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Abstract

In this work, we propose a novel approach to video

segmentation that operates in bilateral space. We design a

new energy on the vertices of a regularly sampled spatio-

temporal bilateral grid, which can be solved efficiently us-

ing a standard graph cut label assignment. Using a bi-

lateral formulation, the energy that we minimize implic-

itly approximates long-range, spatio-temporal connections

between pixels while still containing only a small number

of variables and only local graph edges. We compare to

a number of recent methods, and show that our approach

achieves state-of-the-art results on multiple benchmarks in

a fraction of the runtime. Furthermore, our method scales

linearly with image size, allowing for interactive feedback

on real-world high resolution video.

1. Introduction

Video segmentation is a fundamental problem in com-

puter vision, and a key component of numerous applica-

tions, including localized video editing, color grading, and

compositing. Furthermore, semantically meaningful clus-

tering of video input is a crucial step in higher-level vision

problems such as scene understanding, learning object class

models, and video summarization [15, 16].

There are many similar and related definitions of what

specifically “video segmentation” refers to, but for the pur-

pose of this work, we consider the problem of finding a bi-

nary partitioning of pixels into foreground and background

classes.

In general, this problem must be addressed semi-

automatically, as the task itself requires a high level under-

standing of both the scene and the implicit goals of the user.

This is because defining what constitutes a “foreground ob-

ject” is often application specific, and the same video could

have multiple valid solutions. For this reason, we consider a

semi-supervised approach that uses sparse user-given cues

to produce a video segmentation. These cues can be ei-

ther a mask specified on one or a few key-frames, in which

case the problem can be described as mask propagation, or a

sparse set of labels specified by user clicks or strokes, which

Figure 1. Example results of our bilateral space video segmenta-

tion which automatically propagates a user provided mask on the

first frame (left column) through the complete video (remaining

columns). Thanks to the efficiency of our method, errors in the

later frames can be easily fixed in an interactive manner.

are then interpolated through the video.

A crucial aspect of semi-automatic video segmentation

methods is responsiveness. A user expects instant feedback,

and any computation delays present significant challenges

to the adoption of these technologies. This is one of the key

reasons that segmentation related tasks, such as rotoscop-

ing, form the bulk of manual labor, and therefore associated

costs, of video effects. In this work, we present a highly

efficient method for user-guided video segmentation that is

able provide iterative feedback in a fraction of the time of

previous approaches, while still generating high quality re-

sults in semi-supervised applications, as demonstrated on

multiple benchmarks.

We accomplish this by performing the segmentation in

“bilateral space”, which is a high dimensional feature space,

originally proposed for accelerated bilateral filtering [8],

and recently extended to computing depth from stereo tri-

angulation [4]. We describe a novel energy on a “bilateral

grid” [8], a regular lattice in bilateral space, and infer labels

for these vertices by minimizing an energy using graph cuts.

Processing on the bilateral grid has several advantages over

other approaches. First, the regular and data-independent

structure allows for a more efficient mapping from image

to bilateral space (and vice versa) than super-pixels or k-

means clustering approaches. Second, it allows for flexible
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interpolation schemes that lead to soft assignments of pixels

to multiple intermediate variables. And finally, a bilateral

representation allows us to infer labels on a simple, locally

connected graph, while still enforcing large spatio-temporal

neighborhood regularization, which would be intractable to

solve directly. We show that the combination of these ad-

vantages significantly improves segmentation quality, and

importantly, allows us to segment video data, generating

temporally consistent results with robustness to object and

camera motion.

In summary, we present the first work to address video

segmentation in bilateral space. Our approach contains sev-

eral novel concepts, such as a fast “adjacent” interpolation

scheme for high-dimensional grids, and a novel energy for-

mulation that is justified by an analysis of locally connected

labeling in bilateral space. Our method is highly efficient

and scales linearly with image resolution, allowing us to

process 1080p video with only minor increases in runtime.

We compare our mask propagation to a number of existing

approaches using multiple publicly available datasets, and

demonstrate that using this simple to implement method we

can achieve state-of-the-art results. While these compar-

isons are computed without user interaction, we note that

the real strength of our approach is that it enables an inter-

active interface, due to the computational efficiency, which

we show in a supplemental video.

