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Abstract

We propose a method that can generate an unambigu-

ous description (known as a referring expression) of a spe-

cific object or region in an image, and which can also com-

prehend or interpret such an expression to infer which ob-

ject is being described. We show that our method outper-

forms previous methods that generate descriptions of ob-

jects without taking into account other potentially ambigu-

ous objects in the scene. Our model is inspired by recent

successes of deep learning methods for image captioning,

but while image captioning is difficult to evaluate, our task

allows for easy objective evaluation. We also present a new

large-scale dataset for referring expressions, based on MS-

COCO. We have released the dataset and a toolbox for visu-

alization and evaluation, see https://github.com/

mjhucla/Google_Refexp_toolbox.

1. Introduction

There has been a lot of recent interest in generating text

descriptions of images (see e.g., [13, 53, 9, 5, 12, 26, 28, 40,

55, 8]). However, fundamentally this problem of image cap-

tioning is subjective and ill-posed. With so many valid ways

to describe any given image, automatic captioning methods

are thus notoriously difficult to evaluate. In particular, how

can we decide that one sentence is a better description of an

image than another?

In this paper, we focus on a special case of text genera-

tion given images, where the goal is to generate an unam-

biguous text description that applies to exactly one object or

region in the image. Such a description is known as a “refer-

ring expression” [50, 52, 41, 42, 14, 19, 27]. This approach

has a major advantage over generic image captioning, since

there is a well-defined performance metric: a referring ex-

pression is considered to be good if it uniquely describes

the relevant object or region within its context, such that a

listener can comprehend the description and then recover

the location of the original object. In addition, because of

the discriminative nature of the task, referring expressions

tend to be more detailed (and therefore more useful) than

image captions. Finally, it is easier to collect training data
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Figure 1. Illustration of our generation and comprehension system.

On the left we see that the system is given an image and a region

of interest; it describes it as “the man who is touching his head”,

which is unambiguous (unlike other possible expressions, such as

“the man wearing blue”, which would be unclear). On the right we

see that the system is given an image, an expression, and a set of

candidate regions (bounding boxes), and it selects the region that

corresponds to the expression.

to “cover” the space of reasonable referring expressions for

a given object than it is for a whole image.

We consider two problems: (1) description generation,

in which we must generate a text expression that uniquely

pinpoints a highlighted object/region in the image and (2)

description comprehension, in which we must automati-

cally select an object given a text expression that refers to

this object (see Figure 1). Most prior work in the litera-

ture has focused exclusively on description generation (e.g.,

[31, 27]). Golland et al. [19] consider generation and com-

prehension, but they do not process real world images.

In this paper, we jointly model both tasks of description

generation and comprehension, using state-of-the-art deep

learning approaches to handle real images and text. Specif-

ically, our model is based upon recently developed methods

that combine convolutional neural networks (CNNs) with

recurrent neural networks (RNNs). We demonstrate that

our model outperforms a baseline which generates referring

expressions without regard to the listener who must com-

prehend the expression. We also show that our model can

be trained in a semi-supervised fashion, by automatically

generating descriptions for image regions.

Being able to generate and comprehend object descrip-

tions is critical in a number of applications that use nat-
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ural language interfaces, such as controlling a robot (e.g.,

“Rosie, please fetch me the beer from the top shelf of the

fridge”, cf. [4]), or interacting with photo editing software

(e.g., “Picasa, please replace the third car behind the fence

with a motorbike”, cf. [6]). In addition, it is a good test bed

for performing research in the area of vision and language

systems because of the existence of a useful objective per-

formance measure.

In order to train and evaluate our system, we have col-

lected and released a new large scale referring expressions

dataset based on the popular MS-COCO dataset [37].

To summarize, our main contributions are as follows.

First, we present a new large scale dataset for referring ex-

pressions. Second, we evaluate how existing image caption-

ing methods perform at the referring expression task. Third,

we develop a new method for joint generation and compre-

hension that outperforms current methods.

2. Related Work
Referring expressions. Referring expression generation is

a classic NLP problem (see e.g., [54, 31]). Important is-

sues include understanding what types of attributes people

typically use to describe visual objects (such as color and

size) [42], usage of higher-order relationships (e.g., spatial

comparison) [52], and the phenomena of over and under-

specification, which is also related to speaker variance [14].

