
Progressive Prioritized Multi-view Stereo

Alex Locher1 Michal Perdoch1 Luc Van Gool1,2

1 Computer Vision Laboratory, ETH Zurich, Switzerland 2 VISICS, KU Leuven, Belgium

Abstract

This work proposes a progressive patch based multi-

view stereo algorithm able to deliver a dense point cloud

at any time. This enables an immediate feedback on the

reconstruction process in a user centric scenario. With in-

creasing processing time, the model is improved in terms

of resolution and accuracy. The algorithm explicitly han-

dles input images with varying effective scale and creates

visually pleasing point clouds. A priority scheme assures

that the limited computational power is invested in scene

parts, where the user is most interested in or the overall

error can be reduced the most. The architecture of the pro-

posed pipeline allows fast processing times in large scenes

using a pure open-source CPU implementation. We show

the performance of our algorithm on challenging standard

datasets as well as on real-world scenes and compare it to

the baseline.

1. Introduction

Accurate 3D reconstruction from calibrated cameras is a

long studied topic in computer vision. Multi-view stereo re-

construction offers an inexpensive alternative to costly laser

scans, while providing highly accurate results [16]. Despite

the many proposed solutions, none of it fully addresses the

usage of Multi-View Stereo (MVS) in a user centric sce-

nario. Systems like Arc3D [12], MVE [4],VisualSFM [21],

Agisoft Photoscan [1] or Acute 3D [14] provide a user

friendly interface to algorithms, allowing non-scientific

users to reconstruct a large variety of objects and scenes

from a set of images. The availability of new hardware

platforms such as smartphones and Micro Aerial Vehicle

(MAV) opened up whole new possibilities in 3D content ac-

quisition [20, 18]. Highly dynamic and flexible Simultane-

ous Localization and Mapping (SLAM) systems deal with

view selection and pose tracking in real-time and deliver

a sparse point cloud for navigation or coarse visualization

purposes. Unfortunately, when it comes to more accurate

dense reconstructions, algorithms offer very low flexibil-

ity. Existing MVS methods were not developed with the

interactiveness of a real-time system in mind, but rather as

after 2 s after 12 s

after 56 s after 579 s

Figure 1: Progressive reconstruction of the citywall dataset

(562 images). With increasing runtime, the resulting dense

point cloud gets more accurate and covers finer details.

a batch processing step with a single resulting point cloud

shown to the user at the end of processing. An immediate

user feedback of the reconstruction’s current state, which

would be necessary for possible interventions such as tak-

ing additional pictures, is not available and the user has to

run the algorithm to the very end in order to see his/her

success. Coarse visualization methods such as triangulation

of the Structure-from-Motion (SfM) points (e.g. Bodis et

al. [2]) or low resolution filter based methods (e.g. Pizzoli et

al. [13]) give a good insight into the currently reconstructed

scene. But they are not able to cover fine details, and more

importantly, do not reflect the status of the actual accurate

dense reconstruction (which may give totally different re-

sults).

In contrast, we propose a MVS algorithm delivering a

highly accurate and complete dense point cloud. The out-

put point cloud can be visualized at any timepoint and im-

proves with increasing runtime. As a user centric scenario

is addressed, intermediate point clouds are ”visually pleas-

ing”. A scene, where e.g. the door handle is reconstructed

in every fine detail but the house around it is not covered

at all, would not only look awkward, but also the algorithm

might waste its resources on details, the user might not even

be interested in. Therefore, we explicitly analyse the ef-

fective scale of input images and maintain a homogeneous

resolution within the 3D point cloud. In order to optimize

the available resources, complex and important scene parts

are prioritized over trivial regions. Moreover, the algorithm

3244

allows prioritization of regions based on an explicit or im-

plicit user input (e.g. current user’s viewpoint).

1.1. Related Work

In the following section we discuss the most related work,

focussing on progressive and hierarchical reconstruction

and the handling of the effective input image scale.

MVS algorithms can be roughly classified into three cat-

egories, depth map-, voxel- and patch based approaches.

Algorithms in the first category, estimate a pairwise dense

depth map from the input images and create a global model.