2. Related Work

Graph Based Video Segmentation Images and videos

naturally lend themselves to a regular graph structure where

edges connect neighboring pixels in either a spatial or

spatio-temporal configuration. Video segmentation can

then be formulated as an optimization problem that tries

to balance a coherent label assignment of neighboring ver-

tices, while complying to a predetermined object model

or user constraints. Graph-cuts techniques have long been

used to efficiently solve this problem, both for image [6,32]

and video segmentation [11, 17, 21, 28, 30, 35].

Building on this general framework, subsequent methods

have lowered the computational cost by reducing the num-

ber of nodes in the graph using clustering techniques such

as a per-frame watershed algorithm [21,28], mean-shift seg-

mentation [35], or spatio-temporal superpixels [30]. How-

ever, these methods still do not achieve interactive rates due

to costly clustering steps, and allow only rough user con-

trol [21], or require expensive per-pixel refinement on each

frame [35]. Additionally, the above clustering methods can

fail in regions with poorly defined image boundaries. Re-

cently, efficient fully connected graphs have been exploited

to improve robustness to long-range, possibly occluded con-

nections [27].

Other Semi-Supervised Approaches Besides graph-

based methods, other approaches have proposed solutions

to the video segmentation problem using, for example, op-

tical flow or nearest neighbor fields to propagate silhouettes

or masks over multiple key frames [2, 3, 10, 13, 18]. Video

SnapCut [3] uses overlapping local classifiers that predict

the foreground probability, which are propagated and re-

fined over time. This approach was extended to a combi-

nation of local and global classifiers [38] to improve ro-

bustness. Dondera et al. [11] apply the spectral clustering

method of [22] on a graph of super-pixels in a 3D video vol-

ume. An initial segmentation is obtained without additional

input, the user can then add constraints to correct the solu-

tion. Labels are then inferred using a conditional random

field formulation.

Recently, Fan et al. [13] proposed a method that propa-

gates masks using nearest neighbor fields, and then refines

the result with active contours on classified edge maps. As

this is currently the top performing method in many cases,

we use it as a basis for our comparisons.

These approaches solve the mask propagation locally,

which makes enforcing global spatio-temporal constraints

difficult. As opposed to this, our method has the benefits

of a fully global solve, while operating on a reduced space,

which yields a highly efficient solution.

Unsupervised Approaches By making certain assump-

tions about the application scenario, some methods have

presented fully unsupervised techniques for video segmen-

tation. These approaches use features such as clustering of

point trajectories [7], motion characteristics [23], appear-

ance [16, 19], or occlusion cues [33] to hypothesize fore-

ground object locations. Faktor et al. [12] achieved state-of-

the-art results by diffusing such hypotheses on a non-local

graph. Similarly, Wang et al. [36] aggregate spatio-temporal

saliency information [25] to infer the object appearance

model. While automatic video segmentation methods cer-

tainly have advantages, they are only valid in restricted use

cases where the desired “foreground” regions have notably

different characteristics. For general purpose, high quality

video segmentation, we instead focus on the user-assisted

case, but note that our method could be combined with any

existing automatic foreground model.

Bilateral Space Bilateral filtering has been widely used

for edge-adhering image processing operations [24]. Chen

et al. [8] introduced the bilateral grid as a data structure to

speed up bilateral filtering. This approach lifts pixels into

a higher-dimensional space based on position and color, af-

ter which bilateral filtering can be performed as a standard

Gaussian filter. The advantage is that the resolution of the

bilateral grid can be significantly lower than the number of

input pixels, thereby providing an effective means of ac-
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(a) Lifting

Partially annotated input frame

(c) Graph cut (d) Slicing

Segmented output frame

(b) Splatting

Figure 2. Our pipeline, demonstrated on a 1D example. Pixels are lifted into a 2D feature space (a), with two user assigned labels (red

and green highlighted pixels). Values are accumulated on the vertices of a regular grid (b), a graph cut label assignment is computed on

these vertices (c), and finally pixel values are sliced at at their original locations (c), showing the final segmentation (again, red and green

boundaries).

celeration. This idea was later generalized to high dimen-

sional simplexes [1], and has been used beyond filtering op-

erations for edge preserving painting [8], and accelerating

stereo matching [4,31]. Our method draws inspiration from

these approaches. In particular, we extend the work of [4],

and describe an energy that when solved using graph cuts,

can be used to achieve a high quality video segmentation.

