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Abstract

Many recent delineation techniques owe much of their

increased effectiveness to path classification algorithms

that make it possible to distinguish promising paths from

others. The downside of this development is that they re-

quire annotated training data, which is tedious to produce.

In this paper, we propose an Active Learning approach

that considerably speeds up the annotation process. Unlike

standard ones, it takes advantage of the specificities of the

delineation problem. It operates on a graph and can reduce

the training set size by up to 80% without compromising the

reconstruction quality.

We will show that our approach outperforms conven-

tional ones on various biomedical and natural image

datasets, thus showing that it is broadly applicable.

1. Introduction

Complex curvilinear structures are widespread in nature.

They range in size from solar filaments as seen through

telescopes to road networks in aerial images, blood vessels

in medical imagery, and neural structures in micrographs.

These very diverse structures have different appearances

and it has recently been shown that training classifiers to

assess whether an image path is likely to be a structure of

interest is key to improving the performance of automated

delineation algorithms [29, 28, 3, 22, 19, 30].

However, while such Machine-Learning based algo-

rithms are effective, they still require significant amounts

of manual annotation for training purposes. For everyday

scenes, this can be done by crowd-sourcing [17, 15]. In

more specialized areas such as neuroscience or medicine,

this is impractical because only experts whose time is scarce

and precious can do this reliably. This problem is particu-

larly acute when dealing with 3D image stacks, which are

much more difficult to interact with than regular 2D im-

ages and require special expertise. It is further compounded

by the fact that data preparation processes tend to be com-

plicated and not easily repeatable leading the curvilinear

(a) (b)

Figure 1: Images of two different neural structures obtained

using confocal microscopy. The enormous variety of curvi-

linear structures requires problem-specific training datasets

even in case of the same modality.

structures to exhibit very different appearances as shown in

Fig. 1. This means that a classifier trained on one acquisi-

tion will not perform very well on a new one, even when

using the same modality.

In this paper, we propose an Active Learning (AL) ap-

proach that exploits the specificities of delineation algo-

rithms to massively reduce the effort and drudgery involved

in collecting sufficient amounts of training data. At the heart

of all AL methods is a query mechanism that enables the

system to ask a user to label a few well chosen data samples,

which it has selected based on how informative the answers

are likely to be. AL has been successfully deployed in ar-

eas such as Natural Language Processing [27], Computer

Vision [11], and Bioinformatics [16]. While it has made it

possible to train classifiers with less of human intervention,

none of the algorithms can exploit the fact that, for delin-

eation purposes, the paths to be annotated form a graph in

which neighborhood and geometric relationships can and

should be considered.

In our approach, we explicitly use these relationships

to derive multi-sample entropy estimates, which are bet-

ter surrogates of informativeness than the entropy of indi-

vidual samples that is typically used [13]. As a result, our
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queries focus more effectively on ambiguous regions in im-

age space, that is, those at the boundary between positive

and negative examples.

To avoid having to retrain the system after each individ-

ual query and further increase efficiency, we also integrate

into our approach a batch strategy that lets the system ask

the user several questions simultaneously. It incorporates

density measures that ensure that the batches are diverse in

features, representative of the delineation problem at hand

and located near each other in the images so as to facilitate

the interaction. This is particularly important in 3D vol-

umes where scrolling from one region to another far away

is cumbersome and potentially confusing for the user.

In short, our contribution is an AL approach that is tai-

lored for the delineation of complex linear structures. In

that sense, it is specialized. However, it is also generic in

the sense that it can handle a wide variety of different struc-

tures. We will show that it outperforms more traditional

approaches on both 2- and 3-D datasets representing differ-

ent kinds of linear structures, that is, roads, blood vessels,

and neural structures.

In the reminder of this paper, we first review existing AL

techniques applicable to our problem and discuss their lim-

itations for this purpose. We then introduce our approach

and show how we combine information propagation and

density measures to streamline the annotation process. Fi-

nally, we compare the performance of our approach against

conventional techniques.

