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Abstract

The uncalibrated photometric stereo problem for non-

Lambertian surfaces is challenging because of the large

number of unknowns and its ill-posed nature stemming from

unknown reflectance functions. We propose a model that

represents various isotropic reflectance functions by using

the principal components of items in a dataset, and for-

mulate the uncalibrated photometric stereo as a regression

problem. We then solve it by stepwise optimization utilizing

principal components in order of their eigenvalues. We have

also developed two techniques that lead to convergence and

highly accurate reconstruction, namely (1) a coarse-to-fine

approach with normal grouping, and (2) a randomized mul-

tipoint search. Our experimental results with synthetic data

showed that our method significantly outperformed previ-

ous methods. We also evaluated the algorithm in terms of

real image data, where it gave good reconstruction results.

1. Introduction

Photometric stereo is a technique for shape estimation

from the appearance of an object illuminated by various

light sources and captured by a fixed camera. The origi-

nal photometric stereo technique [32], proposed by Wood-

ham, is able to treat only Lambertian targets and assumes

that lighting positions are calibrated. Various types of ex-

tensions have been proposed such as the application to non-

Lambertian objects [3, 2, 28, 29, 11, 13, 10], overcoming

the necessity for lighting calibration [36, 5, 26, 22, 8, 15,

17, 16], adopting the environment of the perspective pro-

jection model [24, 20], and assuming near point lighting

sources [25, 31, 35].

In this paper, we tackle uncalibrated photometric stereo

for non-Lambertian reflection. Because the lighting direc-

tions and reflectance functions are involved as unknown pa-

rameters, this problem setting is quite challenging, with

few studies reported to date. In [26, 15], it is assumed

that the similarity of the intensity profiles is in propor-

tion to one of the normal orientations, which enables this

problem to be solved up to a binary convex/concave am-

biguity. Some methods [34, 17] enforce the symmetry

of isotropic bidirectional reflectance distribution functions

(BRDFs) about a half vector between a camera and light-

ing direction, which is observed in many materials. The

most recent method [16] utilizes a reference data and for-

mulates the uncalibrated photometric stereo as the match-

ing problem. While these existing methods work well in

some conditions, they strongly depend on various assump-

tions such as half-vector symmetry, good initial estimation,

and particular lighting distribution, and they fail when these

assumptions do not hold.

It is a common technique in calibrated photometric

stereo to represent specularity and retroreflection by para-

metric models such as the biquadratic model [28] and bi-

variate Bernstein polynomials [11]. Although they can be

effective with known lighting directions, they are difficult

to apply to uncalibrated cases because the solution space

expands enormously with the number of unknowns.

In this paper, we propose a new method solving uncali-

brated non-Lambertian photometric stereo, that formulates

a regression problem using an image formation model based

on principal component analysis (PCA). This is the first

work that incorporates the image formation model into un-

calibarated photometric stereo for general isotropic surfaces

to our best knowledge. This method estimates the surface

normals, lighting vectors, and reflectance properties simul-

taneously and accurately. We apply PCA to various BRDFs

in a database and represent any unknown BRDF as a lin-

ear combination of principal components as in [19], thereby

formulating the uncalibrated photometric stereo as a regres-

sion problem. We propose this strategy for two main rea-

sons. First, we can approximate various kinds of mate-

rials well by using the unique model. Second, although

it also has unknowns of the same number of basis func-

tions, this approach enables stepwise optimization. We can

roughly estimate surface normals, lightings, and basis coef-

ficients by using only a few principal components and then
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refine the estimations using more basis functions. By using

this strategy, we can reduce the search space appropriately

thanks to the property that principal components are ranked

according to the order of their influence. In order to solve

the minimizing problem, we have to deal with two difficul-

ties: (1) discreteness, and (2) strong nonlinearity. For prob-

lem (1), we prepare an additional parametric model separate

from the evaluation of the reprojection error and carry out

an approximate gradient estimation. For problem (2), we

propose a strategy based on a coarse-to-fine approach and

multipoint searching. In experiments, we compare our pro-

posal with recent techniques and our method shows state-

of-the-art performance.

2. Related Work

The original photometric stereo [32] assumes known di-

rectional lighting and Lambertian reflectance, which is one

of the simplest BRDF models. Subsequent methods have

aimed at expanding photometric stereo for more compli-

cated scenes and photographing environments.

