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Abstract

We propose to summarize a video into a few key ob-

jects by selecting representative object proposals generated

from video frames. This representative selection problem

is formulated as a sparse dictionary selection problem, i.e.,

choosing a few representatives object proposals to recon-

struct the whole proposal pool. Compared with existing

sparse dictionary selection based representative selection

methods, our new formulation can incorporate object pro-

posal priors and locality prior in the feature space when

selecting representatives. Consequently it can better lo-

cate key objects and suppress outlier proposals. We convert

the optimization problem into a proximal gradient problem

and solve it by the fast iterative shrinkage thresholding al-

gorithm (FISTA). Experiments on synthetic data and real

benchmark datasets show promising results of our key ob-

ject summarization apporach in video content mining and

search. Comparisons with existing representative selection

approaches such as K-mediod, sparse dictionary selection

and density based selection validate that our formulation

can better capture the key video objects despite appearance

variations, cluttered backgrounds and camera motions.

1. Introduction

With videos becoming the biggest big data, there has

been increasing need to summarize, index and browse the

large corpus of video content. As a common practice,

videos are often summarized by keyframes, i.e., a set of

representative video frames [19, 20, 21]. Although such a

keyframe-based summarization can capture the important

scenes, it often does not pick out the key objects from less

informative backgrounds in a video.

In this work, we propose to summarize videos into key

objects instead of keyframes, as illustrated in Fig. 1. Com-

paring with keyframes, summarizing videos into a collec-

tion of key objects can be attractive to many applications.

For example, the summarized key objects can serve as icons

Figure 1: Video summarization by representative object

proposal selection. A pool of object proposals (middle row)

are first generated from video keyframes (top). Representa-

tive object proposals (bottom) are selected from the pool to

summarize the video.

to establish a quick impression of the video by telling what

are there. They also provide a small footprint for index-

ing, browsing and search, e.g., retrieving videos by match-

ing the key objects. Besides object-level summarization

and search, as these key objects are essential components

of higher level semantics in videos, once identified, they

can also be used to recover or help understand more com-

plicated semantics of videos, e.g., tracking candidate ob-

jects for spatio-temporal action localization [37], construct-

ing story based video summarization by analyzing the inter-

actions among the key objects [26] and egoncentric analy-

sis [27, 24].

Motivated by the recent successes of category indepen-

dent object proposals for detection and weekly supervised

learning [14, 7], we propose to summarize videos by ob-

ject proposals. It has been shown that generating multiple

overlapping object proposals in general provides more ac-

curate object regions than segmentation by sidestepping the

harder problem of full segmentation [47, 1]. Start with a

pool of frame-level object proposals produced by a high re-

call object proposal method [47], we formulate video sum-
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marization as a representative selection problem: selecting

a few exemplar object proposals to reconstruct the whole

pool. Although representative selection methods have been

applied to video keyframe selection [11], directly applying

them to object-level summarization faces many challenges.

First of all, the appearance of the same object may change

significantly across frames due to pose and scale variations,

partial occlusions, etc. Therefore the key objects do not

necessary locate at the densest regions in the feature space.

Consequently, classic density based representative selection

method may not work well [31]. Moreover, since object

proposals are just candidates of key objects, there may be

many irrelevant and noisy proposals in the proposal pool.

These outliers may significantly affect the representative

selection methods based on sparse reconstruction [6, 11].

In such a case, even a further filtering of outliers as post-

processing [11] may be less effective if most representatives

are outliers. Without prior knowledge of the object, it is dif-

ficult to locate the key objects accurately.

