22 ± 4.31 73.05± 1.87 70.22 ± 4.71

combinato 56.67 ± 7.26 56.33 ± 2.41 59.83 ± 3.73 58.55 ± 4.55 61.05 ± 3.38 58.83 ± 2.61 55.83 ± 2.43 62.11 ± 2.26 65.83 ± 6.32 75.00± 2.83 64.05 ± 3.66

freganiente 55.00 ± 4.25 52.38 ± 3.21 58.77 ± 3.28 56.94 ± 4.56 54.05 ± 6.20 56.94 ± 3.74 53.00 ± 3.12 59.28 ± 4.89 64.16 ± 3.95 58.05± 4.77 54.44 ± 4.59

seipazzo 60.61 ± 6.52 57.16 ± 4.58 55.50 ± 4.89 55.00 ± 3.92 53.55 ± 3.90 60.05 ± 3.23 58.05 ± 4.37 61.72 ± 5.02 65.44 ± 6.03 70.77± 2.97 61.94 ± 5.92

tantotempo 59.89 ± 5.15 61.50 ± 2.95 60.75 ± 3.75 59.27 ± 3.63 63.66 ± 1.96 62.22 ± 2.35 61.27 ± 2.75 63.80 ± 3.72 67.27 ± 3.25 70.83± 3.22 65.33 ± 2.74

messidaccordo 54.83 ± 1.34 53.49 ± 8.88 57.15 ± 4.47 59.05 ± 4.67 59.05 ± 2.98 58.44 ± 2.39 55.66 ± 3.43 55.94 ± 3.17 59.05 ± 5.23 54.50± 4.76 58.50 ± 4.92

ok 53.06 ± 2.98 51.83 ± 2.95 56.50 ± 10.2 53.44 ± 3.62 52.50 ± 2.78 53.88 ± 3.39 50.22 ± 2.79 56.39 ± 2.19 60.75 ± 6.35 51.27± 3.43 52.77 ± 3.16

Table 3. CGD2011 dataset. Classification accuracies for one-vs-all binary classifications. The HOF features are used as main view, and

histograms of joint positions are used as auxiliary view. Best accuracies are highlighted in boldface.

LMIBPI LMIBPI

1 Chimpanzee versus Giant panda 88.32 ± 0.33 24 Leopard versus Seal 95.18 ± 0.33

2 Chimpanzee versus Leopard 94.05 ± 0.10 25 Persian cat versus Pig 82.27 ± 0.24

3 Chimpanzee versus Persian cat 90.76 ± 0.19 26 Persian cat versus Hippopotamus 92.38 ± 0.32

4 Chimpanzee versus Pig 87.32 ± 0.17 27 Persian cat versus Humpback whale 97.42 ± 0.25

5 Chimpanzee versus Hippopotamus 90.21 ± 0.12 28 Persian cat versus Raccoon 91.24 ± 0.18

6 Chimpanzee versus Humpback whale 97.76 ± 0.26 29 Persian cat versus Rat 70.49 ± 0.45

7 Chimpanzee versus Raccoon 88.21 ± 0.27 30 Persian cat versus Seal 88.41 ± 0.36

8 Chimpanzee versus Rat 85.31 ± 0.29 31 Pig versus Hippopotamus 73.42 ± 0.12

9 Chimpanzee versus Seal 93.11 ± 0.23 32 Pig versus Humpback whale 95.93 ± 0.12

10 Giant panda versus Leopard 92.95 ± 0.20 33 Pig versus Raccoon 82.19 ± 0.15

11 Giant panda versus Persian cat 92.82 ± 0.32 34 Pig versus Rat 73.31 ± 0.25

12 Giant panda versus Pig 86.71 ± 0.40 35 Pig versus Seal 83.11 ± 0.43

13 Giant panda versus Hippopotamus 91.12 ± 0.29 36 Hippopotamus versus Humpback whale 90.11 ± 0.28

14 Giant panda versus Humpback whale 98.82 ± 0.14 37 Hippopotamus versus Raccoon 84.46 ± 0.36

15 Giant panda versus Raccoon 89.21 ± 0.30 38 Hippopotamus versus Rat 86.11 ± 0.26

16 Giant panda versus Rat 89.13 ± 0.25 39 Hippopotamus versus Seal 70.49 ± 0.41

17 Giant panda versus Seal 93.81 ± 0.19 40 Humpback whale versus Raccoon 96.97 ± 0.27

18 Leopard versus Persian cat 94.97 ± 0.22 41 Humpback whale versus Rat 93.89 ± 0.19

19 Leopard versus Pig 87.31 ± 0.21 42 Humpback whale versus Seal 86.13 ± 0.17

20 Leopard versus Hippopotamus 92.71 ± 0.16 43 Raccoon versus Rat 79.63 ± 0.14

21 Leopard versus Humpback whale 98.61 ± 0.26 44 Raccoon versus Seal 91.63 ± 0.36

22 Leopard versus Raccoon 80.12 ± 0.22 45 Rat versus Seal 79.21 ± 0.28

23 Leopard versus Rat 90.13 ± 0.21 Average 88.38

Table 4. AwA dataset. AP results for one-vs-one classification.

Bold numbers represent the cases where LMIBPI improves per-

formance upon SVM, SVM+, RankTr, and LIR [42].

We use 50 and 200 samples per class for training and test-

ing, respectively. The train/test split is repeated 20 times.

For fair comparison with [33, 42] we use the linear kernel.

Due to the limited space Table 4 reports only the average

precision (AP) results for our approach, where we have in-

dicated in bold when LMIBPI has improved the AP, which

happens 20 times out of 45, and 12 times the improvement

is significant according to the z-test. The table including

the results of the other approaches can be found in [42].

Figure 5 shows that SVM has the highest AP 3 times, SVM+

1 time, RankTr 9 times, and LIR [42] 12 times.

8. Conclusions

In order to develop a general approach for improving vi-

sual recognition when auxiliary information is available at

training time, we have taken an information theoretic ap-

proach, and have extended the IB principle to IBPI. In ad-

dition, we have expanded it further for learning any type of

classifier based on risk minimization, where training sam-

ples with missing auxiliary view can be handled seamlessly.

We have applied this new IBPI principle to derive LMIBPI,
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SVM wins SVM+ wins RankTr wins LIR wins LMIBPI wins

Figure 5. Rate of convergence and AwA dataset. Left: Plot

showing the convergence rate for different m’s for the drink

class of the HMDB dataset. Right: Plot showing the differences

between the AP of the winner LUPI method against the average

accuracy over the following methods: SVM (yellow), SVM+ (ma-

genta), RankTr (cyan), LIR (red), and LMIBPI (green).

a large-margin classifier for which we provide an optimiza-

tion procedure in the primal space (which takes about 10

iterations to converge). The experiments show that the IBPI

principle can leverage several types of auxiliary informa-

tion, like supplemental visual features, bounding box an-

notations, 3D skeleton tracking data, and animal attributes,

and uses them for improving visual recognition, by learn-

ing a classifier that is better than the corresponding single-

view version. The experiments also show that the proposed

approach is more effective than just reducing a multi-view

method to work with a missing view. Finally, the proposed

LMIBPI outperforms all the state-of-the-art LUPI classi-

fiers on the examined datasets.
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