Photometric stereo targeting a non-Lambertian object is

challenging because its reflectance properties are too com-

plicated and variable for accurate representation by a unique

parametric model. Some methods treat non-Lambertian ef-

fects as outliers and remove them using techniques such as

sparse regression [12], rank minimization [33], and color–

space rotation [18]. Although these methods are not ca-

pable of treating nonsparse effects such as rough specular-

ity, they can remove sharp specularity, digital noise, cali-

bration error, inter-reflections, and other obstacles. Other

methods formulate parametric models that can represent

specularity, such as the Torrance–Sparrow model [9], the

biquadratic model [28], and bivariate Bernstein polynomi-

als [11]. These flexible models are capable of treating vari-

ous reflections such as rough specularity or retroreflection.

Photometric stereo with uncalibrated lighting is also a

challenging problem. Most of the methods proposed so

far assume Lambertian surfaces because of their simplicity.

In [36], it was shown that uncalibrated photometric stereo

for a Lambertian object can be solved up to the general-

ized bas-relief (GBR) ambiguity [6] by enforcing integra-

bility. Many subsequent methods have tackled the problem

of GBR disambiguation, such as using color profiling [27],

local maxima [8], and entropy minimization [3].

Fewer methods exist for uncalibrated photometric stereo

with non-Lambertian objects. Instead of modeling BRDF

functions parametrically, they use other information such as

intensity profiles [26, 15], attached shadow [22], and the

symmetry of isotropic BRDFs [34, 17]. [16] employs ref-

erence BRDFs and solves the matching problem. They do

not represent BRDFs parametrically partly because it is dif-

ficult to achieve both an accurate approximation of a BRDF

and an efficient optimization at the same time with the large
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Figure 1: View centred coordinate system.

number of unknowns.

Our proposal method utilizes a BRDF dataset as in [16]

but in an entirely different way. It is based on a representa-

tion of a BRDF by using principal components of items in a

dataset as proposed in [19]. [19] conducts a dense measure-

ment and constructs a data-driven BRDF model. They also

apply PCA to the measured BRDFs in an effort to analyse

BRDFs. We utilize this semi-parametric model for photo-

metric stereo and formulate a regression problem, and re-

cover surface normals by solving it. Our contributions are

listed below.

1. We propose a new method solving uncalibrated non-

Lambertian photometric stereo, that utilizes PCA and

formulates a regression problem.

2. We propose an algorithm to enhance the global conver-

gence of discrete and highly nonlinear minimization

problems.

3. We expand our method for (1) calibrated photometric

stereo and (2) uncalibrated photometric stereo for a tar-

get with spatially varying reflectance.

4. In our experiments we show that our proposal out-

performs the state-of-the art methods for both un-

calibrated and calibrated photometric stereo for non-

Lambertian BRDFs.

3. Photometric Stereo Based on PCA

In this section, we formulate the uncalibrated photomet-

ric stereo as a regression problem based on PCA. Our prob-

lem setting is described as follows:

1. The positions of the camera and the object are fixed

across all images. We define the target’s position as the

origin and the camera direction as the z-axis of the or-

thogonal coordinates (see Fig. 1). Although isotropic

BRDFs depend on the camera direction v in addition

to surface normals and lighting vectors, we treat v as

a known fixed vector ([0, 0, 1]T) and therefore do not

specify it in the equations in this paper.

2. The object is illuminated by unknown and varying

light sources. These lightings are directional.

3. The camera view is orthographic and the radiometric

response function is linear.
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Figure 2: Histograms of intensity values (not including the

shadow) and appearances of (a) original and (b) modified

images respectively (in this example we used alum-bronz

BRDF data in the MERL database [19], and set α = 0.2).

We can observe that the bias of the intensities is reduced.

4. In the preprocessing phase, we take

I = Iα, (1)

where I means an observation intensity and α (0<α<
1) is a correction factor that reduces the variance of in-

tensity values (see Fig. 2) . We adopt it because our

method does not work well with the original intensity

values. This is because of the large differences in order

between intensities in the diffuse and specular regions.

In [19], Matusik used the natural logarithm before ap-

plying PCA to the measured BRDFs and magnified the

importance of the diffusion, for the same reason. Our

preprocessing has a similar effect to the logarithmic

approach but is more useful because it can be applied

after normalizing the pixel values. Hereafter, we will

describe the modified intensities simply as I or “inten-

sities.”