3. Method

Let V : Ω → R
3 be a color video, defined on a finite

discrete domain Ω ⊂ R
3. Given some user input as a set of

known foreground and background pixels, FG,BG ⊂ Ω,

we seek a binary mask M : Ω → {0, 1} that labels each

pixel of the video either as background or foreground.

Our approach makes use of a bilateral grid [8], Γ , con-

sisting of regularly sampled vertices v ∈ Γ . The mask

M is computed in four main stages, (summarized in Fig-

ure 2): by lifting pixels into a higher dimensional feature

space (Section 3.1), splatting them onto regularly sampled

vertices (Section 3.2), computing a graph cut label assign-

ment (Section 3.3), and slicing vertex labels back into pixel

space (Section 3.4).

3.1. Lifting

The first step is to embed each pixel p = [x, y, t]
T

in

a higher d-dimensional feature space, for example by con-

catenating YUV pixel color and spatial and temporal coor-

dinates:

b(p) = [cy, cu, cv, x, y, t]
T
∈ R

6 (1)

In this bilateral space, Euclidean distance encodes both

spatial proximity and appearance similarity. We evaluated a

number of feature spaces, generalized as the concatenation

of appearance features A(p) and position features P(p),

and interestingly found that state-of-the-art results can be

achieved by simply extending traditional 5D bilateral fea-

tures with a temporal dimension, which is very efficient due

to the low dimensionality.

3.2. Splatting

Instead of labeling each lifted pixel b(p) directly, we

resample the bilateral space using a regular grid [4, 8] and

compute labels on the vertices of this grid. The process of

accumulating values on the bilateral space vertices is known

as “splatting”. For each vertex v ∈ Γ , a weighted sum of

lifted pixels b(p) is computed as:

S(v) =
∑

w(v,b(p)) · (p̂) (2)

where

p̂ = (✶FG(p),✶BG(p), 1) (3)

and ✶×(p) is an indicator function that is 1 iff p ∈ ×.

The weight function w(v,b(p)), determines the range

and influence that each lifted pixel b(p) has on the vertices

of Γ . Prior work has used a nearest neighbor (NN) indi-

cator [4] or multi-linear interpolation weights [8]. Impor-

tantly, these approaches have limited support, (1 nonzero

vertex for each pixel using NN, and 2d−1 for multi-linear),

which is necessary for computation and memory efficiency.

The NN approach is the fastest, but can lead to blocky ar-

tifacts, while the multi-linear interpolation is slower, but

generates higher quality results. We propose an adjacent

interpolation that provides a good compromise between the

two, yielding high quality results, but with a linear growth

in the number of non-zero weights as a function of feature

space dimension, as opposed to the exponential growth of

the multi-linear case (Figure 3).

The idea behind adjacent weighting is that with multi-

linear interpolation, weights quickly decrease for vertices
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(a) Nearest (b) Multi-linear (c) Adjacent

Figure 3. Different interpolation schemes. Adjacent interpolation

scales significantly better to higher dimensionality when compared

to multi-linear interpolation, with only a small reduction in quality.

that differ from the nearest neighbor Nb(p) in many dimen-

sions. More precisely,

wl(v,b(p)) ≤ 0.5|v−Nb(p)|0 (4)

presents an upper bound for the weight, because each factor

of the linear interpolation is smaller than 0.5 if for that di-

mension vi is not the integer value that bi(p) was rounded

to. We use this bound to skip weight computation where the

result would have been small anyway:

wa(v,b(p)) =

{

∏d

i=1

∣

∣vi −Nb(p)

∣

∣ if v ∈ Ab(p)

0 otherwise
(5)

We found that interpolation between the nearest neighbor

and vertices that differ in only one dimension (the set of ad-

jacent vertices Ab(p)) already produces significantly better

results than hard nearest neighbor assignments with only a

minor increase in runtime.

3.3. Graph Cut

We now seek binary labels α, that mark each vertex v as

foreground, αv = 1, or background, αv = 0.

We compute these labels by constructing a graph G =
(Γ, E) where the vertices are the vertices in the bilateral

grid, and edges connect immediate neighbors (e.g., 4 neigh-

bors when d = 2, 6 neighbors when d = 3, . . . ). We then

define an energy based on the assumption that the label as-

signment is smooth in bilateral space:

E(α) =
∑

v∈Γ

θv(v, αv)+λ
∑

(u,v)∈E

θuv(u, αu,v, αv) (6)

θv is the unary term, θuv is the pairwise term, and λ is a

weight that balances the two.