To address the above challenges, we propose a new

formulation of sparse reconstruction based representative

selection, which has the following advantages. First, it

can incorporate object proposal priors when selecting the

representatives. Therefore, object proposals of high prior

weights, e.g., high objectiveness scores, are more likely to

be selected as key objects, while background clutters of

low weights can be suppressed. Second, our new formu-

lation also considers the local affinity structure of the data

samples by introducing a locality prior matrix to regular-

ize the selection matrix. As the outcome, it prefers popular

object proposals that appear more frequently while outlier

proposals are likely to be suppressed. Third, although com-

plex constraints are introduced, we convert our optimiza-

tion into a proximal gradient problem and solve it by the

fast iterative shrinkage thresholding algorithm (FISTA). As

is well known, FISTA has a fast convergence rate, which is

O(1/m2) in m iterations [3].

We evaluate our proposed method on both synthetic

data and two benchmark video datasets in comparison with

existing representative selection approaches such as K-

mediod, sparse diction selection [11, 6], and density based

selection [31]. The favourable results validate that our for-

mulation fits better to the key video object summarization

problem, and the selected proposals can better capture key

video objects despite object appearance variations, back-

ground clutters and camera motions.

2. Related Work

Object-driven Video Summarization. Visual sum-

maries of a video can take many forms such as

keyframes [19, 20, 21], skims [15, 26, 28, 5], montages [34]

and dynamic synopses [29, 30]. Recently there has been

increasing interests in object-driven approaches to produce

the above forms of summaries [29, 22, 21, 26, 4, 24, 40, 39,

43]. Some object-driven video summarization methods re-

quire prior knowledge. For instance, in [22, 36], frame-level

labels are required to help identify the object of interest. By

learning to predict important object regions in egocentric

videos using egocentric and saliency cues, concise visual

summaries for egocentric videos can be produced driven by

those regions [21]. In [26] object-like windows (i.e., object

proposals) are taken from each frame as the initial pool of

objects, based on which relationships between sub-events

are discovered. However, these objects only act as an inter-

mediate to help select sub-shots that construct a story. The

ultimate goal is not to summarize videos into key objects

and it is not fully unsupervised. Although [44] [45] can dis-

cover objects via topical models in an unsupervised way, it

relies on image segments instead of object proposals. Also

it targets at grouping the segments instead of selecting rep-

resentative ones. Although [4] utilizes object proposals to

address unsupervised discovery and localization of primary

objects with multiple object classes, it targets for noisy im-

age collections instead of a single video clip. Moreover, it

only discovers a single object instance per image.

Representative Selection. Representative selection can

be roughly categorized into clustering based methods and

subspace learning based methods. As for clustering based

methods, K-medoids algorithm is a representative one [18],

which selects K clustering centroids as representatives to

minimize within cluster distances. Instead of using one cen-

troid to represent each sample, Elhamifar et al. improves K-

medoids clustering, so that each sample is able to be repre-

sented by multiple centroids [10]. Representatives are also

centroid-like in the methods of affinity propagation [12, 13]

and density peak search [31]. There has also been recent in-

terest in applying linear subspace learning to find represen-

tatives from data, e.g., dictionary learning in [38, 25] and

dictionary selection in [6, 11, 8, 23, 42]. These methods

usually require that each sample can be linearly expressed

by representatives at a low reconstruction error. To filter

outliers, [11] ranks the representatives based on the norms

of the rows in the coefficient matrix and only pick the top

ones as final representatives. Another recent work [9] can

find a subset of the source set to efficiently describe the

target set, given pairwise dissimilarities between two sets.

However, it does not consider the prior weight of the data

samples in their applications.

3. Problem Formulation
We formulate video summarization using object propos-

als as the representative selection problem. Given n object

proposals extracted from a video sequence, each of the ob-

ject proposal can be represented by a feature vector ∈ R
d.

These feature vectors are arranged as the columns of the

data matrix X ∈ R
d×n. Our goal is to find a compact sub-

set of the n data points that are representative of X ∈ R
d×n.