Voxel based approaches represent the scene in a regular 3D

grid and are able to incorporate and accumulate measure-

ments. The geometry is either expressed as an occupancy

function or as a signed distance function to the closest sur-

face. Finally, patch based approaches represent the surface

as a set of oriented patches.

One of the best known patch based MVS algorithms is

PMVS [6]. Starting from the calibrated scene, it gener-

ates an initial set of oriented patches by guided matching.

The scene’s geometry is successively grown by multiple it-

erations of expansion and filtering steps. PMVS delivers

highly accurate scene representations, at the cost of com-

putation time. The follow-up work CMVS [5] clusters the

scene to multiple independent sub-problems, which can be

processed by PMVS individually. While being able to re-

construct a lot of details, the algorithm does not handle the

effective scale of input images and is not progressive.

Jancosek et al. [11] presented a system capable of recon-

structing large scenes with a patch based algorithm similar

to PMVS. The scene is built gradually by growing patches

and only images with similar scale and scene coverage are

considered. In a final step, a filtered mesh is recovered by

Markov Random Field optimization [3]. While the algo-

rithm handles input image scale variation, it strictly recon-

structs on a single selected scale level.

Goesele et al. [7] presented a MVS algorithm for scene

reconstruction out of community photos by creating indi-

vidual depth maps out of which a mesh is extracted. The

algorithm implicitly handles input image scale in the view

selection, but can not be used in a progressive manner. Hor-

nung et al. [9] formulated the reconstruction as a graph-cut

minimization on a volumetric grid. A coarse visual hull is

refined in a hierarchical pipeline. While this leads to a pro-

gressively increasing 3D accuracy, the algorithm relies on a

visual hull, limiting the application range.

Yuan et al. [22] presented an interesting work, allowing

to integrate new images into an existing 3D reconstruction.

Hereby input images of an existing model are arranged in a

view sphere and new images with patches are integrated in

a bayesian learning framework. While being incremental,

no feedback on the actual reconstruction is given and it is

not clear how the algorithm behaves in non-object oriented

scenes and in large scale.

Tetrahedralization methods [10, 19] are very close to

voxel based methods, but work on a irregular grid. Re-

cent work of Sugiura et al. [17] is capable of incrementally

adding cameras and 3D points to an existing mesh. Hoppe

et al. [8] directly extract a textured mesh from the sparse

point cloud for a good visualization, instead of delivering

the most accurate dense reconstruction. The pipeline is in-

crementally adding points and the surface is extracted by

a graph-cut optimization on top of the tetrahedralization.

While being very fast and progressive in theory, the system

is not suited for highly accurate reconstructions, capturing

the fine details of a scene.

1.2. Contribution and Outline

To the best of our knowledge, we are the first who deliver a

dense point cloud starting from a sparse structure from mo-

tion point cloud on a computational budget in a progressive

manner, while explicitly handling the scene scale and dele-

gating the computational power to individual scene parts.

The presented pipeline uses an efficient model represen-

tation in an octree, allowing the reconstruction of general

scenes in large datasets.

An open-source implementation of the proposed

pipeline is available at: https://github.com/

alexlocher/hpmvs

2. Progressive Multi-View Stereo

The following section first introduces the proposed pipeline.

Individual steps and terms are later detailed in the corre-

sponding subsections.

2.1. Overview

The proposed MVS algorithm takes a set of calibrated cam-

eras V and sparse 3D points x (the result of any SfM

method) as input and produces a dense point cloud con-

sisting of oriented surface patches p. Algorithm 1 gives

an overview on the most important steps. The initializa-

tion stage converts input points with assigned visibility con-

straints to surface patches, which are filled into a prior-

ity queue and are spatially organized in a dynamic octree.

A series of operations on individual patches gradually in-

crease the density, resolution and accuracy of the output

point cloud: patches are expanded into their local neigh-

bourhood, their neighbourhood is analysed for filtering and

prioritizing and finally a patch is branched into multiple

patches of smaller size. Due to the hierarchical procedure,

the quality of the produced point cloud is increasing with

increasing runtime, which can be observed on-the-fly. The

algorithm ends if stopped by the user or if all input images

are processed to their finest resolution.