Context (sometimes called pragmatics [20]) plays a crit-

ical role in several ways [30]. First, the speaker must dif-

ferentiate the target object from a collection of alternatives

and must thus reason about how the object differs from its

context. Second, the perception of the listener is also valu-

able. In particular, Golland et al. [19] recently proposed a

game theoretic formulation of the referring expression prob-

lem showing that speakers that act optimally with respect to

an explicit listener model naturally adhere to the Gricean

Maxims of communication [22].

In most of this previous work, authors have focused

on small datasets of computer generated objects (or pho-

tographs of simple objects) [50, 41] and have not connected

their text generation systems to real vision systems. How-

ever there has been recent interest in understanding refer-

ring expressions in the context of complex real world im-

ages, for which humans tend to generate longer phrases

[18]. [27] were the first to collect a large scale dataset of

referring expressions for complex real world photos.

We likewise collect and evaluate against a large scale

dataset. However we go beyond expression generation and

jointly learn both generation and comprehension models.

And where prior works have had to explicitly enumerate at-

tribute categories such as size, color (e.g. [47]) or manually

list all possible visual phrases (e.g. [46]), our deep learning-

based models are able to learn to directly generate surface

expressions from raw images without having to first convert

to a formal object/attribute representation.

Concurrently, [24] propose a CNN-RNN based method

that is similar to our baseline model and achieve state-of-

the-art results on the ReferIt dataset [27]. But they did not

use the discriminative training strategy proposed in our full

model. [25, 32] investigate the task of generating dense de-

scriptions in an image. But their descriptions are not re-

quired to be unambiguous.

Image captioning. Our methods are inspired by a long line

of inquiry in joint models of images and text, primarily in

the vision and learning communities [13, 23, 49, 43, 34, 56,

36]. From a modeling perspective, our approach is closest

to recent works applying RNNs and CNNs to this problem

domain [53, 9, 5, 12, 26, 28, 40, 55]. The main approach

in these papers is to represent the image content using the

hidden activations of a CNN, and then to feed this as input to

an RNN, which is trained to generate a sequence of words.

Most papers on image captioning have focused on de-

scribing the full image, without any spatial localization.

However, we are aware of two exceptions. [55] propose

an attention model which is able to associate words to spa-

tial regions within an image; however, they still focus on

the full image captioning task. [26] propose a model for

aligning words and short phrases within sentences to bound-

ing boxes; they then train an model to generate these short

snippets given features of the bounding box. Their model

is similar to our baseline model, described in Section 5 (ex-

cept we provide the alignment of phrases to boxes in the

training set, similar to [45]). However, we show that this

approach is not as good as our full model, which takes into

account other potentially confusing regions in the image.

Visual question answering. Referring expressions is re-

lated to the task of VQA (see e.g., [2, 38, 39, 16, 15]).

In particular, referring expression comprehension can be

turned into a VQA task where the speaker asks a question

such as “where in the image is the car in red?” and the sys-

tem must return a bounding box (so the answer is numer-

ical, not linguistic). However there are philosophical and

practical differences between the two tasks. A referring ex-

pression (and language in general) is about communication

— in our problem, the speaker is finding the optimal way to

communicate to the listener, whereas VQA work typically

focuses only on answering questions without regard to the

listener’s state of mind. Additionally, since questions tend

to be more open ended in VQA, evaluating their answers

can be as hard as with general image captioning, whereas

evaluating the accuracy of a bounding box is easy.

3. Dataset Construction
The largest existing referring expressions dataset that we

know of is the ReferIt dataset, which was collected by [27],

and contains 130,525 expressions, referring to 96,654 dis-

tinct objects, in 19,894 photographs of natural scenes. Im-

ages in this dataset are from the segmented and annotated

TC-12 expansion of the ImageCLEF IAPR dataset [11].
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A boy brushing his hair 
while looking at his 
reflection.

A young male child in 
pajamas shaking around a 
hairbrush in the mirror.

Zebra looking towards 
the camera.

A zebra third from the 
left.

The black and yellow 
backpack sitting on top 
of a suitcase.

A yellow and black 
back pack sitting on top 
of a blue suitcase.

A girl wearing glasses 
and a pink shirt.

An Asian girl with a 
pink shirt eating at the 
table.

An apple desktop 
computer.

The white IMac 
computer that is also 
turned on.

A bird that is close to 
the baby in a pink shirt.

A bird standing on the 
shoulder of a person 
with its tail touching her 
face.

The woman in black 
dress.