2. Related Work

AL is predicated on the idea that, given even very small

amount of annotated data, the learning algorithm can ac-

tively choose additional instances that would be most prof-

itable to label next. Starting from a small randomly cho-

sen and manually annotated set of samples, iterating this

process can drastically reduce the need for further human

annotation since only the most informative ones are con-

sidered. This has been demonstrated in applications rang-

ing from Natural Language Processing to Bioinformatics in

which unlabeled data is readily available but annotation is

expensive [24].

All such AL methods require a criterion for sample se-

lection. The most popular one is uncertainty, usually de-

fined as proximity to the classifier’s decision boundary.

When the classifier is probabilistic, this can be evaluated

in terms of entropy [25]. In practice, Uncertainty Sampling

can be incorporated into most supervised learning methods

such as SVMs [27], Boosting [9] and Neural Networks [4].

Another family of AL algorithms called query-by-

committee [5] uses different automated “experts” to assign

potentially different labels to each sample. Those for which

the disagreement is the greatest are prime candidates for

manual annotation.

Most practical AL algorithms allow the human to anno-

tate batches of samples before retraining the classifier. This

spares the need to wait for potentially lengthy computations

to finish between each intervention. However, Uncertainty

Sampling as described above can easily end up querying

outliers and in batch mode - redundant instances, which

is inefficient. This is usually addressed by considering not

only the information gain potentially delivered by labelling

each individual sample, but also the representativeness of

each batch, which is accomplished by density-based meth-

ods. In [25], Settles and Carven introduce a information

density-weighted framework, which favours samples that

are not only uncertain but also representative of the under-

lying distribution. The main problem associated with this

approach is finding the weighting of the two terms. Li and

Guo [14] propose choosing a weight at each iteration that

would minimise the future generalisation error. This ap-

proach is however computationally expensive, as it requires

recomputing the underlying model many times and may ad-

ditionally lead to overfitting. Recently, Ebert et al. [6] pro-

posed exploiting Reinforcement Learning to induce time-

varying trade-off between exploration and exploitation sam-

pling criteria.

Most of the methods discussed above originate from

fields other than that of Computer Vision. They rarely ex-

ploit the contextual or spatial relations that are prevalent in

images except for a few cases. In [26] contextual image

properties are used to find the image regions that would con-

vey the most information about other uncertain areas with

which they are contextually related. In [18] a perplexity

graph modelling similarities between images enables effi-

cient hierarchical subquery evaluation. In video segmenta-

tion application [8], the obtained labels are propagated in

a semi-supervised manner on a graph consisting of spatial,

temporal and prior edges. Then, the most uncertain frame is

selected for the next annotation. We will show that propa-

gating information after preliminary classification and com-

puting uncertainty only after this acts as a regularizer and is

advantageous over estimating informativeness based only

on the result of classifier. The AL approach to segmenting

CT scans of [10] incorporates context in terms of genera-

tive anatomy models. The notion of geometric uncertainty

for segmentation is introduced in [12]. Like our algorithm,

it relies on exchanging probability values between neigh-

bours, but does not account for dataset diversity.

3. Active Learning for Delineation

Graph-based network reconstruction algorithms have re-

cently shown superior performance compared to methods

based on segmentation. They not only recover the geometry

of the problem, but also the correct connectivity, which is

crucial in applications such as neuroscience [22, 30, 19, 29,

28, 21]. They largely owe their performance to supervised
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Machine Learning techniques that allow them to recognize

promising linear paths.

These methods usually start by computing a tubular-

ity measure, which quantifies the likelihood that a tubular

structure exists at given image location. Next, a set of sub-

sampled high-tubularity superpixels [22, 30, 19] or longer

paths [29, 28, 3, 21] are extracted. Each of them can be

considered as an edge ei belonging to overcomplete spa-

tial graph G and characterized by a feature vector xi. Given

two possible class labels (yi = 1 ) and (yi = 0 ) , a discrim-

inative classifier assigns to each edge ei probability of be-

longing to the structure of interest p(yi = 1 |xi) or to the

background, p(yi = 0 |xi).
The optimal subgraph T ⇤ can then be taken to be tree

that minimizes the cost function over all trees T that are

subgraphs of G

X

ei2ET

− log
p(yi = 1|xi)

p(yi = 0|xi)
, (1)

where ET represents the edges of T . Provided that one

does not take into account the geometry of the tree but only

its topology, this can be shown to be Maximum a Posteriori

estimate. In practice, however, it is more effective to for-

mulate the MAP problem in terms of pairs of consecutive

edges. This makes it possible to introduce better geometric

constraints [29] and to find generic subgraphs as opposed to

only trees [28].