1040



3.1. Preliminaries: sparse dictionary selection [6]

Sparse dictionary selection was originally proposed for

abnormal event detection [6]. Instead of learning a dic-

tionary of arbitrary atoms, it requires that all atoms of the

dictionary must come from the actual data points. In other

words, the dictionary is a compact subset of the data matrix

X. Denote the selection matrix by S ∈ R
n×n, it solves

min
S∈Rn×n

1

2
‖X−XS‖2F + λ1‖S‖1,2, (1)

where ‖S‖1,2 =
∑n

i=1 ‖Si,·‖2, associated with the regu-

larization parameter λ1, and ‖Si,·‖2 is the l2 norm of the

ith row of S. Once (1) is solved by the proximal gradient

method [3], the dictionary is constituted by selecting data

points whose corresponding ‖Si,·‖2 6= 0.

Note that the selected data points can also be seen as rep-

resentatives of the dataset. Consequently, their correspond-

ing object proposals can be used to summarize the video.

Similar to [11], we can adapt [6] to selecting any number

of representatives by measuring and ranking the selection

confidence of the ith data point xi according to ‖Si,·‖2.

3.2. Weighted sparse dictionary selection

Note that in (1), all data points are treated equally. How-

ever, a good video summarization can certainly benefit from

prior knowledge from application domain or user specifica-

tions. For instance, when summarizing egocentric videos,

objects that the subject interact with are usually more im-

portant than others [21], while in surveillance videos from a

fixed camera, moving foreground objects likely carry more

weights than static background objects. To better leverage

priors, we propose a simple extension to [6] for representa-

tive selection

min
S∈Rn×n

1

2
‖X−XS‖2F + λ1

n
∑

i=1

1

ρi + ǫ
‖Si,·‖2, (2)

where ρi is the prior selection weight for the ith sample,

and ǫ is a tiny number to avoid dividing by zero.

Similar to [6], the problem of weighted sparse dictionary

selection can also be optimized by the proximal gradient

iteration [3], but needs a proximal decomposition [46].

3.3. Locally linear reconstruction (LLR) induced
sparse dictionary selection

As indicated in [11], sparse dictionary selection prefers

keeping the vertices of convex hull spanned by input data to

make sure each sample can be reconstructed at a low cost.

It is thus extremely sensitive to noise. To mitigate this is-

sue, we encourage local reconstruction for each sample to

improve the robustness of representative selection.

3.3.1 Locality prior of linear reconstruction

Inspired by locally linear embedding [32], we build a lo-

cality prior matrix W ∈ R
n×n of representative selection

based on that each sample xi is only allowed to be locally

linear reconstructed by its k-NNs, N (xi) \ xi:

min
W∈Rn×n

1
2

∑n
i=1 ‖xi −

∑

j:xj∈N (xi)\xi
wjixj‖

2
2,

s.t.
∑

j:xj∈N (xi)\xi

wji = 1,

wji = 0, ∀xj /∈ N (xi) \ xi.
(3)

Problem (3) can be solved by a constrained least squares

optimization [32].

3.3.2 LLR-induced sparse dictionary selection

To introduce locality information of data for representative

selection, we propose a new optimization problem com-

bined with the locality prior martix W in the following:

min
S∈Rn×n

1

2
‖X−XS‖2F+λ1

n
∑

i=1

1

ρi + ǫ
‖Si,·‖2+λ2‖S−W‖

2
F,

(4)

where the third term regularizes the selection matrix S by

W, and λ2 is a locality regularization parameter. Hence,

data samples are preferable to be reconstructed by nearby

representatives. Moreover, dense samples are more likely to

be selected as representatives than sparse noise, as the for-

mer can contribute more to the reconstruction of surround-

ing samples in comparison with the latter.

Problem (4) is complex due to three optimization terms.

But we will show that it can be converted into a proximal

gradient optimization and solved by the FISTA method [3]

through a proximal decomposition [46], which converges

fast with rate O(1/m2) in m iterations.