A lady in a black dress 
cuts a wedding cake 
with her new husband.

A woman in a 
flowered shirt.

Woman in red shirt.

Figure 2. Some sample images from our Google Refexp (G-Ref) dataset. We use a green dot to indicate the object that the descriptions

refer to. Since the dataset is based on MS COCO, we have access to the original annotations such as the object mask and category. Some

of the objects are hard to describe, e.g., in the third image in the first row, we need to distinguish the boy from his reflection in the mirror.

Bottom left apple.

Bottom left.

The bottom apple.

Green apple on the bottom-left corner, 
under the lemon and on the left of the 
orange.

A green apple on the left of a orange.

Goalie.

Right dude.

Orange shirt.

The goalie wearing an orange and 
black shirt.

A male soccer goalkeeper wearing an 
orange jersey in front of a player ready 
to score.

UNC-Ref-COCO (UNC-Ref) Google Refexp (G-Ref)

Figure 3. Comparison between the G-Ref and UNC-Ref dataset.

Two drawbacks of this dataset, however, are that (1) the im-

ages sometimes only contain one object of a given class,

allowing speakers to use short descriptions without risking

ambiguity, and (2) the ImageCLEF dataset focuses mostly

on “stuff” (i.e. context) rather than “things” (i.e. objects).

In this paper, we use a similar methodology to that

of [27], but building instead on top of the MSCOCO dataset

[37], which contains more than 300,000 images, with 80

categories of objects segmented at the instance level.

For each image, we selected objects if (1) there are be-

tween 2 and 4 instances of the same object type within the

same image, and (2) if their bounding boxes occupy at least

5% of image area. This resulted in selecting 54,822 ob-

jects from 26,711 images. We constructed a Mechanical

Turk task in which we presented each object in each image

(by highlighting the object mask) to a worker whose task

was to generate a unique text description of this object. We

then used a second task in which a different worker was

presented with the image and description, and was asked to

click inside the object being referred to. If the selected point

was inside the original object’s segmentation mask, we con-

sidered the description as valid, and kept it, otherwise we

discarded it and re-annotated it by another worker. We re-

peated these description generation and verification tasks on

Mechanical Turk iteratively up to three times. In this way,

we selected 104,560 expressions. Each object has on aver-

age 1.91 expressions, and each image has on average 3.91

expressions. This dataset (released) is denoted as Google

Refexp dataset and some samples are shown in Figure 2.

While we were collecting our dataset, we learned that

Tamara Berg had independently applied her ReferIt game

[27] to the MSCOCO dataset to generate expressions for

50,000 objects from 19,994 images. She kindly shared

her data (named as UNC-Ref-COCO dataset) with us. For

brevity, we call our Google Refexp dataset as G-Ref and

the UNC-Ref-COCO as UNC-ref. We report results on

both datasets in this paper. However, due to differences in

our collection methodologies, we have found that the de-

scriptions in the two overlapped datasets exhibit significant

qualitative differences, with descriptions in the UNC-Ref

dataset tending to be more concise and to contain less flow-

ery language than our descriptions. 1 More specifically, the

average lengths of expressions from our dataset and UNC-

Ref are 8.43 and 3.61 respectively. And the size of the

word dictionaries (keeping only words appearing more than

3 times) from our dataset and UNC-Ref are 4849 and 2890

respectively. See Figure 3 for some visual comparisons.

4. Tasks
In this section, we describe at a high level how we solve

the two main tasks of description and generation. We will

describe the model details and training in the next section.

4.1. Generation
In the description generation task, the system is given

a full image and a target object (specified via a bound-

ing box), and it must generate a referring expression

for the target object. Formally, the task is to compute

argmaxSp(S|R, I), where S is a sentence, R is a region,

and I is an image.

Since we will use RNNs to represent p(S|R, I), we can

generate S one word at a time until we generate an end of

sentence symbol. Computing the globally most probable

sentence is hard, but we can use beam search to approx-

imately find the most probable sentences (we use a beam

size of 3). This is very similar to a standard image caption-

ing task, except the input is a region instead of a full image.

The main difference is that we will train our model to gener-

ate descriptions that distinguish the input region from other

candidate regions.
1According to our personal communication with the authors of the

UNC-Ref dataset, the instruction and reward rule of UNC-Ref encourages

the annotators to give a concise description in a limited time, while in our

G-Ref dataset, we encourage the annotators to give rich and natural de-

scriptions. This leads to different styles of annotations.
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<bos> the ingirl pink

the girl pinkin <eos>
LSTMRegion CNN

Figure 4. llustration of the baseline model architecture. 〈bos〉 and

〈eos〉 stand for beginning and end of sentence.

