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Abstract

Objective image quality assessment (IQA) models aim

to automatically predict human visual perception of image

quality and are of fundamental importance in the field of

image processing and computer vision. With an increas-

ing number of IQA models proposed, how to fairly compare

their performance becomes a major challenge due to the

enormous size of image space and the limited resource for

subjective testing. The standard approach in literature is

to compute several correlation metrics between subjective

mean opinion scores (MOSs) and objective model predic-

tions on several well-known subject-rated databases that

contain distorted images generated from a few dozens of

source images, which however provide an extremely limited

representation of real-world images. Moreover, most IQA

models developed on these databases often involve machine

learning and/or manual parameter tuning steps to boost

their performance, and thus their generalization capabili-

ties are questionable. Here we propose a novel methodolo-

gy to compare IQA models. We first build a database that

contains 4,744 source natural images, together with 94,880

distorted images created from them. We then propose a

new mechanism, namely group MAximum Differentiation

(gMAD) competition, which automatically selects subsets

of image pairs from the database that provide the strongest

test to let the IQA models compete with each other. Sub-

jective testing on the selected subsets reveals the relative

performance of the IQA models and provides useful insight-

s on potential ways to improve them. We report the gMAD

competition results between 16 well-known IQA models, but

the framework is extendable, allowing future IQA models to

be added into the competition.

1. Introduction

Digital images undergo many transformations in their

lifetime during acquisition, processing, compression, stor-

age, transmission and reproduction. Any transformation

may introduce distortions that result in degradations in vi-

sual quality [24, 30]. Being able to assess image quality

is of fundamental importance in many image processing

and computer vision applications. Since the human visual

system (HVS) is the ultimate receiver in most applications,

subjective evaluation is the most reliable way of quantify-

ing image quality but is time-consuming, cumbersome and

expensive. In recent years, there has been a rapidly grow-

ing interest in developing objective image quality assess-

ment (IQA) models that can automate the process [30, 31].

Depending on the availability of a distortion-free reference

image, objective IQA models may be categorized into full-

reference (FR), reduced-reference (RR) and no-reference

(NR) approaches, where the reference image is fully, par-

tially, and completely not accessible.

With a significant number of IQA models proposed re-

cently, how to fairly compare their performance becomes

a challenge. The standard approach in the literature is

to first build databases of images with various content

and distortions, and then collect subjective evaluation s-

cores for all images. Widely recognized image databases

with subjective ratings include LIVE [27], TID2008 [23],

TID2013 [22], CSIQ [12], IVC [13], Toyama-MICT [9]

and VCL@FER [41]. Crowdsourcing techniques [2, 15]

were also adopted to construct subjective databases of real

world Internet images [4]. Given these databases, correla-

tions between subjective mean opinion scores (MOSs) and

objective model predictions can then be computed. Higher

correlations suggest better model performance.

A major problem with this conventional evaluation

methodology is the conflict between the enormous size of

the image space and the limited scale of affordable sub-

jective testing. Subjective testing is expensive and time-

consuming. As a result, a typical “large-scale” subjective

test allows for a maximum of several hundreds or a few t-

housands of test images to be rated. Given the combination

of source images, distortion types and distortion levels, re-

alistically only a few dozens of source images (if not few-

er) can be included, which is the case in all well-known
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databases. Moreover, many source test images are repeat-

ed in the current databases, and the distortion types being

used are also similar. By contrast, digital images live in

an extremely high dimensional space, where the dimension

equals the number of pixels, which is typically in the or-

der of hundreds of thousands or millions. Therefore, a few

thousands of samples that can be evaluated in a typical sub-

jective test are deemed to be extremely sparsely distributed

in the space. Furthermore, it is difficult to justify how a

few dozens of source images can provide a sufficient rep-

resentation of the variations of real-world image content. It

is also worth noting that most state-of-the-art IQA models

were developed after the above-mentioned image databas-

es became publicly available. These models often involve

machine learning or manual parameter tuning steps to boost

their performance on these databases. In particular, recent

IQA models based on sophisticated machine learning ap-

proaches employ a very large number of image features to-

gether with large-scale learning networks to improve quali-

ty prediction performance. It is thus questionable if the re-

ported highly competitive performance of recent IQA mod-

els can be generalized to the real-world, where images have

much richer content and undergo a much broader variation

of quality degradations.