3245

https://github.com/alexlocher/hpmvs
https://github.com/alexlocher/hpmvs

Data: SfM point cloud {x} and cameras {V }
Result: dense point cloud at any point in time

⊲ Initialize Queue Q with patches p from SfM data:

Q← Initialize ({x}, {V })

while Queue Q not empty do

⊲ Get top priority patch:

p← Q[0]

if p not expanded then

⊲ Expand patch:

Q← Q ∪ { p,Expand(p) }

else if Nghd N (p) of p not analysed then

⊲ Analyse patch:

Q← Q ∪ Nghd-Analysis (p,N (p))

else

⊲ Branch patch:

Q← Q ∪ Branch (p)

end

end

Algorithm 1: General pipeline overview.

ex

eyn

s

w

x

y

Oi

Ci

V (p)

R(p)

Figure 2: Patch’s geometry and coordinate systems.

2.2. Model Representation

The model is represented by a set of individual patches P ,

where each patch p has an assigned normal n(p), center

c(p), size s(p) and a set of images, in which the patch is

visible V (p) (see also Fig. 2). One of the visible images is

selected as the reference image R(p). Ii denotes the image

with the index i and Ci the position and Oi the optical axis

of the assigned camera. A depth image Di with the depth

values of visible patches closest to the camera is maintained.

Every patch has an assigned x-axis ex(p) with unit length

set to be parallel to the x-axis of its reference image R(p)
and ey(p) is perpendicular to ex(p) and n(p):

ey(p) = n(p)×−ex(p) (1)

Patches are organized in a dynamic octree T , consisting of

individual nodes Ni(x, w) and a root node Nr, where x de-

notes the node’s center coordinate and w its width. We use

the term wNi
for the width of node Ni.

2.3. Patch Optimization

In multiple stages of the pipeline, the patch’s position c(p)
and normal n(p) are optimized by maximizing the averaged

Normalized Cross Correlation (NCC) of the patch’s projec-

tion into the image space gI(p). For the optimization, the

patch is parametrized by its depth in the reference image

dR(p) and the two Euler angles of n(p). Formally, the fol-

lowing function is minimized:

e(p) =
1

|V (p)| − 1

∑

I∈V (p)\R(p)

1− 〈gR(p), gI(p)〉 (2)

A patch’s projection gI(p) is evaluated by bilinear interpo-

lation of points sampled from a plane centered at c(p) and

with normal n(p). Points are regularly sampled, such that

they form a µ × µ grid, where the x-axis is aligned to the

x-axis of the reference image and individual grid points are

separated by s(p). To respect the patch’s scale, the corre-

sponding level lI , in the image pyramid is used for sam-

pling,

lI =

⌊

log2

(

fCi

s(p) dIi

)⌉

(3)

where fCi
denotes the focal length of camera Ci and ⌊.⌉

means integer rounding. Before the optimization process,

visible images with a pairwise NCC below a threshold α1

or an invalid corresponding image level lI are removed from

the set of visible images attached to the patch V (p). After

a successful optimization, V (p) is constrained further by

increasing the threshold to α2 (α1 < α2) and the reference

image R(p) is set to the one with optical axis most similar

to the patch’s normal n(p).

2.4. Initialization from SfM

An initial set of patches is created out of the SfM point

cloud. For that, the root node of the octree is initialized

from a slightly extended bounding box of the initial cloud.

Images are loaded, a scale-space pyramid with lmax + 1
levels is created and a co-visibilty graph is extracted. A set

of initial patches is created and its fields are initialized as

shown in Algorithm 2. The scale s(p) is initially set to the

distance corresponding to one pixel difference in the refer-

ence image in the chosen pyramid level lIinit
1. However,

during the optimization and processing of the patch, this

equality is broken.

The patch’s postion and orientation are optimized and

filled into the dynamic octree. The patch’s scale s(p) deter-

mines the octree-level lN , in which the patch is stored:

lN =

⌊

log2

(

wNr

s(p)

)⌉

(4)

1If available, the scale of detected keypoints can be used to determine

lIinit for individual points. In our experiments we used lIinit = 4.