4.2. Comprehension
In the description comprehension task, we are given a

full image and a referring expression and are asked to lo-

calize the the object being referred to within the image by

returning a bounding box. One approach would be to train

a model to directly predict the bounding box location given

the referring expression (and image). However, in this pa-

per, we adopt a simpler, ranking-based approach. In partic-

ular, we first generate a set C of region proposals, and then

ask the system to rank these by probability. Then we se-

lect the region using R∗ = argmaxR∈Cp(R|S, I), where,

by Bayes’ rule, we have

p(R|S, I) =
p(S|R, I)p(R|I)∑

R′∈C
p(S|R′, I)p(R′|I)

. (1)

If we assume a uniform prior for p(R|I),2 we can select the

region using R∗ = argmaxR∈Cp(S|R, I). This strategy is

similar to image retrieval methods such as [29, 40], where

the regions play the role of images.

At test time, we use the multibox method of [10] to gen-

erate objects proposals. This generates a large number of

class agnostic bounding boxes. We then classify each box

into one of the 80 MS-COCO categories, and discard those

with low scores. We use the resulting post-classification

boxes as the proposal set C. To get an upper bound on per-

formance, we also use the ground truth bounding boxes for

all the objects in the image. In both cases, we do not use the

label for the object of interest when ranking proposals.

5. The Baseline Method
In this section we explain our baseline method for com-

puting p(S|R, I).

5.1. Model Architecture
Our baseline model is similar to other image captioning

models that use a CNN to represent the image, followed by

an LSTM to generate the text (see e.g., [40, 9, 53]). The

main difference is that we augment the CNN representation

of the whole image with a CNN representation of the region

of interest, in addition to location information. See Figure 4

for an illustration of our baseline model.

In more detail, we use VGGNet [48] as our CNN, pre-

trained on the ImageNet dataset [7, 33]. The last 1000 di-

mensional layer of VGGNet is used as our representation of

the object region. In addition, we compute features for the

2 This implies that we are equally likely to choose any region to de-

scribe. This is approximately true by virtue of the way we constructed the

dataset. However, in real applications, region saliency p(R|I) should be

taken into account.

<bos> the ingirl pink

the girl pinkin <eos>
LSTMRegion CNN

Loss

... ...

R

R’1

R’m

Figure 5. Illustration of how we train the full model using the soft-

max loss function. R (green) is the target region, R′ are the incor-

rect regions. The weights of the LSTMs and CNNs are shared for

R and R′s. (Best viewed in color)

whole image, to serve as context. In experiments, we only

fine-tuned the weights for the last layer of the CNN and

fixed all other layers. To feed a region to the CNN, we keep

the aspect ratio of the region fixed and scale it to 224× 224
resolution, padding the margins with the mean pixel value

(similar to the region warping strategy in [17]). This gives

us a 2000-dimensional feature, for the region and image.

We encode the relative location and size of the

region using a 5 dimensional vector as follows:

[xtl

W
, ytl

H
, xbr

W
, ybr

H
, Sbbox

Simage
], where (xtl, ytl) and (xbr, ybr)

are the coordinates of the top left and bottom right corners

of the object bounding box, H and W are height and width

of the image, and Sbbox and Simage are the sizes of the

bounding box and image respectively.

Concatenating with the region, image, and location/size

features, we obtain a 2005-dimensional vector which we

feed as input into an LSTM model, which parameterizes

the form of the distribution p(S|R, I). For our LSTMs, we

use a 1024-dimensional word-embedding space, and 1024-

dimensional hidden state vector. We adopt the most com-

monly used vanilla LSTM structure [21] and feed the visual

representation as input to the LSTM at each time step.

5.2. Maximum Likelihood Training

Our training data (discussed in Section 3) consists of ob-

served triplets (I, R, S), where I is an image, R denotes a

region within I , and S denotes a referring expression for R.