We believe that to provide a fair comparison of IQA

models and to test their generalization capability, a much

larger test database (e.g., thousands of source images and

tens of thousands distorted images) must be used. Appar-

ently, the main difficulty here is how to make use of such

a database to compare IQA models under the constraint of

very limited resource for subjective testing, knowing that

rating all test images by human subjects is impossible.

In this paper, we propose a substantially differen-

t methodology to address the problem. We first build a

database that contains 4,744 source natural images, togeth-

er with 94,880 distorted images created from them. As-

suming a group of IQA models are available for testing, we

propose a novel mechanism, namely group MAximum Dif-

ferentiation (gMAD) competition, that automatically select-

s subsets of image pairs from the database that provide the

strongest test to let the IQA models compete with each oth-

er. The key idea behind gMAD is to minimize the number

of required subjective tests in order to most efficiently fal-

sify a “defender” model by selecting and testing on image

pairs that maximally differentiate the defender model using

multiple “attacker” models. In other words, instead of try-

ing to prove a model using a set of pre-defined images from

subject-rated databases, we attempt to disprove the model

in the most efficient way using a small set of deliberately

selected, model-dependent image pairs. The process is ap-

plied to every IQA model in the group as the “defender”

model. Subjective testing on the selected subsets of test im-

age pairs reveals the relative strengths and weaknesses of

the IQA models and also provides useful insights on poten-

tial ways to improve them. This work is inspired by the idea

behind the MAD competition approach [33], but unlike g-

MAD, the MAD method includes only two models in the

competition, relies on gradient computations of the models,

and is not structured to explore a database of images.

2. Related Work

Well-known subject-rated image databases include

LIVE [27], TID2008 [23], CSIQ [12], IVC [13], Toyama-

MICT [9], VCL@FER [41] and TID2013 [22]. They have

been extensively employed in the training and testing pro-

cesses in the development and benchmarking of a majority

of state-of-the-art IQA models. The specific subjective test-

ing methodologies vary, but eventually each image in the

databases is labeled with an MOS, which represents the av-

erage subjective opinion about the quality of the image and

is often referred to as the “ground truth” quality score of the

image. The most common distortion types shared by these

databases are JPEG compression, JPEG2000 compression,

white Gaussian noise contamination and Gaussian blur. The

typical size of these databases is in the order of hundred-

s or a few thousands images. Among them, the TID2013

database [22] is the largest and contains 25 source and 3000

distorted images in total. By contrast, the current database

we created in this work contains 190 times more source im-

ages and 30 times more distorted images, respectively.

Depending on how the test images are presented to hu-

man subjects and how human subjects are instructed to

rate the images, subjective testing may be carried out in

three ways: 1) single-stimulus method, where one test im-

age is shown at any time instance and the subjects direct-

ly give quality scores to the image; 2) paired compari-

son method (also known as two-alternative forced choice,

or 2AFC approach), where a pair of images are shown to

the subjects, who are instructed to choose a preferred im-

age from the two; and 3) multiple-stimulus method, where

multiple images are shown simultaneously and the subject-

s rank all images based on their quality or give quality s-

cores to all images. Assume that there are n test images

in total. O(n) evaluations are needed in single-stimulus

and multiple-stimulus methods, while O(n2) evaluation-

s are needed in a full paired comparison experiment. Al-

though paired comparison method is often preferred to col-

lect reliable subjective evaluations, exhaustive paired com-

parison requires a very large number of evaluations, which

are often impractical when the total number of test images

is large. A number of approaches have been proposed to

improve the efficiency. Four types of balanced sub-set de-

signs were developed in the 1950’s [1], among which the

square design method became popular and was later fur-

ther improved [14]. Another method was to randomly se-

lect a small subset of pairs for each subject [3], and it was
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Human Animal Plant Landscape

Cityscape Still-life Transportation

Figure 1. Sample source images in the new image database.