3.1. Linear Combination Representation of Image
Formation Model Based on PCA

The factor that complicates photometric stereo, regard-

less of whether lighting sources are calibrated or not, is that

the reflectance of the target material is unknown. There-

fore, the reprojection error cannot be defined uniquely. To

overcome this ill-posedness we model the image formation

model (I = f(n, l) = ρ(n, l)nT
l, where ρ is a BRDF, n

is a surface normal vector, and l is a lighting vector. n and

l are normalized.) as a linear combination of basis func-

tions generated by applying PCA to MERL database [19].

To apply PCA, which requires a discrete data structure, we

prepare intensity set vectors for each material in the dataset.

These are normalized column vectors whose elements are

intensities parameterized by θn, θl, and φd (see Fig. 1 for

these parameters).

Fb ≜











Ib(θ
0
n, θ

0

l , φi
0)

Ib(θ
0
n, θ

0

l , φ
1

d)
...

Ib(θ
Θn−1
n , θΘl−1

l , φΦd−1

d )











/max(Ib(θn, θl, φd)),

(2)

where b is a BRDF index and Ib (θn, θl, φd) is an intensity

given by these parameters. (θ0n, θ
0

l , φ
0

d), (θ
0
n, θ

0

l , φ
1

d), . . .,

(θΘn−1
n , θΘl−1

l , φΦd−1

d ) are the sampling points, and Θn,

Θl, Φd are the numbers of samples for each parameter. In

other words, the length of Fb is Θn ·Θl ·Φd. Then, by apply-

ing PCA to vectors of F0, F1, . . . , FB−1 we obtain B basis

vectors that are of the same form as Fb. We represent them

as U0, U1, . . . , UB−1, where U0 is an average of Fb, and

U1, . . . , UB−1 are the principal components in descending

order of eigenvalue. We use the first M bases, and construct

the model as

f(n, l) =
M−1
∑

m=0

amum(n, l), (3)

where am (m=0, 1, . . . ,M−1) are the coefficients that de-

termine the reflection properties and um(n, l) is a function

which returns the element of Um corresponding to the near-

est sampling points from (θn, θl, φd). Under the assumption

that any isotropic reflectance is represented well by this lin-

ear combination model, we formulate the uncalibrated pho-

tometric stereo problem as an energy minimization:

min
N ,L,aM

EM ≜

N−1
∑

i=0

L−1
∑

j=0

∣

∣

∣

M−1
∑

m=0

amum (ni, lj)−Ii,j

∣

∣

∣

2

, (4)

where N , L, and aM denote sets of N surface normals, L
lighting vectors, and M basis coefficients, respectively. Ii,j
is an intensity value given by the i-th surface normal ni and

the j-th lighting vector lj .

Note that, although the result of minimizing Eq. (4) re-

mains a rotation/flip ambiguity, it can be easily solved up

to a convex/concave ambiguity by enforcing an integrabil-

ity constraint. The detail about this disambiguation is de-

scribed in our supplementary.

3.2. Approximating Gradient with a Piecewise Hy-
perplane Function

We minimize Eq. (4) by a gradient descent method that

uses a Jacobian matrix. Because f is a discrete function,

and therefore ∂f/∂n and ∂f/∂l cannot be calculated di-

rectly, we construct a parametric image formation model f̃
in addition to f and calculate the Jacobian part correspond-

ing to n and l by differentiating f̃ instead of f to approxi-

mate the Jacobian.

We model a piecewise linear function ũ(n, l) parame-

terized by n
T
l, lTv,nT

v and we obtain this hyperplane by

parameter fitting, using only the first basis function u0:

u0(n, l) ≈ ũ(n, l) = AnT
l+Bl

T
v + Cn

T
v +D, (5)

as illustrated in Fig. 3. Using this hyperplane we approx-

imate as f(n, l) ≈ a0u0(n, l) ≈ a0ũ(n, l) ≜ f̃(n, l),
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Figure 3: Our piecewise hyperplane model is fitted to col-

lections of {nT
l, lTv,nT

v, u0(n, l)} in each region. For

visualization, we plotted for two cases: (a) n
T
v is fixed,

but nT
l and l

T
v vary. (b) lTv is fixed, but nT

l and n
T
v

vary. In this case, Dnl = Dlv = Dnv = 3.

thereby performing the Jacobian approximation. This is be-

cause the influence of u0 covers most of the approxima-

tion of Eq. (3), and u0 is monotonic for nT
l, lTv,nT

v, as

shown in Fig. 3. Although this is a coarse approximation,

because overfitting can be avoided with this low dimension-

ality, the gradient direction estimate is unlikely to be mis-

taken.