Whether using single edges or pairs, the key require-

ment for this kind of approach to perform well is that the

classifiers used to estimate the probabilities of Eq. 1 should

be well-trained. This is especially important in ambiguous

parts of the images such as those depicted by Fig. 2.

This necessitates significant amounts of ground-truth an-

notations to capture the large variability of the data and

to cope with imaging artefacts and noise. To decrease the

amounts of necessary time and effort, we introduce an AL

algorithm that is suited to delineation problems represented

on a graph. At each iteration it selects a sequence of con-

secutive edges from an overcomplete graph, such as the one

described above, which should be labeled next in order to

decrease the uncertainty in the most ambiguous image re-

gions.

In theory the sequences could be of arbitrary length, that

is 1,2, or more. In practice, we will see that 2 is near optimal

because 2 consecutive edges are enough to capture some

amount of geometry and because querying at each iteration

more than 2 edges does not update the model frequently

enough.

In the results section, we will use the algorithm of [28],

which operates on edge pairs to produce the final delin-

eations.1 However, our approach is generic and could be

1The code is not publicly available but the authors gave us a binary

(a) (b)

(c) (d)

Figure 2: Ambiguous image regions. (a) Branch intersec-

tion. (b) Discontinuities due to uneven tissue staining. (c)

Discontinuities due to occlusion by a tree. (d) Linear struc-

tures such as driveways that should be ignored.

used in conjunction with any delineation pipeline that rep-

resents the problem on a graph and requires supervised edge

classification.

4. Approach

In this section, we first cast the traditional Uncertainty

Sampling approach into our chosen delineation framework.

We then introduce our approach to probability propagation

designed to rapidly identify ambiguous image regions and

prevent the so-called sampling bias that may lead the classi-

fier to explore irrelevant parts of the feature space. Finally,

we combine this with an approach to batch density-based

learning that simplifies the interaction while guaranteeing

that the batches are representative and diverse enough to

achieve rapid convergence.

4.1. Random and Uncertainty Sampling

The simplest strategy for picking samples to be anno-

tated is to randomly choose them from a pool of unlabeled

ones in so called Random Sampling (RS). As discussed in

Section 2, Uncertainty Sampling (US) is a simple and pop-

ular approach to more efficient learning by querying first

the most uncertain samples according to a metric, such as

Shannon entropy.

version of it.
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In our case, as discussed in Section 3, each edge ei of

the spatial graph G is assigned a feature vector xi computed

from the pixels surrounding the corresponding path. Let

pt(yi = y|xi) for y ∈ {0, 1} (2)

be the probabilities computed by classifier Ct after t AL

iterations that ei lies on the centreline of a true structure

or not. Let also St be the set of Nt annotated samples

(xj , yj)1jNt
used to train Ct. p0 denotes the probabil-

ities returned by the classifier using the small initial batch

S0 of annotated samples. When training is complete after T
iterations, pT is then used to compute the probabilities that

appear in Eq. 1.

Given a classifier Ct−1 trained using the training set

St−1, AL iteration t involves choosing one or more unla-

beled edges, asking the user to label them, adding them to

the training set St−1 to form St and, finally, training clas-

sifier Ct. In RS, this is done by randomly picking one or

more x not already in St−1. In US, it is done by computing

for each x the entropy:

H(x) = − log(pt−1(y = 0|x))pt−1(y = 0|x)

− log(pt−1(y = 1|x))pt−1(y = 1|x) (3)

and selecting the vector(s) with the highest entropy. Since

H(x) is largest when the classifier returns a 0.5 value and

minimum when it returns values close to zero or one, this

assumes that those vectors whose probability of being a true

path is computed to be 0.5 are the most uncertain and clos-

est to the decision boundary. Therefore annotating them is

likely to help refine the shape of that boundary.