3246

Data: SfM point x, assigned cameras Vs with camera

position C, optical axis O and focal length fCI

Result: initialized patch p
c(p)← x

V (p)← Vs

n(p)←
1

|V (p)|

∑

I∈V (p)

(CI − c(p))

R(p)← argminI 〈n(p),OI〉 |I ∈ V (p)

s(p)←
fCI

dR(p) · 2lIinit

Algorithm 2: Patch initialization from SfM point.

(a) The blue patch is extended

into neighbouring nodes. Red

patches are not added, since

nodes are already occupied.

(b) The blue patch is

branched into multiple

smaller patches and the tree

level increased.

Figure 3: Visualization of the extension and branching step.

We limit the number of patches per tree node to one. As

this condition can be violated after initialization, we filter

all nodes Ni and keep only the most consensual patch in the

sense of least squared error el(p) among other patches.

el(p) =
∑

pi∈Ni

(

n(p) · (c(pi)− c(p))

|n(p)|

)2

(5)

For further processing, all patches are filled into the priority

queue Q.

2.5. Expansion

The extension stage tries to grow existing patches into

neighbouring cells by using the planarity assumption. The

octree structure simplifies book keeping and makes sure that

extension is only happening into unoccupied regions. Algo-

rithm 3 details the extension procedure. A set of expansion

candidate patches P ′ of p in node Ni are sampled on a circle

around p (Fig. 3a) and their fields are initialized. The set of

visible images V (pn) is extended by the co-visible images

of the reference image R(pn), the patch’s scale is set to 90%

of the node’s width and the rest of the fields are copied from

p. If the node containing c(pn) is empty, the new patch is

optimized. After successful optimization, a depth test re-

jects patches with inconsistent depth information.

Vok =
{

I ∈ V (p)
∣

∣

∣

√

(dI(p)−DI(p))2 < s(p) δ
}

(6)

Vnok =
{

I ∈ V (p)
∣

∣ dI(p) < DI(p)− 4 δ s(p)
}

(7)

Vok denotes the set of images with similar depth values and

Vnok are images where the new patch would be in front of a

visible geometry. We finally add the new patch, if the target

node is still empty and |Vok| > Vmin and |Vnok| < Vmin.

Data: input patch p and co-visibility graph

Result: set of extended patches P ′

P ′ ← {}
forall the n ∈ {1, 2, . . . N} do

pn ← p

δ = wNi

(

ex(p) cos
2πn
N

+ ey(p) sin
2πn
N

)

c(pn)← c(p) + δ

V (pn)← V (p) ∪ CoVis(R(pn))

s(pn)← 0.9 · wNi

if optimise(pn) AND nodeEmpty(N(pn)) AND

depthTest(pn) then
P ′ ← P ′ ∩ pn

end

end

Algorithm 3: Extend patch to local neighbourhood.

2.6. Neighbourhood Analysis

For further filtering and for the prioritization, we analyze

the local neighbourhood of every patch. Due to the octree

structure, this can be realized fast and efficiently. We define

the local neighbourhoodN (p) as the patches within the dis-

tance 2 · wN (p) and evaluate a robust Huber loss function

Lδ of the planar error, similar to Eq. 5.

N (p) =
{

pi ∈ P
∣

∣ |c(pi)− c(p)| < 2 · wN (p)
}

(8)

en(p) =
∑

pi∈N (p)

Lδ

(

n(p) · (c(pi)− c(p))

|n(p)|

)2
∣

∣

∣

∣

∣

δ=
wN (p)

4

(9)

We discard patches where |N (p)| < 3 or
en(p)
s(p) > 0.5 as

outliers and remove them from the model.

2.7. Branching

By splitting a single patch into multiple smaller ones, the

resolution of the 3D model is gradually increased. Algo-

rithm 4 shows the basic steps. Similar to the expansion pro-

cedure, we place the new patches pn on a circle around c(p),
but with a smaller radius (Fig. 3b). The rest of the fields are

3247

copied from the source patch. New patches are optimized

and only added to the point cloud, if its center stays within

the parent node.

