
Manifold SLIC: A Fast Method to Compute Content-Sensitive Superpixels

Yong-Jin Liu, Cheng-Chi Yu∗, Min-Jing Yu∗

Tsinghua University, China

{liuyongjin,ycc13,yumj14}@tsinghua.edu.cn

Ying He

Nanyang Technological University, Singapore

YHe@ntu.edu.sg

Abstract

Superpixels are perceptually meaningful atomic regions

that can effectively capture image features. Among vari-

ous methods for computing uniform superpixels, simple lin-

ear iterative clustering (SLIC) is popular due to its simplic-

ity and high performance. In this paper, we extend SLIC

to compute content-sensitive superpixels, i.e., small super-

pixels in content-dense regions (e.g., with high intensity or

color variation) and large superpixels in content-sparse re-

gions. Rather than the conventional SLIC method that clus-

ters pixels in ℝ
5, we map the image � to a 2-dimensional

manifold ℳ ⊂ ℝ
5, whose area elements are a good mea-

sure of the content density in � . We propose an efficient

method to compute restricted centroidal Voronoi tessella-

tion (RCVT) — a uniform tessellation — on � , which in-

duces the content-sensitive superpixels in � . Unlike other

algorithms that characterize content-sensitivity by geodesic

distances, manifold SLIC tackles the problem by measuring

areas of Voronoi cells on ℳ, which can be computed at a

very low cost. As a result, it runs 10 times faster than the

state-of-the-art content-sensitive superpixels algorithm. We

evaluate manifold SLIC and seven representative methods

on the BSDS500 benchmark and observe that our method

outperforms the existing methods.

1. Introduction

Superpixels are perceptually meaningful atomic regions

that can effectively capture image features and greatly

reduce the complexity of subsequent image processing

tasks, such as segmentation [10], contour closure [8], 2.1D

sketches [21], object location [6], object tracking [19],

stereo 3D reconstruction [14], and many others.

There are two major classes of algorithms to com-

pute superpixels, namely, the graph-based methods and the

clustering-based methods. Representing an image by a

graph whose nodes are pixels, the graph-based algorithms

minimize a cost function defined on the graph. Repre-

∗C. Yu and M. Yu contributed equally to this paper

sentative works include normalized cuts (NC) [16], the

Felzenszwalb-Huttenlocher (FH) method [5], superpixel

lattices (SL) [15], and the graph-cut-based energy optimiza-

tion method (GraphCut) [17]. NC generates regular and

compact superpixels, but does not adhere to image bound-

ary and has a high computational cost — �(�1.5) time

complexity for an � -pixel image as observed in [9]. FH

preserves boundary well and runs in �(� log�) time, but

it produces superpixels with irregular sizes and shapes. Al-

though SL runs in �(�1.5 log�) theoretically, it has an

empirical time complexity �(�), making it one of the

fastest superpixel algorithms. However, their produced su-

perpixels conform to grids rather than adhering to image

boundaries. GraphCut is elegant and theoretically sound,

but it is difficult to use due to many parameters involved in

the algorithm.

The clustering-based algorithms group pixels into clus-

ters (i.e., superpixels) and iteratively refine them until some

convergence criteria are satisfied. Popular clustering meth-

ods are Turbopixels [9], simple linear iterative clustering

(SLIC) [1] and structure-sensitive1 superpixels (SSS) [18].

All three methods are initialized with a set of evenly dis-

tributed seeds {��}��=1 in an image domain. They differ in

the way of clustering. Turbopixels [9] generates a geomet-

ric flow for each seed and propagates them using the level

set method. The superpixel boundary is the points where

two flows meet. Although Turbopixels has a theoretical lin-

ear time complexity�(�), computational results show that

it runs slowly on real-world datasets [1]. SLIC [1] is an

adaption of�-means that clusters pixels in a 5-dimensional

Euclidean space combining colors and images. It assigns

each pixel to a cluster of the nearest seed and iteratively

updates the cluster center using centroidal Voronoi tessel-

lation (CVT). SLIC is conceptually simple, easy to imple-

ment, and highly efficient in practice.

To compute content-sensitive superpixels, Wang et

al. [18] adopted the geometric flow method [9] into a CVT

optimization framework. A key difference between SSS and

SLIC is that SLIC measures the distance between clusters

1Since in computer vision, “structure” is usually referred to as some

high-order structures in the image, in this paper we use the word “content”.