The unary term θv models deviations from the supplied

user input. As we invert the splatting step to retrieve final

pixel labels, the splatted value SBG(v) expresses the total

cost of assigning v to foreground, αv = 1, and SFG(v) the

cost of assigning it to background, αv = 0, respectively.

θv(v, αv) = (1− αv) · SFG(v) + αv · SBG(v) (7)

The pairwise term θuv attempts to ensure that neighbor-

ing vertices are assigned the same label. In order to derive

θuv, we consider that the bilateral space graph G is equiva-

lent to a densely connected pixel graph, where edge weight

between pixels assigned to the same vertex is set to infin-

ity (as it is impossible to assign them different labels in

bilateral space). The edge weight between other pixels is

then approximated by the distance of their respective ver-

tices. With that in mind, it becomes clear that the weights

between vertices need to be scaled by the total number of

points S#(u) and S#(v) that have been assigned to the

two vertices (we can retrieve S#(u) and S#(v) from the

homogeneous (3rd) coordinate in Equation 4). That way,

assigning different labels to two vertices is (approximately)

equivalent to assigning the labels to all the original points

and our pairwise term can be written as:

θuv(u, αu,v, αv) = g(u,v) · S#(u) · S#(v) · [αu 6= αv]
(8)

where g(u,v) is a high-dimensional Gaussian kernel where

the diagonal matrix Σ scales each dimension to balance

color, spatial and temporal dimensions:

g(u,v) = e−
1
2 (u−v)TΣ−1(u−v) (9)

This formulation also reduces the complexity of the graph

cut due to the fact that all vertices without any assigned pix-

els, S#(v) = 0, are now completely excluded from any

computation and thus need no representation in the graph.

We can now efficiently apply a max-flow computation to

find the vertex labeling with minimal energy [5].

Connectivity analysis So far we have assumed that in-

creased connectivity leads to higher quality results. We val-

idate this by conducting experiments where we compute a

graph cut segmentation on a per-pixel (not bilateral) graph,

as in [6]. We begin with just local neighbor edges (4 neigh-

bors on a 2D graph), and increase the connectivity by con-

necting all points in an n× n window (Figure 4). This plot

clearly shows that increasing connectivity leads to better re-

sults, but at an increased running time, as was also observed

in [9, 12, 20].

3.4. Slicing

Given the foreground and background labels of the bilat-

eral vertices, the final mask M is retrieved by slicing, i.e.

interpolating grid labels at the positions of the lifted pixels

in the output frame. We generally use the same interpolation

scheme for both splatting and slicing, although a even more

precise adjustment of the quality/speed trade-off is possible

by choosing different interpolations.

M(p) =
∑

v∈Γ

w(v,b(p)) · L(v) (10)
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Figure 4. Mask propagation on a pixel-level graph with increasing

neighborhood sizes w. Error decreases with larger neighborhoods

at the expense of larger runtimes. Our approach (BVSQ) is shown

for comparison. We obtain lower error than even large window

sizes, while being much faster as well.

Finally, we post-process each frame with a simple 3 × 3
median filter in order to remove minor high frequency arti-

facts that arise due to the solution being smooth in bilateral

space, but not necessarily pixel space, however we note that

a more sophisticated method like the geodesic active con-

tours of [13] could also be applied.

4. Results and Evaluation

Implementation Our approach is implemented in Mat-

lab, with C++ bindings for most time consuming routines.

All our experiments were performed on a Mac Pro with a

3.5 GHz 6-Core Intel Xeon E5 CPU and 16 GB RAM. The

measured timings include the complete pipeline except for

IO-operations. Unlike many other approaches, we do not

rely on pre-computed flows, edge maps or other informa-

tion.