Data: input patch p

Result: set of smaller patches P ′

P ′ ← {}
forall the n ∈ {1, 2, . . . N} do

pn ← p

δ =
wNi

4

(

ex(p) cos
2πn
N

+ ey(p) sin
2πn
N

)

c(pn)← c(p) + δ

s(pn)← 0.45 · wNi

if optimise(pn) AND nodeEmpty(N(pn)) then
P ′ ← P ′ ∩ pn

end

end

Algorithm 4: Branching of patch p into smaller ones.

3. Prioritization

The priority queue enables to prioritize different patches in

different regions. The general idea is to first process patches

of higher level nodes and gradually increase the resolution.

Patches in salient areas are processed with more priority

than patches in planar regions, as they improve the over-

all accuracy. In addition, a user defined term qu can focus

the reconstruction into regions of major interest. Formally,

patches in the queue are sorted by increasing priority q as

follows:

qstep =

0 if extend

1 if neighbourhood analysis

2 if branch

(10)

q = 10 · ⌊lN −max {2, en(p)}+ qu⌉+ qstep (11)

The additive term qstep assures that the dependency of the

individual steps is respected, while the node’s priority is de-

pendent on its size and the planarity error en of the patch.

Basically we give priority to higher level nodes, unless we

detect that their local neighbourhood is already well approx-

imated by a plane.

3.1. Concurrency

For parallel processing of individual nodes, we kept the de-

pendency between different cells and processing steps low.

The local filtering as well as the branching step strictly op-

erate on a single node. The expansion step includes a test

for empty neighbouring cells, which requires a read access.

The insertion of a successfully extended patch is modifying

0 2 4 6 8 10 12 14 16
time [min]

6

7

8

9

10

11

12

13

14

15

e
rr

o
r

[m
m

]

fountain-P11 proposed
fountain-P11 PMVS L0
fountain-P11 PMVS L1
fountain-P11 PMVS L2
fountain-P11 PMVS L3

0 1 2 3 4 5 6 7 8 9
time [min]

350

400

450

500

550

600

e
rr

o
r

[m
m

]

Herz-Jesu-P8 proposed
herzjesu-P8 PMVS L0
herzjesu-P8 PMVS L1
herzjesu-P8 PMVS L2
herzjesu-P8 PMVS L3

Figure 4: RMS error versus runtime of the proposed method

with respect to ground-truth.

the tree’s structure. The local neighbourhood analysis re-

quires read access to neighbouring cells. The proposed de-

sign of the priority queue enables the parallel processing of

all steps except the expansion without further synchroniza-

tion. Note that most of the time, the algorithm is busy with

patch optimization and hence the synchronization overhead

for the expansion stage is minimal.

4. Experiments and Results

In order to demonstrate the capabilities of the proposed al-

gorithm, we conducted a series of experiments with a C++

implementation of the pipeline. The following parameters

were used: Vmin = 3, µ = 4, α1 = 0.4, α2 = 0.7 ,

lmax = 7 and linit = 4 if not stated otherwise. Timings are

based on the C++ implementation and the measurements

were performed on a single machine with a Intel Core i7

with 8 × 3.7 GHz and 16GB of RAM. The experiments on

the citywall dataset were performed on an Intel Xeon with

16 × 2.4 GHz and 48 GB of RAM.

4.1. Progressive Modelling

To compare the performance with state of the art, we

tested our algorithm on two different datasets with avail-

able ground truth. The fountain-P11 and Herz-Jesu-P8

datasets consists of 11 and 8 calibrated and undistorted cam-

eras [16]. A high resolution laser scan within the same coor-

dinate system serves as ground truth. The error of the pro-

duced point cloud is measured as a signed Euclidean dis-

tance between the point itself and the closest point on the

mesh’s surface. As it is complicated to measure the com-

pleteness of a point cloud, we use a method similar to the

3248

Figure 5: Qualitative evaluation of the 3D reconstruction and error distribution of the fountain-P11 and Herz-Jesu-P8 dataset

between the proposed method (top) and PMVS (bottom). Blue points are behind and red ones in front of the ground truth

surface.

one used in Middlebury dataset [15]. The ground truth sur-

face is sampled regularly and every vertex is considered to

be covered if the there is a point within a certain range d,

leading to the completeness C. If not stated otherwise, we

let the algorithm run until the maximum input image reso-

lution (lI = 0) is reached.