651

(a) NC (b) FH (c) SL (d) GraphCut (e) Turbopixels (f) SLIC (g) SSS (h) Ours

Figure 1. Superpixels obtained by normalized cuts (NC) [16], the Felzenszwalb-Huttenlocher (FH) method [5], superpixel lattices (SL)

[15], the graph-cut-based energy optimization method (GraphCut) [17], turbopixels [9], simple linear iterative clustering (SLIC) [1],

structure-sensitive superpixels (SSS) [18] and our method. Both FH and SL generate under segmentations in content-rich regions due to

lack of compactness constraint, whereas the other methods produce regular superpixels. It is worth noting that only SSS and our method

can produce content-sensitive superpixels. Our method outperforms the other methods in terms of under segmentation error, boundary

recall and achievable segmentation accuracy. It also runs 10× faster than SSS, the state-of-the-art method for computing content-sensitive

superpixels. See Section 6 for detailed comparison and discussion. Images are provided in high resolution for zoom-in examination.

using Euclidean distance whereas SSS takes geodesic dis-

tances into account. As a result, SLIC produces uniform

superpixels everywhere, whereas SSS can effectively cap-

ture the non-homogenous feature in images, i.e., small su-

perpixels in content-dense regions (e.g., with high intensity

or color variation) and large superpixels in content-sparse

regions. However, SSS is computationally expensive.

Inspired by the simplicity and high performance of

SLIC [1] and the content-aware nature of SSS [18], we pro-

pose manifold SLIC, an extension of SLIC for fast compu-

tation of content-sensitive superpixels. Our key idea is to

represent the image � as a 2-manifold ℳ embedded in the

combined color and image space ℝ
5, on which the area el-

ements are a good measure of content density in � . We de-

velop an efficient algorithm to compute restricted CVT — a

uniform tessellation — on � , which induces the content-

sensitive superpixels in � . Unlike other algorithms that

characterize content-sensitivity by geodesic distances, man-

ifold SLIC addresses the problem by measuring areas of

Voronoi cells on ℳ, which can be computed at a very low

cost. As a result, it runs 10 times faster than the state-of-the-

art content-sensitive superpixels algorithm [18]. We evalu-

ate manifold SLIC and seven representative methods on the

BSDS500 benchmark and observe that our method outper-

forms the existing methods. See Figure 1.

2. Preliminaries

Since manifold SLIC is based on SLIC [1] and is also

closely related to SSS [18], we briefly introduce both algo-

rithms before presenting it.

2.1. SLIC

Let us denote by � the input image with � pixels. For a

pixel � ∈ � , SLIC represents its color c(�) in the CIELAB

color space, i.e., c(�) = (�(�), �(�), �(�)). Given two pixels

�1 = (�1, �1) and �2 = (�2, �2), SLIC measures the dis-

tance between them using a normalized Euclidean distance

in the combined color and image space ℝ
5:

�(�1, �2) =

√(
��
��

)2

+

(
��
��

)2

, (1)

where �� and �� are two constants, and

�� = ∥�1 − �2∥2 =
√

(�1 − �2)2 + (�1 − �2)2

�� = ∥c(�1)− c(�2)∥2 =√
(�(�1)− �(�2))2 + (�(�1)− �(�2))2 + (�(�1)− �(�2))2.

Given a set {��}��=1 of evenly distributed seeds in the im-

age � , SLIC partitions � using Voronoi diagram {�(��)}��=1

and then iteratively improves the Voronoi cells by moving

the seeds to their centers of mass, resulting the so-called

centroidal Voronoi tessellation.

Mathematically speaking, a CVT is defined as follows:

Let � : � → ℝ
+ be a density function defined on � . For a

Voronoi cell �(��), its center of mass �� is

�� =

∫
�∈�(��)

��(�)��
∫
�∈�(��)

�(�)��
. (2)

The Voronoi tessellation {�(��)}��=1 is a CVT if, for each

Voronoi cell, the center of mass coincides with the seed, i.e.,

�� = ��, 1 ≤ � ≤ �. Du et al. [2] showed that a CVT is the

minimizer of the following energy �

�
(
{��}��=1, {�(��)}��=1

)
=

�∑

�=1

∫

�∈�(��)

�(�)�(�, ��)��,

(3)

where �(�, �) measures the distance between � and �. They

also showed that the solution always exists.