We divide the domains of each parameter

(nT
l, lTv,nT

v) into Dnl, Dlv , Dnv segments, re-

spectively. The partitions of each parameter domain

are set to dnl/Dnl (dnl=1, . . . , Dnl−1), dlv/Dlv

(dlv=1, . . . , Dlv−1), and dnv/Dnv (dnv=1, . . . , Dnv−1).
In every combination of segments we approximate u0 with

a hyperplane by linear least-squares. In other words, we

construct Dnl ·Dlv ·Dnv hyperplanes. The coefficients A,

B, and C are fitted in every region and stored beforehand.

They are just looked up and utilized to the Jacobian

approximation.

Note that, for the purpose of enforcing a unit-size con-

straint on surface normals and lighting vectors, we optimize

them in the gradient space (p, q), defined as

(pn,i, qn,i)=

(

nx,i

nz,i

,
ny,i

nz,i

)

, (pl,j , ql,j)=

(

lx,j
lz,j

,
ly,j
lz,j

)

, (6)

where nx,i, ny,i, nz,i and lx,j , ly,j , lz,j are the three ele-

ments of the i-th normal vector ni and the j-th lighting

vector lj , respectively.

Then, a row of the Jacobian corresponding to ei,j ≜

f (ni, lj)− Ii,j of Eq. (4) comprises

[

∂ei,j
∂pn,i

,
∂ei,j
∂qn,i

]

≈ a0
∂ũ

∂ni

[

∂ni

∂pn,i

∂ni

∂qn,i

]

(7)

= a0

(

Anl,lv,nvl
T

j + Cnl,lv,nvv
T

)

[

∂ni

∂pn,i

∂ni

∂qn,i

]

,

[

∂ei,j
∂pl,j

,
∂ei,j
∂ql,j

]

≈ a0
∂ũ

∂lj

[

∂lj
∂pl,j

∂lj
∂ql,j

]

(8)

= a0
(

Anl,lv,nvn
T

i +Bnl,lv,nvv
T
)

[

∂lj
∂pl,j

∂lj
∂ql,j

]

,

[

∂ei,j
∂a0

, . . . ,
∂ei,j

∂aM−1

]

=[u0(ni, lj), . . . , uM−1(ni, lj)] , (9)

where Anl,lv,nv, Bnl,lv,nv, Cnl,lv,nv are the coefficients

looked up depending on the domain of the current esti-

mation. Because the regions corresponding to n
T
l ≤ 0

and 0 < n
T
l ≤ 1/Dnl are included in the same do-

mains, ∂ũ/∂n and ∂ũ/∂l have nonzero values even when

n
T
l is estimated as negative, which is an advantage of

this method of calculation. We optimize Eq. (4) by us-

ing the Levenberg–Marquardt method [21]. Although our

method even works well from the initial surface normals

which all are set as n = [0, 0, 1]T by combining the meth-

ods presented in Sections 3 and 4, we initialize the sur-

face normals by using the method in [15] for more ro-

bust estimation. We also initialize the lighting vectors to

lj = [0, 0, 1]T (j = 0, 1, . . . , L − 1) and the basis coeffi-

cients to aM = [1, 0, . . . , 0]T.

3.3. Refinement by Increasing the Number of Basis
Functions

As the number of basis functions increases, Eq. (3) be-

comes a good approximation of the image formation model

but it has strong nonlinearity and the optimization is there-

fore likely to get stuck in local minima. We therefore pro-

pose to use stepwise optimization. We first find an interme-

diate solution by minimizing Eq. (4) with M=1 (only u0

is being used). We then use the coarsely estimated surface

normals, lightings, and a0 as the next starting point to solve

Eq. (4) with M=2. In this way, we can refine the estimation

sequentially while adding basis functions one at a time.