Parameters We evaluate two different sets of settings,

one tuned for quality, BVSQ, and the other for speed,

BVSS :

BVSQ (quality) BVSS (speed)

Feature space YUV XY T YUV XY T

Intensity grid size 35 15
Chroma grid size 30 10
Spatial grid size w/35, h/35 w/50, h/50
Temporal grid size 2 2

Interpolation Linear Adjacent

Runtime 0.37s 0.15s

Our method can predict temporally global segmenta-

tions, and higher temporal resolutions allow for compen-

sating for large degrees of object motion. However, this did

not improve result quality on the benchmarks due to limited

object motion, and the testing strategy of [13], where a sin-

gle keyframe is propagated forward by multiple frames. In

cases where user input is distributed temporally, e.g., in the

interactive interface, we use a higher temporal grid size of

N = 5, . . . , 15.

We set the pairwise weight to λ = 0.001 for all results.

The lifting stage also allows for different feature dimensions

to be scaled independently of each other (Σ in Equation 9).

For all results, we scale by 0.01, 0.5, 1.3, 1.5 the temporal

(t), spatial (xy), the intensity (cy) and the chroma (cucv)

dimensions respectively, but we didn’t notice any particular

dependency on the unary edge factor or the dimension scal-

ing. All parameters could be tuned to achieve better results

per benchmark or even per video, but we leave them fixed

in all tests to represent a more real-world scenario.

Runtime Comparing runtime is difficult, with different

code bases and levels of optimization, however, we give

some average runtimes from our observations as a rough

idea of the expected computational complexity. As many

existing video segmentation methods take even up to one

hour for a single frame, we compare only with the following

fastest state-of-the-art methods: SEA: SeamSeg [29], JMP:

JumpCut [13], NLC: Non-Local Consensus Voting [12],

and HVS: Efficient Hierarchical Graph-Based Video Seg-

mentation [14].

BVSQ BVSS SEA JMP NLC HVS

480p 0.37s 0.15s 6s 12s 20s 5s
1080p 1.5s 0.8s 30s 49s 20s 24s

Table 1. Approximate running time per frame for a number of fast

methods with code available. Ours is roughly an order of mag-

nitude faster than prior methods, and scales linearly with image

size. NLC has mostly constant running time because it uses a fixed

number of superpixels.

Our method computes 480p masks in as little as 0.15
seconds (Table 1) which is roughly an order of magnitude

faster than all other approaches. Even if we trade speed for

quality, our method still takes significantly less time than

the second-fastest approach. Furthermore, the two most ex-

pensive steps, i.e. lifting and slicing, can be trivially par-

allelized since their output values only depends on color

and position of individual pixels. Splatting can also be per-

formed on concurrent threads, simply augmenting the grid

with a small number of accumulators at bilateral vertices.

The only stage that is not easily parallelizable is graph-

cut, which anyway has small runtime due to the size and

sparsity of the bilateral grid. Therefore we would expect

a tuned GPU implementation to report substantial perfor-

mance gains.
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BVSQ BVSS JMP NLC SEA HVS

bear 0.96 0.93 0.93 0.91 0.91 0.94

blackswan 0.94 0.90 0.93 0.87 0.93 0.92

bmx-trees 0.38 0.29 0.23 0.21 0.11 0.18

bmx-bumps 0.43 0.41 0.34 0.63 0.20 0.43

breakdance-flare 0.73 0.59 0.43 0.80 0.13 0.50

breakdance 0.50 0.40 0.48 0.67 0.33 0.55

bus 0.86 0.84 0.67 0.63 0.75 0.81

dance-twirl 0.49 0.35 0.44 0.35 0.12 0.32

libby 0.78 0.61 0.29 0.64 0.23 0.55

dog 0.72 0.58 0.67 0.81 0.58 0.72

drift-chicane 0.03 0.01 0.24 0.32 0.12 0.33

drift-straight 0.40 0.21 0.62 0.47 0.51 0.30

mallard-water 0.91 0.82 0.75 0.76 0.87 0.70

mallard-fly 0.61 0.61 0.54 0.62 0.56 0.44

elephant 0.85 0.82 0.75 0.52 0.55 0.74

flamingo 0.88 0.72 0.53 0.54 0.58 0.81

goat 0.66 0.58 0.73 0.01 0.54 0.58

hike 0.76 0.82 0.66 0.92 0.78 0.88

paragliding 0.88 0.84 0.95 0.88 0.86 0.91

soccerball 0.84 0.57 0.10 0.83 0.65 0.07

surf 0.49 0.62 0.94 0.78 0.82 0.76

Average 0.67 0.56 0.61 0.64 0.56 0.60

Table 2. IoU score (higher is better) on a representative subset of

the DAVIS benchmark [26], and the average computed over all 50

sequences.