shown that O(n log n) distinct pairs are needed for large

random graphs to guarantee graph connectivity and thus to

achieve any global ranking using HodgeRank [10]. In the

construction of the TID2013 [22] database, a Swiss compe-

tition principle was adopted to decrease the evaluations to

O(n log n). Recently, an active sampling strategy for sub-

jective quality assessment was proposed [39] with a com-

plexity of O(n). Different from all the above strategies to

improve testing efficiency, gMAD requires a fixed number

of paired comparisons and thus does not scale with the num-

ber of images in the database. This feature allows it to ex-

ploit large-scale databases with low and manageable cost.

3. Image Database Construction

We construct a new image database, which currently

contains 4,744 high quality source natural images with a

great amount of image content. An important consideration

in selecting the images is that they need to be representative

of the images we see in real-world applications. Therefore,

we resort to the Internet, and more specifically, we elabo-

rately select 196 keywords to search for images via Google

Images [5]. The keywords can be broadly classified into

7 categories: human, animal, plant, landscape, cityscape,

still-life and transportation. As a result, we initially obtain

more than 200, 000 images. Many of these images contain

significant distortions or inappropriate content, and thus a

sophisticated manual process is applied to refine the selec-

tion. In particular, we first delete those images that have

obvious distortions, including heavy compression artifacts,

strong motion blur or out of focus blur, low contrast, under-

exposure or overexposure, substantial sensor noise, visible

watermarks, artificial image borders, and other distortions

due to improper operations during acquisition. Next, im-

ages of too small and too large sizes, cartoon and computer

generated content, and inappropriate content are excluded.

After this step, about 7, 000 images are left in the database.

To make sure that the images have pristine or nearly pris-

tine quality, we further carefully investigate each of the re-

maining images multiple times by zooming in and delete

those images with visible compression distortions. Eventu-

ally, we end up with 4744 high quality natural images in our

database. Sample images are shown in Fig. 1.

Four distortion types, namely JPEG and JPEG2000 com-

pression, white Gaussian noise and Gaussian blur, each

with five distortion levels are used to generate 94, 880 dis-

torted images. The four distortion types are common in

existing IQA databases [27, 23] and many IQA models

are claimed to be able to properly handle these distortion-

s [19, 20, 25, 17, 40, 18, 38, 37, 26, 42, 36, 7, 35]. The

distortion generation process follows the method in [27],

and the parameters that control the distortion levels for each

type are optimized in order to uniformly cover the subjec-

tive quality scale. Once determined, the parameters are kept

unchanged for all images.

Overall, our new image database contains a total of

99, 624 images which is the largest image database so far
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in the IQA research community. It will be made publicly

available.

4. gMAD Competition

The underlying principle in traditional approaches of

IQA model evaluation is to prove a model. This requires the

model to be validated using a sufficient number of test sam-

ples in the applicable space of the model. Applying such

a principle in IQA model evaluation is a major challenge

because the applicable space (i.e., the space of all possible

images) is enormous (millions of dimensions), but the total

number of test samples (subject-rated images) that can be

obtained in a realistic subjective experiment is only in the

order of thousands (if not fewer). It is extremely difficult to

justify that these test samples are sufficient to represent the

population of real-world images.

The most fundamental idea behind the MAD [33] and the

current gMAD competition approaches is to give up the tra-

ditional principle. Instead of trying to prove a model, here

we attempt to disprove a model, and a model that is more

difficult to be disproved is regarded as a relatively better

model. This new principle gives us an opportunity to largely

reduce the required number of test samples because ideally

even one “counter-example” is sufficient to disprove a mod-

el. Another important ingredient in the gMAD approach

is to use an efficient and automatic way to find potential

“counter-examples”. When attempting to disprove a model

(denoted as the “defender”), instead of trying to hand design

or manually search for the best counter-examples, gMAD

makes use of a group of other models (denoted as the “at-

tackers”) to search for the counter-examples in the database

that are optimal with regard to the attacker models such that

if the attack is successful, the defender model is simply dis-

proved. If instead, the defender survives from such an at-

tack, it is a strong indicator that it is likely to be a robust and

reliable model. gMAD runs this game using all available

models with all possible combinations of defender-attacker

roles of the models before performing overall statistics that

help summarize the relative performance of the competing

models.