To train the baseline model, we minimize the negative log

probability of the referring expressions given their respec-

tive region and image:

J(θ) = −
N∑

n=1

log p(Sn|Rn, In, θ), (2)

where θ are the parameters of the RNN and CNN, and

where we sum over the N examples in the training set. We

use ordinary stochastic gradient decent with a batch size of

16 and use an initial learning rate of 0.01 which is halved ev-

ery 50,000 iterations. Gradient norms are clipped to a max-

imum value of 10. To combat overfitting, we regularize us-

ing dropout with a ratio of 0.5 for both the word-embedding

and output layers of the LSTM.
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6. The Full Method

The baseline method is to train the model to maximize

p(S|R, I), as is common for CNN-LSTM based image cap-

tioning models. However a strategy that directly generates

an expression based only on the target object (which [19]

calls the reflex speaker strategy) has the drawback that it

may fail to generate discriminative sentences. For exam-

ple, consider Figure 4: to generate a description of the girl

highlighted by the green bounding box, generating the word

“pink” is useful since it distinguishes this girl from the other

girl on the right. To this end, we propose a modified training

objective, described below.

6.1. Discriminative (MMI) Training

Section 5.2 proposed a way to train the model using max-

imum likelihood. We now propose the following alternative

objective function:

J
′(θ) = −

N∑

n=1

log p(Rn|Sn, In, θ), (3)

where

log p(Rn|Sn, In, θ) = log
p(Sn|Rn, In, θ)∑

R′∈C(In) p(Sn|R′, In, θ)
. (4)

We will call this the softmax loss. Note that this is the same

as maximizing the mutual information between S and R

(assuming a uniform prior for p(R)), since

MI(S,R) = log
p(S,R)

p(R)p(S)
= log

p(S|R)

p(S)
. (5)

where p(S) =
∑

R′ p(S|R′)p(R′) =
∑

R′ p(S|R′). Hence

this approach is also called Maximum Mutual Information

(MMI) training [3].

The main intuition behind MMI training is that we want

to consider whether a listener would interpret the sentence

unambiguously. We do this by penalizing the model if it

thinks that a referring expression for a target object could

also be plausibly generated by some other object within the

same image. Thus given a training sample (I,R, S), we

train a model that outputs a high p(S |R, I), while main-

taining a low p(S |R′, I), whenever R′ 6= R. Note that

this stands in contrast to the Maximum Likelihood (ML)

objective function in Equation 2 which directly maximizes

p(S|R) without considering other objects in the image.

There are several ways to select the region proposals C.

We could use all the true object bounding boxes, but this

tends to waste time on objects that are visually very easy

to discriminate from the target object (hence we call these

“easy ground truth negatives”). An alternative is to select

true object bounding boxes belonging to objects of the same

class as the target object; these are more confusable (hence

we call them “hard ground truth negatives”). Finally, we

can use multibox proposals, the same as we use at test time,

and select the ones with the same predicted object labels as

R (hence we call them “hard multibox negatives”). We will

compare these different methods in Section 8.2. We use 5

random negatives at each step, so that all the data for a given

image fits into GPU memory.

To optimize Equation 3, we must replicate the network

(using tied weights) for each region R′ ∈ C(In) (including

the true region Rn), as shown in Figure 5. The resulting

MMI trained model has exactly the same number of param-

eters as the ML trained model, and we use the same opti-

mization and regularization strategy as in Section 5.2. Thus

the only difference is the objective function.

For computational reasons, it is more convenient to use

the following max-margin loss, which compares the target

region R against a single random negative region R′:

J ′′(θ) = −
N∑

n=1

{log p(Sn|Rn, In, θ)−

λmax(0, M − log p(Sn|Rn, In, θ) + log p(Sn|R
′
n, In, θ))}

(6)

This objective, which we call max-margin MMI (or MMI-

MM) intuitively captures a similar effect as its softmax

counterpart (MMI-SoftMax) and as we show in Section 8.2,

yields similar results in practice. However, since it only

compares two regions, the network must only be replicated

twice. Consequently, less memory is used per sentence, al-

lowing for more sentences to be loaded per minibatch which

in turn helps in stabilizing the gradient.

7. Semi-supervised Training

Collecting referring expressions data can be expensive.

In this section we discuss semi-supervised training of our

full model by making use of bounding boxes that do not

have descriptions, and thus are more ubiquitously available.

Our main intuition for why a bounding box (region) R can

be useful even without an accompanying description is be-

cause it allows us to penalize our model during MMI train-

ing if it generates a sentence that it cannot itself decode to

correctly recover R (recall that MMI encourages p(S|R, I)
to be higher than p(S|R′, I), whenever R′ 6= R).