4. Optimization

Although we can obtain good estimation by using the

method presented in Section 3, the method can suffer from

local-minima problems, depending on the initial estimation

or various parameter values. To obtain robust and accurate

estimation, we propose a simple but very powerful strategy

that enhances convergence to the better solution.

4.1. Coarse-to-fine Using Normal Grouping

We can use a coarse-to-fine approach, given that it can

be redundant and costly to use all terms of Eq. (4) in a one-

time optimization. To prune out similar surface normals, we

adopt the normal grouping technique proposed in [27] at the

beginning of the minimization process. This reduction in

the number of unknowns gives improved convergence and

shorter computational time, which enhances the multipoint
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search described in Section 4.2. We first perform K-means

clustering using the correlations of the intensity profiles, as

in [27], and select the nearest pixels to the center of each

cluster. Second, we estimate the normals of selected points

and lighting vectors by minimizing Eq. (4), and set the sur-

face normals that were not selected at the normal grouping

step to the estimated normal vectors of the representative

points of each cluster. Third, we refine all the normal vec-

tors with lighting vectors fixed by the results of the second

step. Finally, we refine all the normals and lighting vectors

simultaneously.

4.2. Randomized Multipoint Search

In addition to the stepwise refinement approach, we

adopt a multipoint search strategy in each optimization pro-

cess (Fig. 4). At the beginning of the minimization with M
basis functions, we scatter P starting points by randomly

shifting all the normals and lighting vectors that have been

estimated provisionally. We then carry out the optimiza-

tion from each starting point and choose the result that has

the lowest energy as the revised estimation. In the random-

shifting process, the i-th normal vector of the p-th starting

point np,M
i is calculated as

n
p,M
i = vec

(

θ̃M−1

n,i +R(rθn), φ̃
M−1

n,i +R(rφn
)
)

, (10)

where vec (θ, φ) denotes a three-dimensional normalized

vector whose elevation angle and azimuth angle are θ and

φ, respectively. θ̃M̃−1

n,i and φ̃M̃−1

n,i are the elevation and az-

imuth angles of the i-th normal vector which was chosen

in the optimization with M − 1 basis functions, and R(r)
is an uniform random number whose range is [−r, r]. The

lighting vector setup is performed similarly. To guarantee at

least one result for the optimization at M with energy less

than the best estimation at M − 1, we set one starting point

to be the same as the best estimation at M − 1.

This strategy increases the computational cost in pro-

portion to the number of initial points, and the number

of points required increases with the solution space of the

problem. Therefore, this strategy works harmoniously with

the normal-grouping method and they can be adopted to-

gether.

5. Extension of Our Method

Calibrated Photometric Stereo

One of the advantages of our method is that it is capable

of solving photometric stereo problems in cases where the

lighting sources are calibrated simply by fixing the lighting

vectors of Eq. (4) to the true directions. Whereas it is pos-

sible to estimate the surface normals either simultaneously

or per pixel, the former approach works well only when the

target object has uniform reflectance.

1 

    

2 1 

      
 

Initial points

Add

a base

Add

a base

Initial points

...

Figure 4: When adding the next basis function, we scatter

multiple initial points, and perform an optimization from

each point. We then simply select the result with the lowest

energy.

The pixelwise calibrated photometric stereo problem is

solved by optimizing:

min
n,aM

Ecali
M ≜

L−1
∑

j=0

∣

∣

∣

M−1
∑

m=0

amum (n, lj)− Ij

∣

∣

∣

2

, (11)

where Ij is the j-th intensity value of the target pixel.

Uncalibrated Photometric Stereo for Spatially Varying

Reflectance

The weak aspect of our method is that the model in Eq. (3)

is based on the assumption that the target has uniform re-

flectance. To address this point, we combine the albedo

grouping introduced in [27] and Eq. (11). First, we per-

form the albedo grouping and select a cluster for which

most pixels are included, to collect pixels having the same

reflectance. Second, we solve Eq. (4) only for selected pix-

els and lighting vectors by using the methods presented in

Sections 3 and 4. Third, the remaining pixels are estimated

by optimizing Eq. (11) using the estimated lighting vectors.