3.3.3 Optimization

To solve our optimization problem (4), we first expand the

objective function (O for short) and rewrite it as

O =
1

2
tr{XT

X− 2
(

X
T
X+ λ2W

T
)

S

+ S
T
(

X
T
X+ λ2I

)

S+W
T
W}

+ λ1

n
∑

i=1

1

ρi + ǫ
‖Si,·‖2. (5)

We then let

f(S) =
1

2
tr{XT

X− 2
(

X
T
X+ λ2W

)

S

+ S
T
(

X
T
X+ λ2I

)

S+W
T
W}, (6)

and

g(S) = λ1

n
∑

i=1

1

ρi + ǫ
‖Si,·‖2. (7)

Thus, we decompose the objective functionO into two con-

vex functions, with f smooth and g nonsmooth, i.e.,

O = f(S) + g(S), (8)
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Algorithm 1 LLR-induced Weighted Sparse Dictionary Selection (4).

Input: X, {ρi}ni=1
, k, λ1, λ2

Output: S

1: L← λ2 + r
(

XTX
)

⊲ Lipschitz constant (Equation (11))

2: S← 0, V← S, t← 1
⊲ Initialization

3: repeat

4: Z← V + 1

L

{

−
(

XTX+ λ2W
)

+
(

λ2I+X
T
X
)

V
}

⊲ Equation (10)

5: U← S, Si,· ← Zi,· max{(1−
λ1

L(ρi+ǫ)

‖Zi,·‖2
), 0}, i = 1, 2, · · · , n

⊲ Equation (13)

6: τ = t− 1, t← (1 +
√
1 + 4t2)/2

7: V← S+ τ(S−U)/t
8: until convergence

for which, we can apply the proximal gradient method,

FISTA [3]. It then becomes iteratively solving

proxR (Z) = argmin
S∈Rn×n

1

2
‖S− Z‖2F +

1

L
g(S), (9)

where

Z = S−
1

L

∂

∂S
f(S)

= S+
1

L

{

−
(

X
T
X+ λ2W

)

+
(

λ2I+X
T
X

)

S

}

, (10)

and L is the smallest Lipschitz constant, which equals to

the spectral radius (r(·)) of λ2I+X
T
X, i.e.,

L = r
(

λ2I+X
T
X
)

= λ2 + r
(

X
T
X
)

. (11)

We next follow the decomposition tactic in [46], then Prob-

lem (9) is solvable, and for i = 1, 2, · · · , n,

Si,· = argmin
s∈Rn

1

2
‖s− Zi,·‖

2
2 +

λ1

L(ρi + ǫ)
‖Si,·‖2, (12)

After applying soft-thresholding [41] to the above n group

lasso signal approximators, we have, for i = 1, 2, · · · , n,

Si,· = Zi,· max{(1−

λ1

L(ρi+ǫ)

‖Zi,·‖2
), 0}. (13)

We show the representative selection procedure in Algo-

rithm 1, where we integrate a decomposed soft-thresholding

strategy into an accelerated proximal gradient procedure,

which is known to have a fast convergence rate O(1/m2)
in m iterations.

3.3.4 Parameter setting

Sparsity regularization parameter λ1. As in Algorithm 1,

we initialize S by a zero matrix. Then according to (10),

after the first iteration, we have

Z =
1

L

{

−
(

X
T
X+ λ2W

)}

. (14)

As indicated by the thresholding of Z in (13), when λ1 is

large enough, e.g., λ ≥ λmax
1 , we obtain S = 0, which

means we select nothing. Therefore, to avoid an empty se-

lection, we let λ1 ≤ λmax
1 and solve λmax

1 by substituting

S = 0 into (13) as follows:

λmax
1 = L max

0≤i≤n
{(ρi + ǫ)‖Zi,·‖2}

= max
0≤i≤n

{

(ρi + ǫ)‖xT
iX+ λ2Wi,·‖2

}

. (15)

In our experiments, we let λ1 =
λmax
1

α1
and tune α1

between the interval [2, 30]. Given λ2, a smaller α1

indicates a larger λ1, which implies a sparser selection.