In this semi-supervised setting, we consider a small

dataset Dbb+txt of images with bounding boxes and de-

scriptions, together with a larger dataset Dbb of images

and bounding boxes, but without descriptions. We use

Dbb+txt to train a model (which we call model G) to com-

pute p(S|R, I). We then use this model G to generate

a set of descriptions for the bounding boxes in Dbb (we

The girl in pink.

Fully Supervised Images

Model G

Model C

Tr
ai

n

Only Bounding Boxes With Generated Descriptions

The woman in blue.

Generate descriptions

Verification
Re-Train

Dbb+txt Dbb Dbb+auto

Dfiltered

Figure 6. Ilustration of the semi-supervised training process.

15



call this new dataset Dbb+auto). We then retrain G on

Dbb+txt ∪Dbb+auto, in the spirit of bootstrap learning.

The above strategy suffers from the flaw that not all

of the generated sentences are reliable, which may “pol-

lute” the training set. To handle this, we train an ensem-

ble of different models on Dbb+txt (call them model C),

and use these to determine which of the generated sen-

tences for Dbb+auto are trustworthy. In particular, we ap-

ply each model in the ensemble to decode each sentence in

Dbb+auto, and only keep the sentence if every model maps

it to the same correct object; we will call the resulting veri-

fied dataset Dfiltered. This ensures that the generator creates

referring expressions that can be understood by a variety of

different models, thus minimizing overfitting. See Figure 6

for an illustration. In the experiments, we show that our

model benefits from this semi-supervised training.

8. Experiments

We conducted experiments on both of the COCO refer-

ring expression datasets mentioned in Section 3: our G-Ref

dataset and the UNC-Ref dataset. We randomly chose 5,000

objects as the validation set, 5,000 objects as the testing set

and the remaining objects as the training set (44,822 for G-

Ref and 40,000 for UNC-Ref).

8.1. Evaluation Metrics

In this section, we describe how we evaluate perfor-

mance of the comprehension and generation tasks.

The comprehension task is easy to evaluate: we simply

compute the Intersection over Union (IoU) ratio between

the true and predicted bounding box. If IoU exceeds 0.5, we

call the detection a true positive, otherwise it is a false pos-

itive (this is equivalent to computing the precision@1 mea-

sure). We then average this score over all images.

The generation task is more difficult — we can evaluate

a generated description in the same way as an image de-

scription, using metrics such as CIDEr [51], BLEU [44] and

METEOR [35]. However these metrics can be unreliable

and do not account for semantic meaning. We rely instead

on human evaluation, as was done in the most recent image

captioning competition [1]. In particular, we asked Amazon

Mechanical Turk (AMT) workers to compare an automati-

cally generated object description to a human generated ob-

ject description, when presented with an image and object

of interest. The AMT workers do not know which sentences

are human generated and which are computer generated (we

do not even tell them that some sentences might be com-

puter generated to reduce possible bias). We simply ask

them to judge which sentence is a better description, or if

they are equally good.

In addition to human evaluation, which does not scale,

we evaluate our entire system by passing automatically gen-

erated descriptions to our comprehension system, and veri-

fying that they get correctly decoded to the original object

Proposals GT Multibox

Descriptions GEN GT GEN GT

ML (baseline) 0.803 0.654 0.564 0.478

MMI-MM-easy-GT-neg 0.851 0.677 0.590 0.492

MMI-MM-hard-GT-neg 0.857 0.699 0.591 0.503

MMI-MM-multibox-neg 0.848 0.695 0.604 0.511

MMI-SoftMax 0.848 0.689 0.591 0.502

Table 1. We measure precision@1 on the UNC-Ref validation data.

Each row is a different way of training the model. The columns

show performance on ground truth or multibox proposals, and

ground truth (human) or generated descriptions. Thus the columns

with GT descriptions evaluate the performance of the comprehen-

sion system, and the columns with GEN descriptions evaluate (in

an end-to-end way) the performance of the generation system.

of interest. This end-to-end test is automatic and much more

reliable than standard image captioning metrics.

8.2. Comparing different training methods

In this section, we compare different ways of training our

model: maximum likelihood training (the baseline method);

max-margin loss with easy ground truth negatives (“MMI-

MM-easy-GT-neg”); max-margin loss with hard ground

truth negatives (“MMI-MM-hard-GT-neg”); max-margin

loss with hard multibox negatives (“MMI-MM-multibox-

neg”); softmax/MMI loss with hard multibox negatives

(“MMI-SoftMax”). For each method, we consider using

either ground truth or multibox proposals at test time. In

addition, we consider both ground truth descriptions and

generated descriptions.