Fig. 4 shows the evolution of the RMS error with re-

spect to the runtime. It is visible that the average point

error decreases with increasing runtime until a final error

of 7mm on the fountain-P11 or 360mm on the Herz-Jesu-

P8 dataset is reached. In order to compare the performance

with the baseline, we also calculated the final average RMS

error of PMVS on different image levels. The plot shows

that our method keeps the accuracy of PMVS and even out-

performs it, while being able to progressively deliver more

and more accurate results. Please note that the hierarchi-

cal approach gets more and more efficient on higher image

resolution as information is propagated among image lev-

els. The graph also demonstrates the effectiveness of the

pipeline compared to the trivial approach of running PMVS

on increasing image resolutions. The sum of the runtimes

on individual PMVS levels is significantly larger than the

runtime of the proposed algorithm.

Fig. 5 shows the qualitative evaluation between the fi-

nal result of PMVS and the proposed algorithm. The error

distributions between the two methods are very similar. The

highly saturated areas on the model edges are generated due

to the lack of ground truth data at that particular location and

are simply discarded by a bounding box during the evalua-

tion.

The different approaches of growing patches between the

proposed method and the baseline are visualized in Fig 7. It

was created by a modified version of PMVS where patches

fountain-P11 Herz-Jesu-P8

algorithm C [%] C [%]

proposed 67.2 81.1

CMVS-PMVS - L0 67.0 79.3

CMVS-PMVS - L1 69.9 83.4

MVE - L2 44.0 57.2

Table 1: Comparison of the point cloud’s completeness C.

are streamed to a visualization tool as they are created. In

comparison to PMVS, which grows very high resolution

patches and achieves a low coverage at the beginning, the

proposed method grows patches hierarchically and a recon-

struction of the whole model (in low resolution) becomes

immediately available.

Table 1 shows the completeness of the final dense point

clouds for the proposed algorithm, PMVS on two differ-

ent levels and MultiView Environment (MVE) on the im-

age level 2. For the evaluation of C, we used a distance

threshold d of 0.1% of the bounding box diagonal. The

completeness of PMVS and the proposed algorithm are both

very similar and both outperform MVE significantly. A fre-

quent problem in hierarchical algorithms is that fine details

get missed. Due to the expansion step, details are well

covered in the proposed pipeline, as long as they are con-

nected. Fig. 6 shows an example of a freestanding object

in the Herz-Jesu-P8 dataset. However, very small discon-

nected objects, which are already poorly covered in the ini-

tial SfM cloud might not get reconstructed. In all our ex-

periments, we never detected such problems - the algorithm

had even shown to be less prone to hallucinating flying arte-

facts, which often survive the PMVS filtering stage.

3249

(a) patches at lT = 7 (b) octree visualization (c) patches at lT = 11 (d) view from distance

Figure 8: Reconstruction of the citywall dataset with a user defined priority. The priority of cells around the trash bin was

increased by a user request.

(a) scene (b) PMVS (c) proposed

Figure 6: Eventhough a hierarchical scheme is used, fine

details are well reconstructed.

after 4 s after 16 s after 80 s

after 4 s after 16 s after 80 s

Figure 7: One to one comparison of the patch growing be-

tween the proposed method (top) and PMVS (bottom).

4.2. Prioritization

In order to show the effect of the employed prioritizing

scheme, we run our algorithm with and without enabled

prioritizing, until all nodes with priority lower than a user

defined goal qend are processed. We conducted the exper-

iment within the fountain-P11 and Herz-Jesu-P8 datasets

and compared it to ground truth. The performance is sum-

marized in Tab. 2. Enabling the prioritizing scheme, allows

to reduce the computational time until a fixed goal while

maintaining a similar error. The average patch resolution is

increased at the same time, as not all nodes are pushed to

the final detail level.