The details of the gMAD competition procedure are as

follows: We are given a database D that contains N images

with different distortion types and levels. Also given are a

group of M objective IQA models.

• Step 1. Apply all M IQA models to all N images in

D. This results in a score matrix S of M rows and N

columns, where each entry is the quality score given

by one specific IQA model to one specific image;

• Step 2. Choose the first model as the defender by set-

ting i = 1. The rest of the M − 1 models are the

attackers;

Figure 2. User interface for subjective testing.

• Step 3. Choose the first quality level k = 1 from a

total of K quality levels, where k ∈ {1, 2, · · · ,K};

• Step 4. At the i-th row in S, find all images at quality

level k (based on the defender model i). This results

in a subset of images Dik, where all images have the

same or similar quality scores according to the defend-

er model i;

• Step 5. Choose one model j from the attacker models

(j �= i).

• Step 6. Within Dik, find a pair of images I lijk and Iuijk
that correspond to the minimal and maximal quality

scores on the j-th row of matrix S, respectively. This

image pair is referred to as the MAD counterexample

suggested by model j to attack model i at quality level

k;

• Step 7. Carry out a subjective quality discriminative

test on I lijk and Iuijk (details given in Section 5.1);

• Step 8. Choose another attacker model j and repeat

Steps 6-7 until all attacker models are exhausted;

• Step 9. Choose the next quality level by setting k =
k + 1 and repeat Steps 4-8 until k = K (all quality

levels are exhausted);

• Step 10. Choose the next defender model by setting

i = i + 1 and repeat Steps 3-9 until i = M (all IQA

models are exhausted);

• Step 11. Carry out statistical analysis on the subjec-

tive quality discriminative test results (details given in

Section 5.2).

Several useful features of the gMAD competition

method are worth mentioning here. First, the process does

not depend on the specific image database being explored.
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The same approach can be applied to any collection of im-

ages of any content and distortion types. Second, the num-

ber of image pairs selected by gMAD for subjective test-

ing is M(M − 1)K, which is independent of the size N of

the image database D. As a result, applying gMAD com-

petition to a larger database has no impact on the cost of

subjective testing. Third, each selected pair of images are

associated with two IQA models, which hold highly differ-

ent opinions on their perceived image quality; one believes

the pair have the same quality while the other suggests that

they have very different quality. If the pair are easily differ-

entiated by human subjects, they constitute strong evidence

against the defender model. On the other hand, if the pair

indeed have similar perceived quality, they provide strong

evidence to support the defender model against the attacker

model. Fourth, it is easy and cost-effective to add new IQA

models into the competition. No change is necessary on all

the selected pairs and their corresponding subjective test-

ing. The only additional work is to select a total of 2MK

new image pairs for subjective testing, half of which are for

the case that the new model acts as a defender and the oth-

er half as an attacker. A MATLAB program will be made

publicly available to facilitate the future usage of the gMAD

competition approach.

5. IQA Models Comparison

5.1. Subjective Testing

The construction of the test image database has been de-

scribed in detail in Section 3. A total of sixteen IQA mod-

els are selected in the gMAD competition process to cov-

er a wide variety of IQA methodologies with an emphasis

on NR models. These include FR models 1) PSNR, 2) S-

SIM [32], 3) MS-SSIM [34], 4) FSIM [43] and NR mod-

els 5) BIQI [19], 6) BLINDS II [25], 7) BRISQUE [17],

8) CORNIA [40], 9) DIIVINE [20], 10) IL-NIQE [42], 11)

LPSI [36], 12) M3 [37], 13) NFERM [7], 14) NIQE [18],

15) QAC [38] and 16) TCLT [35]. The implementations of

all algorithms are obtained from the original authors. For

IQA models that involve training, we use all images in the

LIVE database [27] to train the models. To compensate the

nonlinearity of model predictions on the human perception

of image quality and to make the comparison more con-

sistent, we adopt a logistic nonlinear function as suggested

in [29] to map the prediction scores of each model to the

MOS scale of the LIVE database [27]. As a result, the s-

core range of all algorithms spans between [0, 100], where

a higher value indicates a better perceptual quality.