This approach can be effective but it can also fall victim

to sampling bias. This happens when the current classifier

is so inaccurate that its decision boundary is far away from

the real one and the learner ends up focusing on an irrelevant

part of the feature space. Our approach is designed to avoid

this trap.

4.2. Probability Propagation

The probability pt returned by the path classifier takes

into account the appearance of only a single path. By doing

so, it neglects the information present in the wider neigh-

borhood, provided by the other paths in the graph that share

an endpoint with it. In particular, it ignores the fact that

contiguous paths are more likely to share labels than non

contiguous ones.

To account for this, we took inspiration from the semi-

supervised learning method of [31] and implemented a

modified version of it that propagates probabilities instead

of labels. There, the label propagation is used to classify

a large pool of unlabelled examples having only a few la-

belled instances. In our Probability Propagation Sampling

(PPS) strategy we propagate the probabilities assigned by

the base classifier to identify samples that differ signifi-

cantly from their neighbourhood i.e. those that after reg-

ularization will have probability closest to 0.5.

Let P0 be an N × 2 matrix. Its entries are the probabili-

ties pt(yi = y|xi) of Eq. 2 for all N samples and y ∈ {0, 1},

except for already annotated ones for which we clamp the

values to zero or one depending on their label. The infor-

mation is then propagated as follows:

1. Build an N × N affinity matrix W ∈ R
N⇥N with

elements wij = exp(−||xi − xj||
2/2σ2) if ei and ej

share a node and zero otherwise.

2. Build a symmetric matrix S = D
−1/2

WD
−1/2,

where D is diagonal with elements dii =
P

j wij .

3. Iterate Pi+1 = αSPi+(1−α)P0 followed by normal-

ization of the rows of Pi+1 until convergence, where

α ∈ (0, 1) specifies how much information is ex-

changed between neighbors and how much of the orig-

inal information is retained. The series was shown to

converge to P
⇤ = (I−αS)−1

P0 [31] and we will use

the closed-form solution.

The complexity of the propagation algorithm is O(N3) and

of computing similarity matrix W - O(N2D), where D is

feature dimensionality. After the probability propagation,

we can compute the entropy of each path at AL iteration t,

but this time using the new estimates of probability p⇤:

H(x) = − log(p⇤t−1(y = 0|x))p⇤t−1(y = 0|x)

− log(p⇤t−1(y = 1|x))p⇤t−1(y = 1|x) (4)

4.3. Density-based Batch Query

The scheme of Section 4.2 involves retraining the classi-

fier each time the user has annotated a new sample, forcing

them to wait for the computation to be over before interven-

ing again. As discussed in Section 2, this is impractical and

most practical AL approaches work in batch-mode, that is,

they allow the user to annotate several samples before re-

training.

In our case, samples are image paths and it is much eas-

ier to sample several paths in the same image region than

over a wide space, which would imply scrolling through a

potentially large 2D image or, worse, 3D image stack. Our

solution to this is to present the annotator with consecutive

paths represented by adjacent edges in the spatial graph G
of Section 3. However, in order to be effective, individual

paths should be:

1. informative to ensure that the new labels truly bring

new information,

2. representative, that is, inliers of the statistical distribu-

tion of all samples,
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3. diverse, that is, different from each other and from the

already labeled ones.

The entropy measure of Eq. 4 can be used to assess the first

of these three desirable properties. To measure the other

two, we use the N × N affinity matrix fW obtained us-

ing the same parameters as the matrix W of Section 4.2,

but whose elements are measures of pairwise similarity be-

tween each of the N samples in the feature space, not only

the neighbours in image.