Locality regularization parameter λ2. Let us con-

sider the LLR-induced sparse selection in (4). When

λ2 = 0, the problem becomes a weighted sparse dictionary

selection as in (2). When λ2 = +∞, it sparsely selects

representatives based on the rows of W. Furthermore, as

shown in (10), λ2 balances the contributions of W and

XX
T to the proximal operation in (9). For ease of tuning

λ2, we let

λ2 ← κ×
r(XT

X)

r(W)
, (16)

where we set κ = 0.02×5α2 and α2 between [−3, 1] in our

experiments.

4. Experiments on Synthetic Data

We first evaluate the effectiveness of the locality prior in

handling outliers on synthetic data, in comparison with the

Sparse Dictionary Selection (SDS) [6] and Sparse Model-

ing Representative Selection (SMRS) [11]. We refer to our

proposed method as Locally Linear Reconstruction induced

Sparse Dictionary Selection (LLR-SDS).

We consider the noisy data shown in Fig. 2, which con-

sists of data points in three clusters and uniform background

noise. The top 30 representatives found from the 2, 018
points by each compared method are shown in Figs. 2 (a)-

(c). As can be seen, both SDS and SMRS select the out-

lier points at the border of the convex hull, showing these

two methods are sensitive to noise. This is because those

points contribute a lower linear reconstruction cost to the

dataset than others, which meets the requirement of dictio-

nary selection. As SMRS has a post-processing to filter

outliers [11], we also run its outlier removal for compari-

son in Fig. 2 (d). Since most selection of SMRS are out-

liers as shown in Fig. 2 (c), it is difficult to improve the

results by post-processing. In contrast, our proposed LLR-

SDS method considers a locality constraint in addition to

the linear reconstruction cost for dictionary selection. As a

result, it can reject most noisy outliers and select the points

in the clusters. For our method, we use k = 5 nearest neigh-

bors to build the locality prior matrix W, and set the spar-

sity regularization parameter α1 = 5 for λ1, and the locality
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(a) LLR-SDS
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(b) SDS [6]
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(c) SMRS [11]
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(d) SMRS with outlier removal [11]

Figure 2: Data points in three clusters with background uni-

form noise (blue dots) and the representatives (red circles)

found by (a) the proposed LLR-SDS method (b) SDS [6],

(c) SMRS [11] and (d) SMRS with outlier removal [11] .

regularization parameter α2 = 1 for λ2. The same sparsity

regularization parameter is used for SDS and SMRS.

5. Experiments on Real Datasets

Next, we test our approach on two real datasets to eval-

uate its applicability to topical object discovery and object

search in videos.

5.1. Settings

Although our approach is agnostic to the object pro-

posal method, we use Edge Boxes [47] with default set-

tings to generate category independent object proposals

for a controlled comparison with existing methods on all

datasets. In light of the good performance reported using

features from the top layers of deep convolutional neural

networks (CNNs) for many computer vision tasks such as

object detection [14], image retrieval [2] and object instance

search [35], we choose to represent each object proposal by

the CNN feature after dimension reduction. Specifically,

we take the 4096-dimensional output from the fully con-

nected layer 6 of Caffe [17], using the pre-trained model on

ILSVRC 2012 without fine-tuning. The CNN features are

then reduced to 256-dimension by PCA and whitening [16].

The same set of CNN-PCA features are used for compari-

son with existing work unless noted otherwise.

5.2. Baseline algorithms

We compare our proposed LLR-SDS with a variety

of different methods for representative selection, includ-

ing Objectness [47], K-medoids [18], Density [31], Sparse

Modeling Representative Selection (SMRS) [10], Sparse

Dictionary Selection (SDS) [6], Locally Linear Reconstruc-

tion (LLR) and Latent Dirichelet Allocation with Word Co-

occurrence prior (LDA-WCP) [44].