4.1. Quantitative Evaluation

In order to evaluate our approach with respect to existing

methods, we focus on the task of mask propagation, which

has been widely used by previous work. Given a manual

segmentation of the first frame, each method predicts sub-

sequent frames, without any additional user input. Using

this approach, we measured the performance on three dif-

ferent benchmark datasets.

DAVIS The dataset of Perazzi et al. [26] comprises a

total of 50 high-resolution sequences alternating a wide

range of object segmentation challenges such as occlu-

sions, fast-motion and appearance changes. The dataset

comes with per-frame, per-pixel manual annotations. Ta-

ble 2 summarizes the results for a representative subset of

DAVIS sequences and the average performance over the en-

tire dataset. The full, per-sequence, evaluation can be found

in the benchmark. While our approach scales linearly with

image resolution, not all algorithms that we compare to are

able to handle the full 1080p resolution, so we run compar-

isons on downscaled 480p versions of these sequences. We

report the widely used intersection-over-union (IoU) met-

ric, averaged over all frames in each sequence. As may be

seen in Table 2, our method outperforms all other methods,

achieving the best score on most of the videos and the best

average score overall. Even with the faster, but less accu-

BVSQ BVSS RB DA SEA JMP

animation 0.78 1.77 1.98 1.26 1.83 1.59

bball 1.36 3.29 1.55 1.71 1.90 1.61

bear 1.34 1.56 1.82 1.07 1.84 1.36

car 1.01 5.48 1.35 1.38 0.73 0.54

cheetah 2.72 3.56 7.17 3.99 5.07 4.41

couple 2.65 6.43 4.09 3.54 3.78 2.27

cup 0.99 4.54 3.72 1.34 1.19 1.16

dance 5.19 23.96 6.65 9.19 7.55 6.62

fish 1.78 4.06 2.80 1.97 2.54 1.80

giraffe 4.06 9.89 8.49 6.99 4.77 3.83

goat 2.68 4.87 3.68 2.57 3.30 2.00

hiphop 3.21 8.08 8.02 4.62 6.94 3.37

horse 3.60 16.32 3.99 4.14 3.00 2.62

kongfu 1.97 2.51 5.42 3.71 5.78 3.28

park 2.35 5.89 3.95 3.49 3.33 2.93

pig 2.15 3.18 3.86 2.08 3.39 2.97

pot 0.62 1.25 0.94 1.49 0.80 0.70

skater 4.72 11.23 6.33 5.33 5.09 4.89

station 2.07 8.55 2.53 2.01 2.37 1.53

supertramp 9.68 9.76 14.70 8.99 17.40 6.17

toy 0.66 7.16 1.02 1.32 0.70 0.58

tricking 4.23 5.57 42.20 9.71 11.90 5.02

Average 2.72 6.77 6.19 3.72 4.33 2.78

Table 3. Errors (lower is better) on the JumpCut benchmark for

two transfer distances and several different methods as reported

by [13].

rate configuration, our approach still performs comparably

or better than several concurrent approaches [26].

JumpCut The recent method of Fan et al. [13] includes

a dataset consisting of 22 videos with medium resolution

and good per-frame ground truth masks. In addition to the

methods mentioned above, we compare to RB: RotoBrush,

based on SnapCut [13], and DA: Discontinuity-aware video

object cutout [38]. As we do not have access to implemen-

tations for all methods reported on this dataset, we instead

adapt our method to conform to the same testing strategy

and error metric used in [13]. That is, propagating masks

from multiple keyframes 0, 16, . . . , 96, over different trans-

fer distances (1, 4, 8, 16 frames), and reporting error as fol-

lows:

Err =
100

n

n
∑

i=1

# error pixels in i-th frame

# foreground pixels in i-th frame
(11)

Overall, our method performs best on this benchmark,

closely followed by JumpCut (Table 3).