While the flatness prior (Eq. 11) is very general, a more user

specific prior can guide the reconstruction into scene parts

he/she might be interested in. We simulate this behaviour

by a simple 3D location based priority term, where cells

within a certain radius from an interesting scene part are

avg s(p) error t

with prioritizing 3.5 mm 6.8 mm 486s

without prioritizing 3.0 mm 6.7 mm 675s

Table 2: Effect of the prioritization scheme, shown with the

runtime and average patch scale after running the algorithm

up to a user defined goal (q = 110) on the Herz-Jesu-P8

dataset.

processed with higher priority. Specifically, we selected the

left trash bin of the citywall dataset as a point of interest

and reconstructed points within a radius of one meter with

higher priority. Fig. 8a shows the reconstruction in an early

stage and Fig. 8b shows a visualization of the corresponding

octree at the same stage. Every non-empty leaf in the tree

is rendered as a cube, coloured with the colour of the patch

it contains. Nodes close to the point of interest are of much

finer resolution than the rest of the image. Fig. 8c shows a

closeup and Fig. 8d a view from distance of the scene.

4.3. Explicit Scale Handling

Due to the octree structure, the effective image resolutions

of the input images can be handled globally and the result-

ing resolution of the point cloud can be increased homoge-

neously and only processes high resolution close-up images

if needed. This helps reducing computational time, but also

leads to more realistic reconstructions. The citywall dataset

consists of images with a very large difference in effective

resolution. Fig. 9 shows the colour coded scale of individual

patches in a reconstruction. While the proposed algorithm

produces a scene with a very homogeneous effective scale,

the reconstruction of PMVS varies greatly in resolution, de-

pending on the resolution of images at that viewpoint. Note

that the resolution of patches at far distances (e.g. the roof

of the tower) have a lower resolution than the wall itself.

This comes from the fact that patches are only reconstructed

until their scale reaches the effective image resolution in the

corresponding cameras. With that, patches are only recon-

structed up to the resolution offered by the images.

3250

fountain-P11 Herz-Jesu-P8 entry-P10 castle-P30 citywall

algorithm # patches time # patches time # patches time # patches time # patches time

proposed 700k 8 500k 3 600k 4 1M 8 1.5M 10

CMVS-PMVS - L0 1.7M 15 1.3M 8 1.4M 10 2.4M 24 20M 214

CMVS-PMVS - L1 500k 3 400k 2 400k 3 700k 6 6M 69

MVE - L2 2.4M 48 1.5M 32 2.0M 33 6.0M 62 78.6M 706

Table 3: Comparison of the runtime among different datasets compared to PMVS on different image resolutions and the

reconstruction algorithm offered by MVE. The runtimes are given in minutes.

Figure 9: Colour coded per patch resolution of the citywall

dataset. While the proposed method (left) can deliver a ho-

mogeneous point cloud, PMVS (right) strictly reconstructs

on a single image level.

4.4. Timing

While not being the main goal of this work, the algorithm’s

runtime is an important figure for real-world applications.

Therefore, we measure the runtime of our algorithm on the

different datasets and compare it to PMVS[6] and the patch

reconstruction of Goesele et al. [7] (publicly available in

MVE). Tab. 3 summarizes the runtimes, patch’s resolution

and number of patches among the different datasets and al-

gorithms. Due to the hierarchical approach, our algorithm

outperforms the compared methods in terms of runtime in

high resolution images. The citywall dataset was split into

11 clusters by the CMVS, which resulted in a total pro-

cessing time of 3.5 hours. In comparison, the proposed

method was able to reconstruct the scene as a whole within

ten minutes. While individual parts of the scene are not

reconstructed to the very finest image resolution, a well-

balanced overall scene resolution of 3mm is reached. The

MVE method computes pairwise depth maps, resulting in

a huge amount of redundant points but not increasing the

effective resolution of individual patches.

4.5. Scalability

The design of the algorithm allows it to be easily paral-

lelized in a shared memory system. Individual nodes of the

octree can be processed in parallel and only a small part

of the algorithm has to be synchronized. Fig. 10 shows

the scalability of the implementation on a range between

one and eight processing units. The linear dependency be-

1 2 3 4 5 6 7 8
cores

1

2

3

4

5

6

7

8

sp
e
e
d
u
p
 f

a
ct

o
r

Figure 10: Scalability plot of the C++ implementation of

the proposed algorithm in a shared memory system.

tween the speedup and the number of CPU cores shows that

the algorithm is perfectly suited to be run on multiple CPU

cores. The global mutex for patch insertion would limit the

speedup at some point, but can be replaced by multiple local

locks in a distributed system.