In this experiment we treat UNC-Ref as a validation set

to explore various algorithmic options and hyperparameter

settings for MMI. Only after having fixed these algorithmic

options and hyperparameter settings did we do experiments

on our G-Ref dataset (Section 8.3). This reduces the risk

that we will have “overfit” our hyperparameters to each par-

ticular dataset. The results are summarized in Table 1 and

we draw the following conclusions:

• All models perform better on generated descriptions

than the groundtruth ones, possibly because the gener-

ated descriptions are shorter than the groundtruth (5.99

words on average vs 8.43), and/or because the genera-

tion and comprehension models share the same param-

eters, so that even if the generator uses a word incor-

rectly (e.g., describing a “dog” as a “cat”), the compre-

hension system can still decode it correctly. Intuitively,

a model might “communicate” better with itself using

its own language than with others.

• All the variants of the Full model (using MMI training)

work better than the strong baseline using maximum

likelihood training.

• The softmax version of MMI training is similar to the

max-margin method, but slightly worse.

• MMI training benefits more from hard negatives than

easy ones.
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Proposals GT multibox

Descriptions GEN GT GEN GT

G-Ref-Val

Baseline 0.751 0.579 0.468 0.425

Full Model 0.799 0.607 0.500 0.445

G-Ref-Test

Baseline 0.769 0.545 0.485 0.406

Full Model 0.811 0.606 0.513 0.446

UNC-Ref-Val

Baseline 0.803 0.654 0.564 0.478

Full Model 0.848 0.695 0.604 0.511

UNC-Ref-Test

Baseline 0.834 0.643 0.596 0.477

Full Model 0.851 0.700 0.603 0.518

Table 2. Precision@1 for the baseline (ML) method and our full

model with the max-margin objective function on various datasets.

• Training on ground truth negatives helps when using

ground truth proposals, but when using multibox pro-

posals (which is what we can use in practice), it is bet-

ter to use multibox negatives.

Based on the above results, for the rest of the paper we

will use max-margin training with hard multibox negatives

as our Full Model.

8.3. Fullysupervised Training

In this section, we compare the strong baseline (max-

imum likelihood) with our max-margin MMI method on

the validation and test sets from G-Ref and UNC-Ref. As

before, we consider ground truth and multibox proposals

at test time, and ground truth (human) or generated (auto-

matic) descriptions. We see that MMI training outperforms

ML training under every setting as shown in Table 2. 3

In addition to the above end-to-end evaluation, we use

human evaluators to judge generated sentence quality. In

particular, we selected 1000 objects at random from our test

set, and showed them to Amazon Mechanical Turk workers.

The percentage of descriptions that are evaluated as better

or equal to a human caption for the baseline and the full

model are 15.9% and 20.4% respectively. This shows that

MMI training is much better (4.5% absolute improvement,

and 28.5% relative) than ML training.

8.4. Semisupervised Training

To conduct the semi-supervised experiment, we sepa-

rate the training set of our G-Ref dataset and the UNC-Ref

dataset into two parts with the same number of objects. The

first part (denoted by Dbb+txt) has the object description

annotations while the second part (denoted by Dbb) only

has object bounding boxes. Table 3 shows the results of

semi-supervised training on the validation set of our dataset

3We also train our baseline and full model on a random train, val, and

test split w.r.t. to the images of our G-Ref dataset. The results are consis-

tent with those in Table 2. With multibox proposals and GT descriptions,

the Precision@1 of the baseline and full model are 0.404 and 0.444 on val

set, and 0.407 and 0.451 on test set respectively.

Proposals GT multibox

Descriptions GEN GT GEN GT

G-Ref

Dbb+txt 0.791 0.561 0.489 0.417

Dbb+txt ∪Dbb 0.793 0.577 0.489 0.424

UNC-Ref

Dbb+txt 0.826 0.655 0.588 0.483

Dbb+txt ∪Dbb 0.833 0.660 0.591 0.486

Table 3. Performance of our full model when trained on a small

strongly labeled dataset vs training on a larger dataset with auto-

matically labeled data.

and UNC-Ref. We see that we get some improvement by

training on Dbb+txt ∪Dbb over just using Dbb+txt.