For each defender model, we define six quality levels

evenly spaced on the quality scale, so that the selected sub-

sets of images have a good coverage from low to high qual-

ity levels. The quality range within each subset of images

is set to be within 1 standard deviation (std)1of MOSs in

the LIVE database [27]. Thus the images within the same

subsets have approximately the same or similar quality by

the defender model. The attacker models then choose pairs

of images from each of the 6 subsets, as described in Sec-

tion 4. After the gMAD image pair selection process, a total

of 16× (16− 1)× 6 = 1440 image pairs are chosen for the

subsequent subjective testing.

A subjective quality discrimination test is conducted in

an office environment with normal indoor illumination lev-

els and without reflecting ceiling walls and floor. The

display is a Truecolor LCD monitor at a resolution of

2560 × 1600 pixels and is calibrated in accordance with

the recommendations of ITU-R BT.500 [29]. A customized

MATLAB interface is adopted to render a pair of images

simultaneously at their original pixel resolutions but in ran-

dom spatial order. A scale-and-slider applet is used for as-

signing a quality score, as shown in Fig. 2. For each pair of

images, the subject assigns a score between -100 and 100

to indicate his/her preference to either the left image [-100,

-20] (labeled as “left is better”) or the right image [20,100]

(labeled as “right is better”). In case the subject is uncer-

tain about his/her decision, he/she can also assign a score

between [-20, 20] (labeled as “uncertain”), where a score

0 indicates completely neutral. This approach is different

from a typical paired comparison method where the sub-

jects can only make a binary decision on his/her preference

even when he/she is uncertain about the answer. The bene-

fit of the current approach is to better capture the subjects’

confidence when expressing his/her preferences. During the

experiment, the subjects are allowed to move their positions

to get closer or further away from the screen for better ob-

servation. We divide the experiment into 4 sessions, each

of which is limited to a maximum of 30 minutes to mini-

mize the influence of fatigue effect. Furthermore, in order

to inspect if subjects are using consistent scoring strategies

throughout the experiment, we repeat 10% of the total num-

ber of image pairs (144 pairs) during the test.

A total of 31 naı̈ve subjects, including 16 males and 15
females, participate in the subjective experiment. The sub-

jects do not have any experience in the area of IQA and

all have a normal or correct-to-normal visual acuity. Each

subject is first introduced about the goal of the experiment

and is then given an introduction on the experimental pro-

cedure and the user interface. They are also shown pairs of

sample images (independent of the test images) in a training

session so as to become familiar with the test process and

image distortions. All subjects participate in all sessions.

1Every image in the LIVE database has a MOS and an std associated

with it, computed from all valid subjects. The std used here is in fact an

average of stds for all images.
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5.2. Analysis

After the raw subjective data are collected, we employ

the outlier detection and subject rejection algorithm sug-

gested in [29]. Specifically, the raw score for an image is

considered to be an outlier if it is outside 2 stds about the

mean score of that image for Gaussian case or outside
√
20

stds for non-Gaussian case. A subject is removed if more

than 5% of his/her evaluations are outliers. Moreover, a

consistency check is conducted for each subject by making

use of the image pairs that have been repeated. We define

the consistency measure as the average of stds of scores giv-

en by one subject to the repeated pairs. A subject is rejected

if his/her consistency measure is more than 2 stds of consis-

tency measures for all subjects. As a result, one subject is

rejected due to inconsistent judgements. Among all scores

given by the remaining valid subjects, about 1.4% of the to-

tal subjective evaluations are identified as outliers and are

subsequently removed.