5. Conclusion

We have presented a MVS algorithm capable of progres-

sively delivering a dense point cloud. The algorithm explic-

itly handles the effective scale of input images and focuses

on visually pleasing results in early stages. While first re-

construction results are already available after seconds, the

accuracy and resolution is gradually improved with increas-

ing runtime. A prioritization scheme focuses the computa-

tional power to scene parts with high curvature. The algo-

rithm can reconstruct scene parts of immediate user interest

with higher priority. The structure of the algorithm allows

for easy parallelization on multiple CPU cores. We evalu-

ated our algorithm on several challenging dataset and com-

pared it to ground truth and to the state of the art. While it

maintains or even outperforms the baseline in terms of ac-

curacy, it reduces the processing time by a factor of two on

high resolution images. This makes the algorithm perfectly

suited for real-time applications, where an immediate user

feedback on the dense reconstruction is of great use and al-

lows an early intervention in cases of failure.

Acknowledgment. This work was supported by the

H2020 project REPLICATE (No. 687757).

3251

References

[1] L. AgiSoft. Agisoft photoscan. Professional Edition, 2014.

[2] A. Bodis-Szomoru, H. Riemenschneider, and L. Van Gool.

Superpixel Meshes for Fast Edge-Preserving Surface Recon-

struction. CVPR, 2015.

[3] N. D. F. Campbell, G. Vogiatzis, C. Hernández, and

R. Cipolla. Using multiple hypotheses to improve depth-

maps for multi-view stereo. ECCV, 2008.

[4] S. Fuhrmann and M. Goesele. Floating scale surface recon-

struction. SIGGRAPH, 2014.

[5] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. To-

wards Internet-scale multi-view stereo. CVPR, 2010.

[6] Y. Furukawa and J. Ponce. Accurate, dense, and robust mul-

tiview stereopsis. PAMI, 32(8):1362–1376, Aug 2010.

[7] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. Seitz.

Multi-view stereo for community photo collections. ICCV,

2007.

[8] C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof. In-

cremental Surface Extraction from Sparse Structure-from-

Motion Point Clouds. BMVC, 2013.

[9] A. Hornung and L. Kobbelt. Hierarchical volumetric multi-

view stereo reconstruction of manifold surfaces based on

dual graph embedding. CVPR, 2006.

[10] M. Jancosek and T. Pajdla. Hallucination-free multi-view

stereo. ECCV Workshop, 2012.

[11] M. Jancosek, A. Shekhovtsov, and T. Pajdla. Scalable multi-

view stereo. ICCV Workshop, 2009.

[12] T. Moons, L. Van Gool, and M. Vergauwen. ARC 3D Web-

service. 3D, Science and Cultural Heritage, 2009.

[13] M. Pizzoli, C. Forster, and D. Scaramuzza. REMODE : Prob-

abilistic , Monocular Dense Reconstruction in Real Time.

ICRA, 2014.

[14] J.-P. Pons and R. Keriven. Acute3D.

https://www.acute3d.com, 2011.

[15] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and

R. Szeliski. A comparison and evaluation of multi-view

stereo reconstruction algorithms. CVPR, 2006.

[16] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and

U. Thoennessen. On benchmarking camera calibration and

multi-view stereo for high resolution imagery. CVPR, 2008.

[17] T. Sugiura, A. Torii, and M. Okutomi. 3d surface extraction

using incremental tetrahedra carving. ICCV Workshop, 2013.

[18] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer,

and M. Pollefeys. Live Metric 3D Reconstruction on Mobile

Phones. ICCV, 2013.

[19] H.-H. Vu, R. Keriven, P. Labatut, and J.-P. Pons. Towards

high-resolution large-scale multi-view stereo. CVPR, 2009.

[20] A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof.

Dense reconstruction on-the-fly. CVPR, 2012.

[21] C. Wu. VisualSFM: A Visual Structure from Motion System,

2011.

[22] Z.-H. Yuan and T. Lu. Incremental 3d reconstruction us-

ing bayesian learning. Applied intelligence, 39(4):761–771,

2013.

3252