SLIC sets the distance �(�, ��) = �(�, ��), as defined

in Eqn. (1), and computes CVT using the Lloyd method,

which iteratively moves each seed to the corresponding cen-

ter of mass. We outline SLIC in Algorithm 1. SLIC adopts

652

two heuristic strategies: First, rather than explicitly con-

structing the Voronoi cells, for each seed ��, it computes

distances from �� to the pixels within a 2� × 2� window

centered at �� (lines 6-13) and then assigns a pixel to the

seed with the least distance. This local search also dis-

tinguishes SLIC from the conventional �-means method,

which has to compute the distances between �� and every

pixel in the image. Second, it does not compute the cen-

ter of mass using the area integral in Eqn. (2). Instead,

it finds the centroid �� as the mean vector of all the pix-

els belonging to the Voronoi cell (line 16). Computational

results show that SLIC converges in only 10 iterations for

real-world images [1]. As a result, SLIC has an �(�) time

complexity, which is independent of the number of super-

pixels �. In contrast, the conventional �-means method

runs in �(�������), where ����� is the number of itera-

tions.

Algorithm 1 SLIC [1]

Input: An image � of � pixels, the desired number of su-

perpixels�, the maximal number of iterations �������

and the convergence threshold �.
Output: � superpixels of similar sizes.

1: Initialize seeds {��}��=1 at regular grids with step length

� =
√
�/�.

2: Move each seed to the lowest gradient position in a 3×3
neighborhood.

3: Initialize label �(�) = −1 and distance �(�) = ∞ for

each pixel �.
4: Initialize the residual error ��� = ∞ and ���� = 0.

5: while ��� > � and ���� ≤ ������� do

6: for each seed �� do

7: for each pixel � in a 2�× 2� region around �� do

8: Compute the distance� = �(��, �) between ��
and �.

9: if � < �(�) then

10: �(�) = �; �(�) = �.
11: end if

12: end for

13: end for

14: ��� = 0.

15: for each seed �� do

16: Compute average �� of pixels in the cluster of ��.
17: ��� += ∥�� − ��∥2.

18: �� = ��.
19: end for

20: ���� ++.

21: end while

2.2. SSS

SLIC is conceptually simple and highly efficient. How-

ever, due to the constant CVT density function �(�) ≡

1, ∀� ∈ � , it produces uniform superpixels, i.e., superpix-

els have similar sizes everywhere. Since many real-world

images may contain complicated contents, it is highly de-

sired to develop content-sensitive superpixels, i.e., small su-

perpixels in content-dense regions and large superpixels in

content-sparse regions. Wang et al. [18] computed content-

sensitive superpixels using a geometric flow [9] into the

CVT optimization framework. In contrast to SLIC that uses

Euclidean distances, SSS adopts geodesic distances defined

as follows:

�(�1, �2) = min
��1,�2

∫ 1

0

�(��1,�2
(�))∥�̇�1,�2

(�)∥�� (4)

where ��1,�2
(�) is a parameterized path connecting pixels

�1 (� = 0) and �2 (� = 1). The weight function �(�)
penalizes image boundaries [9],

�(�) = �
����(�)

� , ����(�) =
∥∇�∥

�� ∗ ∥∇�∥+ � (5)

where � is a scaling parameter, ����(�) is a normalized

edge measurement, �� is the Gaussian functions with the

standard deviation �, and � is a small constant to alleviate

the affect of weak intensity boundary.

Compared with Euclidean distances in Eqn. (1), geodesic

distances in Eqn. (4) penalize image boundary, hereby are

an effective measure of content-sensitivity. Computational

results show that Wang et al.’s method [18] can compute

high-quality content-sensitive superpixels that exhibit high

boundary adherence. However, since it is computationally

expensive to measure geodesic distances, their method is

among the slowest algorithms in our experiments.

3. Overview

Manifold SLIC extends SLIC to compute content-

sensitive superpixels, meanwhile it inherits all the favorable

features of SLIC, such as simplicity and high performance.