Let L be the indices of already labelled edges and Ek be

the set of all possible edge index combinations denoting k
consecutive paths. For each E ∈ Ek, we can compute the

following similarity measures:

σG(E) =
X

i2E

X

1jN

wij (5)

σL(E) =
X

i2E

X

l2L

wil (6)

σI(E) =
X

i2E

X

j2E,j 6=i

wij , (7)

where σG(E) is a global similarity measure, σL(E) mea-

sures similarity to already labelled samples and σI(E) sim-

ilarity within the batch. Intuitively, we want to maximize

σG to ensure representativeness and minimize σL and σI to

improve diversity and explore the whole feature space. We

therefore take

µ(E) =
σG(E)− σL(E)− σI(E)

σG(E)
, (8)

to be our measure of both diversity and representativeness.

This formulation does not require constructing any addi-

tional graphs in the feature space.

4.4. Combining Informativeness and Density Mea-
sure

PPS allows us to take advantage of the current model

while density-based query enables exploration of the feature

space. In order to combine those two effects at each AL

iteration we query the batch

E⇤ = argmax
E2Ek

µ(E)(
X

i2E

H(xi)) (9)

where H is the entropy measure of Eq. 4 and µ(E) is cal-

culated as in Eq. 8. In our Density-Probability Propagation

Sampling (DPPS) the effects of exploration and exploita-

tion are balanced during AL.

5. Results

In this section, we present our results; we first describe

our experimental setup and baselines. We then introduce

a synthetic dataset to help visualize the query decisions

made by the different strategies. Finally, we show that our

approach outperforms the conventional and state-of-the-art

techniques on four real datasets.

5.1. Experimental Setup

We apply our AL approach for reconstruction of curvi-

linear networks in 2- and 3-D images. As discussed in

Section 3, the overcomplete graphs, as well as the final

delineations obtained once the classifiers have been prop-

erly trained are constructed using the delineation algorithm

of [28]. The feature vectors associated to each path are

based on Histogram of Oriented Gradients specially de-

signed for linear structures. They capture the contrast, ori-

entation, and symmetry of the paths.

The probabilities of Eq. 1 are computed by feeding the

feature vectors to Gradient Boosted Decision Trees [2] with

an exponential loss. We found it well suited to interactive

applications because it can be retrained fast, that is in under

3s for all the examples we show in this paper. To avoid

overfitting especially in the initial stages of AL, we set the

number of weak learners to 50, maximum tree depth to 2

and shrinkage to 0.06. Each tree is optimized using 50%

of randomly selected data. Out of possible 303 features, 50

are investigated at each split. The classifier returns score F

that can be then converted to probability using the logistic

correction [20], that is,

p(y = 1|x) =
1

1 + exp(−2F (x))
. (10)

The edge connectivity matrix of Section 4.2 is computed on

the basis of the overcomplete graphs.

The annotated ground truth data we have for all datasets,

allows us to simulate the user intervention. We assume

edges that are 10 pixels/voxels apart from the correspond-

ing ground-truth path and with a normalised intersection

exceeding 0.5 to be positive. We start each query by a

random selection of 4 data points belonging to each class

(background/network). Unless stated otherwise, we query

2 consecutive paths during each iteration and this choice is

explained in Section 5.4. We proceed until the total number

of labelled samples reaches 100. Each AL trial is repeated

30 times and the results are then averaged.

5.2. Baselines

We compare the two versions of our approach, Proba-

bility Propagation Sampling (PPS) and Density Probability

Propagation Sampling (DPPS) as described in Sections 4.2

and 4.4, to the following baselines:

• Random Sampling (RS) - selecting a random pair at

each iteration.
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(a) (b) (c)

(d)

Figure 3: Synthetic dataset: (a) samples in the Euclidean space (b) samples in the feature space. (c) Classification results. (d)

Query heat-maps in the feature space; the red circle indicates the optimal decision boundary. Best viewed in color.

• Uncertainty Sampling (US) - selecting a pair with the

highest sum of individual entropies as given by Eq. 3.

• Query-By-Committee (QBC) - selecting a pair that

causes the greatest disagreement in a set of hypothe-

ses, here represented by trees in a Random Forest. We

measure the disagreement using the definition of [5].