Since every pair of images in the gMAD competition are

associated with two IQA models, we first compare these

models in pairs and then aggregate the pairwise compar-

isons into a global ranking using mature rank aggregation

tools such as maximum likelihood for multiple options [28],

hodgeRank [10] and ranking by eigenvectors [16]. We de-

fine an aggressiveness matrix A and a resistance matrix R,

within which an entry aij represents the aggressiveness of

the i-th model as an attacker against the j-th model as a de-

fender, and an entry rij represents the resistance of the i-th

model as a defender against the j-th model as an attack-

er, respectively. The aggressiveness measure indicates how

strong an attacker in disproving a defender and is evaluated

by

aij =

∑K

k=1
pjksijk∑K

k=1
pjk

, (1)

where sijk is the subjective score averaged over all valid

subjects on the image pair selected from the k-th subset. pjk
is the number of samples in the k-th subset. The value of aij
ranges between [−100, 100] with a larger value indicating

stronger aggressiveness of the i-th model. In general, aij
is expected to be positive for a competitive model, but it

may also be negative which means that the order of the test

image pair selected by the i-th model is the opposite of the

average subjective judgements. A negative aij is a strong

indication of a failure of the i-th model. On the other hand,

the resistance measure indicates how resistent of a defender

to be defeated (disproved) by an attacker. It is evaluated by

rij =

∑K

k=1
pik(100− |sjik|)∑K

k=1
pik

. (2)

rij ranges between [0, 100] with a higher value indicating

better resistance of the i-th model as a defender against the
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(b) Resistance matrix

Figure 3. Pairwise gMAD competition matrices: Each entry indi-

cates the Aggressiveness (a) or the Resistance (b) of the row IQA

model against the column IQA model. A−AT and R−RT are

drawn here for better visibility.

j-th model as an attacker. The matrices A and R are com-

puted by comparing all pairs of IQA models and the result-

s are shown in Fig. 3, where the higher value of an entry

(warmer color), the stronger the aggressiveness and resis-

tance of the corresponding row model against the column

model.

We aggregate the pairwise comparison results into a

global ranking via a maximum likelihood method for multi-

ple options [28]. The results are shown in Fig. 4. Using oth-

er ranking aggregation algorithms such as hodgeRank [10]

and ranking by eigenvectors [16] gives very similar results.

From the figure, we have several useful observations. First,

an IQA model that has a stronger aggressiveness general-

ly also has a stronger resistance. The Kendall’s rank-order
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Figure 4. Global ranking of IQA models in terms of Resistance and Aggressiveness.

correlation coefficient (KRCC) between them is 0.87. Sec-

ond, in general, FR-IQA algorithms are more competitive

than NR-IQA methods. This is not surprising because FR

algorithms make use of more information. Third, the best

performance overall is obtained by MS-SSIM [34], which

is a multi-scale version of SSIM [32] and significantly im-

proves upon it. This suggests that multi-scale approaches

are important in improving the performance of IQA models.

Fourth, CORNIA [40], NIQE [18] and its feature enriched

version ILNIQE [42] perform the best among all NR-IQA

algorithms. It is worth mentioning that these methods are

based on perception- and distortion-relevant natural scene

statistics (NSS) features either hand-crafted or learned from

data. This reveals the power of the NSS features, which help

map images into a perceptually meaningful space for com-

parison. Fifth, a model that is worth noting is LPSI [36],

which essentially reduces the feature space to one dimen-

sion and without using MOS for training, but it outperform-

s sophisticated machine learning-based approaches such as

BRISQUE [17] and DIIVINE [20] which use many features

for training. Sixth, machine learning based IQA models,

though performed very well in existing publicly available

databases, generally do not perform well in the current g-

MAD competition. This may be because the training sam-

ples are not sufficient to represent the population of real-

world natural images and thus the risk of over fitting is high.

Furthermore, we perform a rational test to evaluate the

robustness of IQA models when rating images with the

same content and the same distortion type but different dis-

tortion levels. The underlying assumption is that the quality

of an image degrades monotonically with the increase of

the distortion level for all distortion types, and a good IQA

model should rank the images in the same order. An ex-

ample is given in Fig. 5, where the quality scores given by

a good IQA model is supposed to decrease monotonically

with the increase of the level of JPEG2000 compression.