8.5. Qualitative Results

In Figure 7 we show qualitative results of our full gen-

eration model (above the dashed line) and the baseline gen-

eration model (below the dashed line) on some of our test

images. We see that the descriptions generated by our full

model are typically longer and more discriminative than the

baseline model. In the second image, for example, the base-

line describes one of the cats as “a cat laying on a bed”,

which is not sufficiently unambiguous for a listener to un-

derstand which cat is being described. Our full model, on

the other hand, describes the same cat as “a cat laying on

the left” which is completely unambiguous.

Figure 8 shows some qualitative results of our full com-

prehension model on our test dataset. The first and second

columns show the original image and the multibox propos-

als respectively. The last four columns show the bounding

boxes (denoted as a red bounding box in the figure) selected

by our full model in response to different input sentences

(both ground truth sentences and ones we created to probe

the comprehension abilities of the model). To better inter-

pret these results, we also show the bounding boxes that are

within the margin of the model (see Eqn. 6) with dashed

blue bounding boxes. Their bounding boxes are considered

as “possible candidates” but their scores (i.e. p(S|R, I)) are

not as high as the chosen one.

In general, we see that the comprehension model does

quite well from short two word phrases to longer descrip-

tions. It is able to respond correctly to single word changes

in a referring expression (e.g., “the man in black” to “the

man in red”). It also correctly identifies that the horse is the

referent of the expression “a dark horse carrying a woman”

whereas the woman is the referent in “a woman on the dark

horse” — note that methods that average word embeddings

would most likely fail on this example. However, there are

also failure cases. E.g., in the fifth row, “the woman in

white” selects a woman in black; this is because our model

cannot handle the case where the object is not present, al-

though it makes a reasonable guess. Also, in the fifth row,

“the controller in the woman’s hand” selects the woman, the

orange juice and the controller, since this particular kind of
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A cat laying on the left.
A black cat laying on 
the right.

A cat laying on a bed.
A black and white cat.

A zebra standing 
behind another zebra.
A zebra in front of 
another zebra.
A zebra in the middle.
A zebra in front of 
another zebra.

A baseball catcher.
A baseball player swing a bat.
The umpire in the black shirt.

The catcher.
The baseball player swing a bat.
An umpire.

A brown horse in 
the right.
A white horse.

A brown horse.
A white horse.

Figure 7. The sample results of the description generation using our full model (above the dashed line) and the strong baseline (below the

dashed line). The descriptions generated by our full model are more discriminative than those generated by the baseline.

The skis.

Guy with dark short hair 
in a white shirt.

A woman with curly hair 
playing Wii.

The controller in the 
woman's hand.

*The woman in white.

The giraffe behind the 
zebra that is looking up.

The giraffe with its back 
to the camera. The giraffe on the right. A zebra.

A dark brown horse with a white stripe 
wearing a black studded harness.

A white horse 
carrying a man.

A woman on the dark 
horse.

A dark horse carrying a 
woman.

A red suitcase.A black suitcase.A black carry-on suitcase 
with wheels The truck in the background.

The man in black. The man in red.
A skier with a black helmet, light 
blue and black jacket, backpack, 
and light grey pants standing.

Image Multibox Proposals Description Comprehension Results

Figure 8. Sample results of the description comprehension task using our full model. The first and second column shows the original

image and the multibox proposals. The third to sixth columns show the results of our model when input an arbitrary description of an

object in the image. The red bounding box denotes the most probable object predicted by the model while the blue dashed ones denote the

bounding boxes within the margin of the most probable one. The descriptions can be the groundtruth ones in the dataset (third column) or

an customized descriptions (fourth to sixth columns). (Best viewed in color)

object is too small to detect, and lacks enough training data.

9. Conclusions
To conclude, we leave the reader with two simple points.

First, referring expressions have been studied for decades,

but in light of the recent burst of interest in image caption-

ing, referring expressions take on new importance. Where

image captioning itself is difficult to evaluate, referring ex-

pressions have an objective performance metric, and require

the same semantic understanding of language and vision.

Thus success on datasets such as the one contributed in this

paper is more meaningful than success by standard image

captioning metrics.

Second, to be successful at generating descriptions, we

must consider the listener. Our experiments show that

modeling a listener that must correctly decode a gener-

ated description consistently outperforms a model that sim-

ply emits captions based on region features. We hope that

in addition to our dataset, these insights will spur further

progress on joint models of vision and language.
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