Moreover, we compare the real datasets also to the follow-

ing state-of-the art methods:

• Information Density (ID) [25] - similarly to our

method it combines uncertainty and density terms to

select the next sample.

• Reinforcement Active Learning Formulation

(RALF) [6] - combines AL and reinforcement

learning that allows for time-varying trade-off

between exploration and exploitation.

For calibration purposes, we also report the classifica-

tion performance using all the available training data at once

(Full), that is, without any AL.

5.3. Synthetic Dataset

To compare the qualitative behavior of different strate-

gies, we create a synthetic dataset. In the image space de-

picted by Fig. 3a, a positive class is surrounded by a neg-

ative one, which resembles what happens when trying to

find real linear paths surrounded by spurious ones. We cre-

ated feature space depicted by Fig. 3b by transforming the

image coordinates and adding random noise so that the de-

cision boundary in feature space does not correspond to the

one in Euclidean space. We built the required spatial graph

by connecting each point to its 10 nearest-neighbors in im-

age space. We compute the weighting matrix W using RBF

kernel with σ = 1 and set probability propagation α to 0.9.

As can be seen in Fig. 3c, PPS and DPPS outperform the

baselines and after querying 90 examples match the perfor-

mance obtained by training on the whole training set. This

corresponds to a 80% reduction in annotation effort. Fur-

thermore, DPPS does better than PPS early on.

In Fig. 3d, we use a heat map in feature space to de-

pict the the most frequently queried regions and overlay

the optimal decision boundary in red. They indicate that

propagating information in a spatial graph helps refine the

search space faster than simple uncertainty query. Intro-

ducing density measures further constrains the search space

making the process more effective and sampling more uni-

formly around the optimal decision boundary.

5.4. Real Datasets

Roads The dataset consists of 2D aerial images of roads.

They include road patches occluded by trees and contain

road-like structures such as driveways, thus making the

classification task difficult.
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(a) (b) (c) (d)

Figure 4: Training images with superimposed overcomplete graphs (a) Roads (b) Blood vessels (c) Axons (d) Brightfield

neurons.

(a) (b) (c) (d)

Figure 5: Classification results for the (a) Roads (b) Blood vessels (c) Axons (d) Brightfield neurons datasets. Shaded area

corresponds to one standard deviation.

RS US QBC ID RALF PPS DPPS

Roads 0.808 0.817 0.821 0.822 0.816 0.825 0.835

Blood vessels 0.942 0.944 0.955 0.943 0.948 0.953 0.956

BF neurons 0.625 0.653 0.646 0.665 0.658 0.673 0.697

Axons 0.818 0.821 0.811 0.821 0.816 0.830 0.836

Table 1: Area under the learning curve for all tested meth-

ods. An example of such learning curve is depicted in

Fig.5a.

We compute the weighting matrix W using RBF kernel

with σ = 1 and set probability propagation α to 0.9. The

graph is constructed using only training data and during the

whole AL process the classifier does not have access to test

data. As shown in Fig. 5a and Table 1, both our approaches

outperform the baselines and reach the full-dataset perfor-

mance after as few as 50 samples, which corresponds to

75% reduction in annotation effort. Interestingly, the accu-

racy keeps increasing above the Full dataset accuracy. This

behavior was already reported in [23] and suggests that in

some cases a well chosen subset of data produces better

generalization than the complete set. The analysis of the

most frequently queried samples shown in Fig. 6a reveals

that our method selects mainly the occluded paths and those

at the intersections between two roads of different sizes or

a road and a driveway. They correspond to the ambiguous

cases discussed in Section 3 and presented in Fig. 2c and

Fig. 2d. This makes it possible to learn the correct connec-

tivity pattern and avoid mistakes as we postulated in Sec-

tion 3. To verify this, we compare not only the classification

performance, but also the quality of the final reconstruction.

We run the full reconstruction framework with classification

followed by an optimization step and evaluate the recon-

struction using the DIADEM score [1]. It ranges from 0 to

1 with 1 being a perfect reconstruction. As shown in Fig. 6c,

our approach outperforms the baselines also in terms of the

quality of the final reconstruction. Interestingly, we again

get a better result than by training with the Full dataset.