Objectness refers to directly ranking object proposals

based on the objectness scores from Edge Boxes. For Den-

sity, representatives are ranked and selected according to the

parameter γ, which is the product of local density and min-

imum distance between the point and any other point with

higher density [31]. For SMRS, we follow the authors to

tune its parameter α, which is similar to α1 of our method.

For a fair comparison, results reported are without the out-

lier detection post-processing. SDS refers to ranking and

selecting object proposals according to the l2 norms of the

rows of the selection matrix S obtained from the algorithm

proposed in [6] (Sec. 3.1). LLR refers to selecting object

proposals according to the l2 norms of the rows of the LLR

prior matrix W (Sec. 3.3.1). Therefore, it favors data points

with sufficient density over the outliers. For LDA-WCP, we

adapt it to object proposal selection by selecting the highest

score segment in the entire video for each topic to summa-

rize the video.

5.3. Evaluation Metric

The effectiveness of all representative selection methods

are evaluated by the average recall. Denote the set of se-

lected object proposals from a video as P and assume a

video contains t different key objects. For the ith key ob-

ject, denote the set of ground truth bounding boxes in all

keyframe as Gi, and the best intersection over union (IoU)

score S with the ith key object is defined as

S(P,Gi) = max
p∈P

g∈Gi

S(p, g) = max
p∈P

g∈Gi

p ∩ g

p ∪ g
(17)

The recall of a video is determined by the number of key

objects that are recalled, i.e.,
∑t

i=1 I(S(P,Gi)>=θ)

t
, where θ

is the overlap threshold and I(·) is the indicator function.

The average recall is the mean of the recall of all videos.

5.4. Topical Video Object Discovery

We first demonstrate the effectiveness of the proposed

LLR-SDS in summarizing multiple topical objects in

videos. We run our experiments on the ”multiple” object

subset of the topical video object discovery dataset [44],

which consists of 10 commercial video sequences from

YouTube. Each video contains multiple well-defined topi-

cal objects such as the product logos and has multiple shots.

As in [44], keyframes from each video are sampled at two

frames per second. For each keyframe, we take the top 100
object proposals according to the objectness score [47] and

summarize from them. The overlap threshold θ is set to 0.5.

Note that LDA-WCP requires a predefined number of

topics for each video, which is set to 8 for all videos in [44].

Hence, for a fair comparison, we also select 8 object pro-

posals by each of the other methods to summarize a video.
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Figure 3: Video summarization for topical object discovery: example representative objects selected by different methods.

Keyframes are shown in the top row. Each following row shows the 8 representative object proposals selected by different

methods in rank order (except for K-medoids and LDA-WCP).

Average Recall@8

Objectness [47] 0.173

LLR 0.243

Density [31] 0.360

LDA-WCP [44] 0.360

K-medoids 0.410

SDS [6] 0.417

SMRS [11] 0.430

LLR-SDS (Ours) 0.430

LLR-wSDS (Ours) 0.547

Table 1: Average recall when selecting 8 object propos-

als. Methods are sorted by increasing average recall@8.

Our method with objectness as prior weights (LLR-wSDS)

achieves the best average recall among all.

SMRS is tested on a range of α ∈ {2, 3, 5, 10, 20, 30} and

we report the best average recall obtained. For our pro-

posed LLR-SDS, we fix k = 3 nearest neighbors to con-

struct the LLR prior matrix W (Sec. 3.3.1), α1 = 2 for λ1

and α2 = −1 for λ2 for all videos (Sec. 3.3.4). The same

k = 3 is used for LLR and the same α1 = 2 is used for

SDS. We also evaluate the effectiveness of prior weights by

simply using the objectness score from Edge Boxes [47] as

ρi (Eq. 4) for each object proposal. We refer to our method

with objectness weights as LLR-wSDS.