We use KRCC to check the consistency of the rankings be-

tween the distortion levels and the predicted scores of a giv-

en model. An overall consistency measure is defined as

C =
1

HT

H∑

i=1

T∑

j=1

KRCC(l,qij), (3)

where H = 4744 and T = 4 are the numbers of source

images and distortion types in the database, respectively.

l = [1, 2, 3, 4, 5, 6] represents the 6 distortion levels and qij

is a 6 × 1 vector that contains the corresponding quality s-

cores given by a model to 6 images, which have the same

(i-th) source image and the same (j-th) distortion type but

different distortion levels. Fig. 6 shows the overall consis-

tency results of 16 IQA models, from which we have several

observations. First, it is not surprising that FR models gen-

erally perform better than NR approaches because they are

fidelity measures on how far away a distorted image departs

from the source image, and such fidelity typically decreas-

es monotonically with increasing distortion levels. Second,

the NR model CORNIA [40], NIQE [18] and its feature

enriched extension ILNIQE [42] outperform all other NR-

IQA models, which coincides with the results of the gMAD

competition shown in Fig. 4. Third, training based mod-

els generally have a lower overall consistency value and a

larger error bar, suggesting lower robustness.

6. Conclusion and Future Work

In this paper, we attempted to address the IQA model

comparison problem to overcome the conflict between the

enormous size of image space and the limited resource for

subjective testing. Our major contributions are threefold.

First, we built a database of 4, 744 high quality source natu-

ral images and 94, 880 distorted images, which is the largest

in the literature of IQA research. Second, we proposed a

substantially different methodology named gMAD compe-

tition to evaluate the relative performance of multiple IQA

models. Different from conventional methods that attemp-

t to prove a model, gMAD focuses on disproving a mod-

el in the most efficient way using automatically selected
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Figure 5. Illustration of the rational test on the “Hip-hop Girl” im-

age under JPEG2000 compression. Obviously, the image quality

degrades with the distortion level from left to right and from top to

bottom (l = [1, 2, 3, 4, 5, 6]). A good IQA model (ILNIQE [42]

for example) ranks the images in exactly the same order. By con-

trast, a less competitive model may give a different order, e.g., the

QAC model [38] ranks the image as q = [4, 3, 1, 5, 2, 6].

and model-dependent image pairs. The number of select-

ed image pairs does not scale with the number of images,

allowing it to exploit image databases of any size without

increasing its complexity. Third, applying gMAD to the

new database, we performed a systematic comparison of 16
well-known IQA models and made a number of useful ob-

servations.

The current work can be extended in many ways. First,

the current database can continuously grow to include more

image contents and more distortion types, and future IQA

models can be added into the gMAD competition. We will

make the database as well as the gMAD competition pro-

tocol and source code available online to facilitate future

broader usage by researchers in the IQA community. Sec-

ond, many useful observations have been made through the

gMAD competition process. They can be used to facilitate

further improvement of existing IQA models or future de-
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Figure 6. Overall KRCC consistency of IQA models.

velopment of new IQA models. Third, the application scope

of the fundamental idea behind gMAD is far beyond IQA

model comparison. It is indeed a general methodology that

can be used to compare any group of computational mod-

els used to predict certain continuous-scale quantities that

need to be validated by expensive testing such as human

subjective evaluation. To give a few examples, these may

include comparisons of image/video interestingness predic-

tors in the field of cognitive vision [8], the relative attributes

(sportiness, furriness) estimators in the field of sematic im-

age search [11], machine translation quality estimators in

the field of computational linguistics [6], and thermal com-

fort models in the field of thermal environment of build-

ings [21].
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M. Lončarić, E. Dumić, and S. Grgić. VCL@FER image

quality assessment database. AUTOMATIKA, 53(4):344–

354, 2012. 1, 2

[42] L. Zhang, L. Zhang, and A. Bovik. A feature-enriched com-

pletely blind image quality evaluator. IEEE Transactions on

Image Processing, 24(8):2579–2591, 2015. 3, 5, 7, 8

[43] L. Zhang, L. Zhang, X. Mou, and D. Zhang. FSIM: a feature

similarity index for image quality assessment. IEEE Trans-

actions on Image Processing, 20(8):2378–2386, 2011. 5

1673