These results were obtained by querying pairs of edges.

To test the influence of the length of the sequences we query,

as discussed at the end of Section 3, we reran the experi-

ments using singletons, pairs, and triplets. As can be seen

in Fig. 7, using pairs tends to give the best results and this

is what we will do in the remainder of this paper. Note that

we assume that annotating one edge counts as one label, but

in reality the effort of annotating several consecutive edges

is less than labeling the same number of instances at ran-

dom locations, as the user does not need to scroll from one

region to another.

Blood vessels The image stacks depicting direction-

selective retinal ganglion cells were acquired with confocal

microscopes. They contain many cycles and branch cross-

ings. We compute the weighting matrix W using RBF ker-

nel with σ = 0.7 and set α to 0.9. As shown in Fig. 5b, our

two methods bring about improvements, especially at the
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(a) (b) (c) (d)

Figure 6: The most frequently queried samples for the (a) Roads and (b) Axons datasets. They often coincide with the

ambiguous cases as discussed in Section 3. Averaged DIADEM scores of final reconstruction for the (c) Roads and (d) Axons

datasets.

RS US QBC ID RALF PPS DPPS

Roads 0.00055 0.00040 0.00052 0.00036 0.00035 0.00036 0.00031

Blood vessels 0.00052 0.00071 0.00028 0.00027 0.00035 0.00019 0.00019

BF neurons 0.0040 0.0017 0.0008 0.0011 0.0012 0.0007 0.0003

Axons 0.00060 0.00061 0.00047 0.00032 0.00046 0.00048 0.00043

Table 2: Variance of the results.

beginning of AL.

Axons dataset consists of 3D 2-photon microscopy im-

ages of axons in a mouse brain. The main challenge associ-

ated with these images is low resolution in the z-dimension

resulting in some disjoint branches being merged into one,

which drastically changes the connectivity of the final solu-

tion.

We compute the weighting matrix W using RBF kernel

with σ = 3 and set α to 0.9. The accuracy plot (Fig. 5c)

reveals that yet again our method performs better than the

baselines, especially in the later stages of learning, and re-

sult in a 65% reduction in the training effort. As seen in

Fig 6b, the most frequently queried edges are concentrated

in the regions where two branches seem to intersect in the

xy-plane. In Fig. 6d we show that this again improves the

quality of the final reconstruction.

Brightfield neurons The dataset consists of 3D images

of neurons from biocytin-stained rat brains acquired us-

ing brightfield microscopy. As in the Axons dataset, the

z-resolution is low. The corresponding training graph is

much bigger than in the previous 2 cases and consists of

more than 3000 edges, most of which are negative. To as-

sess the performance of different methods, we compute the

VOC score [7] instead of accuracy. This is due to the fact

that in this dataset around 95% of the edges are negative and

the VOC score does not take into account true negatives. We

compute the weighting matrix W using RBF kernel with

σ = 1 and set α to 0.9. As seen in Fig. 5d and Table 1, our

methods outperform the baselines. For RALF, we can no-

tice the possible effects of bias trap, when the performance

does not change for a few iterations, even though more and

more labels are queried.

Note that each of the experiments was repeated 30 times

and the results are averaged. In Table 2 we present also

the variance of the results. In all but one cases except for

one PPS approach shows smaller variance than the base-

lines and DPPS yields even lower variance.

Figure 7: The classification performance for different batch

sizes for the Roads dataset.

6. Conclusion

In this paper we introduced an approach to incorporating

the geometrical information that increases the effectiveness

of AL for the delineation of curvilinear networks. Addition-

ally, we introduced a density-based strategy, which ensures

that the selected batches are informative, diverse and rep-

resentative of the underlying distribution. It also allows us

to query sequences of consecutive paths, further reducing

the annotation effort. Our approach showed superior perfor-

mance for a wide range of networks and imaging modalities

when compared to a number of conventional methods.
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