Similar to SLIC [1], we represent the color in

the CIELAB color space and denote by c(�, �) =
(�(�, �), �(�, �), �(�, �)) the color at the pixel (�, �) in the

image � . Then we define a stretching map Φ : � → ℝ
5

to send pixels to a 2-manifold ℳ embedded in the 5-

dimensional combined image and color space,

Φ(�, �) = (�1�, �2c) = (�1�, �1�, �2�, �2�, �2�), (6)

where �1 and �2 are global stretching factors. We set �1 =
1
��

and �2 = 1
��

and adopt the SLIC metric � in Eqn. (1)

to measure the distance between points on manifold ℳ, i.e.,

�(Φ(�1),Φ(�2)) =
√
�21�

2
� + �

2
2�

2
� . (7)

For a pixel � = (�, �), we denote by □� the unit square

1× 1 centered at �. Let �1, �2, �3, �4 be the four corners of

653

p = (u,v) (u+1,v)(u 1,v)

(u+1,v+1)(u,v+1)(u 1,v 1)

(u 1,v 1) (u,v 1) (u 1,v 1)

p2 p3

p4p1

 R5
I R2

(p)

p4)
p1)

p2) p3)

Figure 2. Measuring area on the 2-manifold ℳ embedded in ℝ
5.

(a) (b) (c)
Figure 3. Overview of manifold SLIC on a synthetic greyscale im-

age � . We represent � as a 2-manifold embedded in ℝ
3, denoted by

ℳ = Φ(�, �) ⊂ ℝ
3, whose area elements are a good measure of

the content density in � (see (a)). Initially, we distribute �(= 16)
seeds {��}

�

�=1 uniformly in � , leading to a Voronoi diagram on ℳ
(see (b)). We then improve the Voronoi diagram by computing re-

stricted centroidal Voronoi tessellation (RCVT) {�(Φ(��))}
�

�=1on

ℳ — a uniform tessellation on ℳ where the Voronoi cells are of

similar sizes. Finally, the RCVT induces the content-sensitive su-

perpixels {Φ−1(�(Φ(��)))}
�

�=1 in the image domain (see (c)).

□�, each of which is determined by the average of the four

neighboring pixels. The square □� consists of two triangles,

i.e., □� = △�1�2�3
∪△�3�4�1. Then we approximate

the area of the curved triangle Φ(△�1�2�3) by the area of

planar triangle △Φ(�1)Φ(�2)Φ(�3),

����(Φ(△�1�2�3)) ≈
1

2
∥−−−−−−−−→Φ(�2)Φ(�1)∥∥

−−−−−−−−→
Φ(�2)Φ(�3)∥ sin �,

(8)

where � is the angle between vectors
−−−−−−−−→
Φ(�2)Φ(�1) and−−−−−−−−→

Φ(�2)Φ(�3). Note that the length ∥−−−−−−→Φ(�)Φ(�)∥ is measured

using the metric � in Eqn. (7). ����(Φ(△�3�4�1) can be

computed in a similar way. See Figure 2. The area of a re-

gion Φ(Ω) ⊂ ℳ is simply the sum of ����(Φ(□��
)) for

all pixels �� ∈ Ω.

Our method is based on an important observation: for a

region Ω ⊂ � ⊂ ℝ
2, the area of the corresponding region

Φ(Ω) ⊂ � on ℳ depends on both the area of Ω and the

intensity or color variation in Ω. The higher the variation

of colors in Ω, the larger the area of Φ(Ω), and vice versa.

If we can compute a uniform tessellation on ℳ, the inverse

mapping Φ−1 will induce the content-sensitive tessellation

on � . See Figure 3. Towards this goal, we propose two

simple yet effective techniques: computing restricted CVT

(Section 4) and locally updating bad-shaped Voronoi cells

(Section 5). We also outline the manifold SLIC in Algo-

rithm 2 and highlight its differences to SLIC in blue.

Algorithm 2 Manifold SLIC

Input: An image � of � pixels, the desired number of su-

perpixels�, the maximal number of iterations �������

and the convergence threshold �.
Output: � content-sensitive superpixels.

1: Initialize seeds {��}��=1 at regular grids with step length

� =
√
�/�.

2: Move each seed to the lowest gradient position in a 3×3
neighborhood.

3: Initialize label �(�) = −1 and distance �(�) = ∞ for

each pixel �.
4: Initialize the residual error ��� = ∞ and ���� = 0.

5: Compute ����(Φ(□�)) for each pixel � ∈ � .

6: Compute a local search range Ξ =
4
∑�

�=1 ����(Φ(□��
))

�
.

7: while ��� > � and ���� ≤ ������� do

8: for each seed �� do

9: Compute ����(Φ(Ω(��))) of a 2� × 2� region

Ω(��) centered at ��.

10: Compute a scaling factor �� =
√

Ξ
����(Φ(Ω(��)))

.