6. Experimental Results

In this section, we evaluate our proposal and compare

it with previous methods using both synthetic and real-

image data. All experiments were performed on an In-

tel Xeon X5650 (2.67 GHz) machine with 64 GB RAM

and were implemented in MATLAB. For the synthetic ex-

periments, we generated 32-bit high-dynamic-range im-

ages of Stanford bunny (96 × 96) with foreground masks

rendered by using different BRDFs and lighting sources

placed at random. In Sections 6.1, 6.2 and 6.4 we per-

formed the experiments with 45 images. The correction

factor α in Eq. (1) was determined manually and set as

0.2. In Eq. (2), we set the number of samples for each

parameter as Θn=Θl=91,Φd=181, and defined the sam-

pling points as (θrn, θ
s
l , φ

t
d) = (r, s, t) (degrees). The

source material used for the PCA was all 100 items in the

MERL dataset in all experiments except as described in

Section 6.4, and we used ten basis functions for the ap-

proximation Eq. (3) in all experiments except as described

in Section 6.2. The number of division for each parameter
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of the hyperplane (Section 3.2) were Dnl=Dlv=Dnv=3.

In Eq. (10) we set the range of scattering searching points

to rθn=rφn
=rθl=rφl

=1◦ in all experiments except as de-

scribed in Section 6.5. In Sections 6.1, 6.2, 6.3 and 6.5

we use five common parametric BRDF models: Cook–

Torrance [7], Ward [30] , Lafortune [14], Ashikhmin–

Shirley [4], and Oren–Nayar [23]1. In Sections 6.1, 6.2,

6.3 and 6.4 we tested our method eight times for each con-

dition and used the averages (we also recorded the standard

deviations, worst scores, and best scores for some cases).

6.1. Parameter Test: The Number of Clusters for
the Normal Grouping and Search Points

We performed an experiment to evaluate differences in

the accuracy of the final results and the computational time

for various numbers of normal clusters K (see Section 4.1)

and searching points P (see Section 4.2). For each combi-

nation of K and P , we tested our method eight times with

each BRDF and took the average of these 40 mean angu-

lar errors (MAEs) and computational times (5 BRDF mod-

els × 8 trials gives 40 results). The MAE means the av-

erage of errors between ground-truth normal maps and the

recovered ones. Here, the computational time includes the

times for both the normal grouping and the minimization,

but does not include preparing the initial estimation by us-

ing the method in [15].

The experimental results are illustrated in Fig. 5. Note

that the right-hand-side ends of both contour graphs corre-

spond to the results without the normal grouping. It is of in-

terest that the MAE decreases with K when K is relatively

large, even with P=1. We conjecture that the normal group-

ing results in a reduction of not only the computational time

but also the solution space. On the other hand, the accuracy

is poor when K is small because of the overfitting.

We set parameter values P=20 and K=500 for the ex-

periments described in Sections 6.2, 6.3, 6.4, and 6.6, as a

trade-off between accuracy and computational time.

6.2. Parameter Test: the Number of Basis Function

In this section we evaluated our method for various num-

ber of the basis functions M for the five parametric models

so as to find the valid number of the basis functions for an

accurate reconstruction.

The results are shown in Fig. 6. It is observed that the

accuracy converges with the number of basis functions M
beyond ten. Thus, we set M to ten in our experiments.

6.3. Evaluation with Parametric BRDF

To check if the basis functions we trained by using the

MERL database were useful in other applications, together

with the dependency on the number of input images, we

1 The concrete forms and parameter values of these models are the same

as in the experiments in [11]. Please refer their supplementary material.
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Figure 5: Evaluation of the accuracy and computational

time of our method for various values of K and P .
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Figure 6: Evaluation of performance against the number of

basis functions.

tested our method with various images rendered via para-

metric BRDF models. In this experiment we compared

our method with those in Sato2007 [26], Lu2013 [15], and

Lu2015 [17].2 Here, we used results of [26] as the initial

estimations of the method in [17]. Because [17] does not

work well with a Lambertian-like BRDF, they proposed a

method of skipping such cases (in this case, the Lafortune

and Oran–Nayer models). However, for comparison, we

tested [17] in all cases without skipping.

The experimental results are illustrated in Fig. 7. The

figure also shows the position of the light sources (in the

upper right corner of each bar graph). From these results,

it is clear that our method outperformed previous methods

in all cases. The MAEs of the other methods are more than

10 degrees in almost all cases because they work well only

with lighting sources that are spaced uniformly and widely.