Table 1 compares our approach with other methods in

terms of the average recall of all videos. Without objectness

prior weights, our proposed LLR-SDS and SMRS achieve

the same highest average recall of 0.43. Although using the

objectness score directly for summarization performs poor-

est among all, integrating it into our LLR-SDS formulation

as prior weights further improves LLR-SDS and SMRS by

27.2%. A close examination of the Objectness results re-

veals that since object proposals are highly redundant across

frames, an object proposal that is scored highest in one

frame usually scores the highest in other frames as well.

Therefore when selecting few (i.e., top 8) object proposals

purely based on the objectness scores, multiple snapshots

of one or two dominant object(s) are often picked out but

the other topical objects are missed. Note that LDA-WCP

is based on quantized SIFT features, while the others ex-

cept for Objectness are based on CNN features. This could

account for the mediocre performance of LDA-WCP.

Fig. 3 shows an example video with representative ob-

ject proposals selected by different methods. The 8 object

proposals selected by each method are displayed in rank

order in each row, except for LDA-WCP and K-medoids,

which produce no ranks for the selection. There are 5 top-

ical objects in this commercial: the blue juice drink, the

green juicy juice, the boy, and 2 toy trucks. Both LLR-SDS

and LLR-wSDS capture 4 out of 5 (missing one of the toy

trucks) using only 8 proposals. With objectness weights,

LLR-wSDS seems to improve the ranking of object propos-

als with more accurate coverage of the ground truth over

LLR-SDS. For instance, the 1st object proposal selected by

LLR-wSDS provides a more accurate coverage of the blue

juice drink than the 1st object selected by LLR-SDS.
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Figure 4: Average recall with selection ratio η ∈
[0.001, 0.2].

5.5. Video Summarization for Object Search

Next we evaluate the applicability of LLR-SDS to vi-

sual object search by summarizing shots of a feature movie

by object proposals. We take a benchmark dataset for ob-

ject retrieval, the Groundhog Day [33], which consists of

5, 640 keyframes (752 shots) from the full length feature

film ”Groundhog Day”. The ground truth test set consists

of 6 object queries. Contrary to the Topical Video Object

Discovery dataset, the target objects in this dataset are usu-

ally small and the scenes are much cluttered.

For each keyframe, we extract the top 200 object pro-

posals with an aspect ratio ∈ [0.25, 4], and a minimal size

of 30×30 pixels. Because object locations in the keyframes

are not provided, we manually annotate bounding box loca-

tions in all ground truth keyframes. We run our algorithm

on all ground truth shots that have≥ 8 keyframes (Table 2).

SDS is tested in a range of α ∈ {2, 3, 5, 10, 15, 20, 30}
and α = 10 is selected for comparison because it produces

the best average recall. For our LLR-SDS, we fix k = 5
nearest neighbors to construct the LLR prior matrix W and

α1 = 15 for calculating λ1. We have also tested the object-

ness score as prior weights as in Sec. 5.4, which, however,

does not boost the performance on this dataset. It is likely

due to the scene clutters and generally low resolutions of

the target objects in the Groundhog Day dataset. Therefore,

we evaluate LLR-SDS using equal weights on this dataset.

It is worth noting though that other priors could be effective

on this dataset such as object size and scene context. Unless

noted otherwise, we set the overlap threshold θ to 0.7 in all

following experiments (Eq. 17), as a greater overlap with

the ground truth generally leads to a higher matching score

and increases the chance for an object to be retrieved.

Figure 5: Evaluation of the relationship between the average

recall and overlap ratio θ (η = 0.01).

Figure 6: Average recall when the regularization parameter

α2 ∈ [−3, 1]. A small α2 (i.e., −3) leads to a small λ2,

which produces a curve similar to that of SDS; while α2 =
1 leads to a solution similar to that of LLR (Sec. 3.3.4).

5.5.1 Results

Fig. 4 illustrates the average recall on all ground truth shots

of the six objects with the selection ratio η ∈ [0.001, 0.2]. It

is shown that the proposed LLR-SDS outperforms the other

methods and achieves an average recall of 0.74 with as few

as 10% of the object proposals. With 14% of the object

proposals, it achieves an average recall of 0.78, while the

average recall obtained using all object proposals is 0.80.