We note that our approach uses a simple refinement step

(3x3 median filter). However, we conducted an experiment

using an active contour refinement, similar to JumpCut, and

our result improved to 2.45 on average, with a running time
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Figure 5. This plot shows how IoU (higher is better) decreases

when a single mask is propagated over increasing numbers of

frames. Our method degrades favorably when compared to other

approaches. The NLC approach stays constant as it is an automatic

method that doesn’t depend on the input of the first frame.

of only 1s per frame. We additionally observe that many

methods degrade in quality over long sequences, as errors

accumulate over time. In contrast, our method scores better

on long videos, experiencing less drift of the object region

than other approaches (Figure 5).

SegTrack For the sake of completeness we also present

an evaluation on the popular benchmark of Tsai et al. [34].

We additionally compare to: FST: Fast Object Segmen-

tation in Unconstrained Video [23], DAG: Video object

segmentation through spatially accurate and temporally

dense extraction of primary object regions [37], TMF:

Video segmentation by tracking many figure-ground seg-

ments [20], and KEY: Key-segments for video object seg-

mentation [19]. In this case, it can be seen that our method

clearly struggles to compete with existing approaches. This

is most likely due to a combination of factors related to

the low quality and resolution of the input videos, which

lead to many mixed pixels that confuse the bilateral model.

We also note that many of these methods were optimized

with this dataset in mind, using different parameter settings

per sequence. Instead, we use the same parameter settings

for all three datasets. We also believe that the more recent

datasets from JumpCut and our additional videos provide

a more contemporary representation of video segmentation

tasks.

4.2. Interactive Segmentation

It is important to note that while our method scores well

on these two higher-resolution benchmarks, the real advan-

tage is the fast running time, when used in an interactive

framework. To demonstrate this, we built a simple proto-

type editor (Figure 7) in Matlab that allows a user to draw

strokes on an image to mark foreground or background re-

BVSQ BVSS NLC FST DAG TMF KEY HVS

birdfall 0.66 0.40 0.74 0.59 0.71 0.62 0.49 0.57

cheetah 0.10 0.14 0.69 0.28 0.40 0.37 0.44 0.19

girl 0.89 0.87 0.91 0.73 0.82 0.89 0.88 0.32

monkeydog 0.41 0.38 0.78 0.79 0.75 0.71 0.74 0.68

parachute 0.94 0.92 0.94 0.91 0.94 0.93 0.96 0.69

Average 0.60 0.54 0.81 0.66 0.72 0.70 0.70 0.49

Table 4. Comparison of our method on the SegTrack dataset [34],

using the IoU metric (higher is better).

gions. After every stroke, the newly marked pixels are splat-

ted to the bilateral grid and a global spatio-temporally solu-

tion is computed. Finally, the mask is sliced from the cur-

rent frame and its outline is overlaid on the image. Please

see the supplemental video for an example of this interac-

tion.

5. Discussion

In summary, we have shown how simple and well-

understood video segmentation techniques leveraging graph

cuts can yield state-of-the-art results when performed in bi-

lateral space.

There are many exciting avenues for extending the re-

search in this area. For example, one could consider alter-

nate, more descriptive feature spaces in the lifting step. We

made some initial experiments with using patches, and ob-

tained marginally better results, but at the expense of higher

running time. Additionally, while the bilateral representa-

tion can handle some degree of motion, it does not explicitly

account for camera or object motion. One possibility is to

warp pixels using their optical flow before splatting. Our

initial experiments indicated that due to the instability of

flow, such methods were unreliable; sometimes leading to

large improvements in quality, but in other times made the

results worse. These methods also rely on precomputing op-

tical flow, which is costly. Nonetheless, explicitly exploring

scene motion is a promising venue to future work.

Despite this, we believe that the method as presented

here has many attractive qualities. It is simple to implement,

parallelizable, and fast, all without sacrificing quality. This

efficiency gain is not only vital to providing faster feedback

to users, but is also important for extending to low computa-

tional power (mobile) devices, or large scale (cloud-based)

problems, which will hopefully enable new applications.
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Figure 6. Qualitative video segmentation results from three sequences of DAVIS [26] (horsejump, stroller and soapbox). The segmentation

is computed non-interactively, given the first frame as initialization. Our method demonstrates robustness to challenging scenarios such as

complex objects, fast-motion, and occlusions.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Our interactive segmentation editor. Very simple input (a) is sufficient to infer an accurate foreground mask (b) and track it over

time. As a new object enters the scene (c), the user can choose to add it to the foreground with an additional input stroke (d). The mask is

then automatically propagated to to the other frames (e-h) without further corrections.
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