6.4. Evaluation with MERL BRDFs

To evaluate our method for various cases, we examined

the performance of our method in terms of images rendered

by 100 different BRDFs in the MERL database. In this

experiment we used 99 BRDFs for PCA, omitting the one

which was used as test images (leave-one-out cross valida-

2 We executed MATLAB codes provided by the authors without chang-

ing their parameters.
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of images. Errors larger than 25 degrees are cut. The blue error bars denote the standard deviations.

tion). In this experiment, our method was compared with

those in [26, 15, 17].2

The experimental results are shown in Fig. 8. The aver-

age MAEs over the 100 cases were 20.2◦ (Sato2007 [26]),

22.8◦ (Lu2013 [15]), 13.8◦ (Lu2015 [17]) and 4.03◦ (mean

of the eight trials of our method), respectively. Our method

outperformed the other methods.

It is reported that the avarage error of [16] was 4.25◦

with 89 images of sphere dataset.3 Although it is competi-

tive with ours, their method has the assumptions of the uni-

form light source positions and the presence of one light-

ing which is parallel to the viewing vector. We emphasize

that our method works well, even with the crude initial es-

timation and randomly placed light sources, because of our

efficient optimization process and fewer assumptions.

6.5. Evaluation for Calibrated Photometric Stereo

We evaluated our method for the case when the light-

ing sources are calibrated. We compared it with a base-

line method of Ikehata2014 [11], which is a highly accu-

rate method that adopts a purely pixelwise approach.2 Here

we used 100 and 300 input images rendered by using five

parametric BRDF models. To make a fair comparison, we

solved this problem per pixel by solving Eq. (11), and took

the MAEs of the foreground pixels. Instead of using pre-

vious methods, we initialized all the surface normals to

n = [0, 0, 1]T. We set the parameter values P = 5 and

rθn = rφn
= 10◦.

As shown in Fig. 9, our method outperformed [11] for

four BRDFs except for the Lafortune model with both 100
and 300 images. These results show the approximation

Eq. (3) is accurate enough to apply to photometric stereo.

We also performed an evaluation with 45 images ren-

dered by using 100 MERL BRDFs as Section 6.4. The aver-

3 Because we could not access the code of [16] and compare it with

ours, we only describe a qualitative analysis.
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Figure 9: Experimental results for the calibrated case.

age MAEs over 100 BRDFs were 4.79◦ (Ikehata2014 [11])

and 1.32◦ (ours), respectively. The detail of this experiment

is described in the supplementary material.

6.6. Evaluation with Real Image Data

We conducted experiments for real images. Here we

used 50 images of knight, 60 images of alien, and 44 images

of fatguy (this dataset is from [12]), illuminated by uncali-

brated directional lighting. For every dataset, we adopted

the strategy for spatially varying reflectance presented in

Section 5. The number of clusters for the albedo grouping

and the threshold for shadow removal were selected manu-

ally for each dataset.

Estimated normal maps and the reconstructed meshes are

shown in Fig. 10. Here, we used the method in [1] to recon-

struct the depth maps. For comparison, we also show the

results of [15, 17].2 It is clear that our method can work

well for real scenes with different kinds of materials and

spatially varying albedos.

7. Conclusion

In this paper, we have presented a method for un-

calibrated photometric stereo that is based on PCA and

additional techniques for enhancing the convergence of
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Figure 8: Experimental results with 100 MERL BRDFs (45 images each, bunny). For each BRDF, we tested our method

eight times and plotted the mean, the worst, and the best result. The results are listed in ascending order of “Ours/mean”.
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Figure 10: Experimental results for real images. We illustrate (a) an example of input images, (b) the result of albedo

grouping (the red regions were selected for the first calculation and the remainder were estimated pixelwise), (c) the result

of optimization for selected regions, (d) the eventually recovered normal map, and (e) surface meshes generated from the

normal maps. (f), (g), (h), (i) For a comparison we also illustrate the results of [15, 17].

the nonlinear regression problem. This is a derivation

of formulating a regression problem based on an image-

formation model for non-Lambertian, uncalibrated photo-

metric stereo. We have shown that our method works well

for various cases involving isotropic materials. A current

limitation is that our method depends on the bias of training

database, and we have not performed sufficient tests with

measured datasets other than MERL.
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