It also improves upon selection by SDS or LLR alone. In

addition, Fig. 5 shows the relationship between the average

recall and overlap ratio θ of our proposed LLR-SDS, when

η = 0.01.

To evaluate the sensitivity of α2 for λ2 (Sec. 3.3.4), we

test LLR-SDS with α2 ∈ [−3, 1]. Fig. 6 plots the average

recall curves obtained with respect to the two extreme cases

discussed in Sec. 3.3.4: i.e., (1) λ2 = 0 and (2) λ2 = +∞.

The former is equivalent to the sparse dictionary selection

(SDS) (Eq. 2), while the latter produces a selection matrix
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Figure 7: Video summarization for object search: visual results of the 8 shots of Microphone from Groundhog Day (η = 0.5%
of all object proposals are selected). For each shot, the object proposal with the best IoU with the ground truth (GT) is shown

in the yellow bounding box and the GT is in red. Missed shots are highlighted by red rectangles. Overall our method produces

summarizations that more accurately capture the GT. Note that given a shot, the best IoU object proposal selected by different

methods may come from different keyframes. Best viewed in color and magnification.

S similar to the LLR prior matrix W, where we rank and

select object proposals by the l2 norms of the rows of W

(LLR). We fix α1 = 15 for LLR-SDS and SDS, and k = 5
for LLR-SDS and LLR. It is observed that when α2 ≤ −3,

the recall curve of LLR-SDS converges to that of SDS. On

the other hand, when α2 > 0, the recall curve of LLR-SDS

almost entirely overlaps with that of LLR. Experimentally,

on the Groundhog dataset, LLR-SDS achieves higher aver-

age recall than either SDS or LLR when α2 ∈ [−2,−0.5].
We further evaluate the effectiveness of LLR-SDS in

terms of the percentage of proposals required to provide ac-

curate localization of the ground truth object, in comparison

with SDS and LLR. An object proposal is considered to ac-

curately locate the ground truth if its IoU with the ground

truth > 0.7 or it achieves the best IoU among all object pro-

posals in a video. Table 2 shows that on average, with as few

as 6.60% of all object proposals, LLR-SDS is able to cover

the object of interest when summarizing a shot. Except for

the Frames Sign, LLR-SDS requires fewer object proposals

than both SDS and LLR to ensure accurate localization of

the ground truth, while LLR requires the most.

Fig. 7 shows visual comparisons of our results with oth-

ers on all shots of Microphone, when selecting η = 0.5%
of all object proposals. For each shot, we visualize the

object proposal that has the highest IoU with the ground

truth among all selected. In general, our method produces

summarizations that more accurately locate the ground truth

than others in all 8 shots of Microphone.

6. Conclusions

In this work we summarize videos into key objects using

object proposals. These key objects can serve as video icons

Object #shots SDS LLR LLR-SDS

Red clock 9 23.31 % 38.64 % 12.48%

Black clock 8 15.86% 16.68% 12.99%

Frames sign 6 1.65% 47.88% 2.25%

Digital clock 14 7.92% 9.20% 5.49%

Phil sign 9 6.51% 23.18% 5.43%

Microphone 8 7.13% 4.77% 0.97%

Average 9 10.40% 23.39% 6.60%

Table 2: Average percentage of object proposals required to

cover the ground truth object.

and establish a brief impression of the video. By telling

what objects appear in each video, we can use these key

objects to help search, browse, and index large video vol-

ume. To select key objects, we propose a new formulation

of sparse dictionary selection to select representative object

proposals, i.e., locally linear reconstruction induced sparse

dictionary selection (LLR-SDS). The new formulation con-

siders both object proposal priors and locality priors in the

feature space thus can better handle outlier proposals when

identifying the key objects. Our results on synthetic data

and two benchmark real datasets validate the advantages of

our approach in comparison with existing representative se-

lection methods.
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