11: if ���� > 0 and �� < � and ����(�ℳ(Φ(��))) >
Ξ/4 then

12: Split Voronoi cell �ℳ(Φ(��)). (Section 5.1)

13: end if

14: end for

15: Merge the Voronoi cells whose areas are small and

whose seeds are close to each other. (Section 5.2)

16: for each seed �� do

17: for each pixel � in a 2��� × 2��� region centered

at �� do

18: Compute the distance � = �(Φ(��),Φ(�)) us-

ing Eqn. (7).

19: if � < �(�) then

20: �(�) = �; �(�) = �.
21: end if

22: end for

23: end for

24: ��� = 0.

25: for each seed �� do

26: Compute ����(�ℳ(Φ(��))).
27: Compute the mass center�� of �ℳ(Φ(��)) using

Eqn. (11) and set �� = � (��) using Eqn. (19).

28: ��� += ∥�� − ��∥2.

29: �� = ��.
30: end for

31: ���� ++.

32: end while

654

4. Computing Restricted CVT

The quality of CVT plays a critical role in the content-

sensitive superpixels. Since it is expensive to compute exact

CVTs on curved manifolds [11, 12, 20], we compute the re-

stricted centroidal Voronoi tessellation (RCVT), which ap-

proximates the exact CVT well for � in a proper range,

e.g.,� > 200 in images of resolution 512× 512.

4.1. Restricted Voronoi Diagram and RCVT

Let � = {��∣�� ∈ �, 1 ≤ � ≤ �} be the set of seeds in

the image � and � = {Φ(��)}��=1 the corresponding gener-

ators on the manifold ℳ. The Euclidean Voronoi cell of a

generator Φ(��), denoted by �ℝ5 , is

�ℝ5(Φ(��)) = {� ∈ ℝ
5∣∥�− Φ(��)∥2 ≤

∥�− Φ(��)∥2, ∀� ∕= �,Φ(��) ∈ �}. (9)

Restricting �ℝ5 to the manifold ℳ, we obtain the restricted

Voronoi cell �ℳ(Φ(��)) ≜ ℳ∩�ℝ5(Φ(��)). The re-

stricted Voronoi diagram ���(�,ℳ) [4] is the collection

of restricted Voronoi cells satisfying

���(�,ℳ) = {�ℳ(Φ(��)) ∕= ∅∣∀Φ(��) ∈ �} (10)

Edelsbrunner and Shah [4] showed that ���(�,ℳ) is a

finite closed covering of ℳ. For a restricted Voronoi cell

�ℳ(Φ(��)), its mass centroid�� is

�� =

∫
�∈�ℳ(Φ(��))

���
∫
�∈�ℳ(Φ(��))

1��
(11)

Then we define restricted CVT as follows:

Definition 1. Let � = {��∣�� ∈ ℝ
�, 1 ≤ � ≤ �} be a set

of points in ℝ
� and ℳ be a 2-manifold embedded in ℝ

�.

A restricted Voronoi diagram ���(�,ℳ) is a restricted

CVT (or RCVT) if each generator �� ∈ � is the mass cen-

troid of its restricted Voronoi cell.

Theorem 1. Let ℳ be a 2-manifold embedded in ℝ
� and

� ∈ ℤ+ a positive integer. For an arbitrary set� of points

{��}��=1 in ℝ
� and an arbitrary tessellation {��}��=1 on ℳ,∪�

�=1 �� = ℳ, ��
∩
�� = ∅, ∀� ∕= �, define the CVT energy

functional as follows:

ℰ({(��, ��)}��=1) =
�∑

�=1

∫

�∈��

�2(�, ��)�� (12)

Then the necessary condition for ℰ being minimized is that

{(��, ��)}��=1 is a RCVT of ℳ.

Proof. The proof consists of two parts: (1) if {��}��=1 is

fixed, then minimization of ℰ requires that each �� is the

mass centroid of ��; and (2) if {��}��=1 is fixed, then mini-

mization of ℰ requires that {��}��=1 is ���({��}��=1,ℳ).

First, examining the first variation of ℰ with respect to a

single point, say ��, we have

ℰ(�� + ��)−ℰ(��) =
∫

�∈��

{�2(�, �� + ��)− �2(�, ��)}��
(13)

where � ∈ ℝ
� and � ∈ ℝ are arbitrary. Note that in Eqn.

(13), the fixed variables in the argument of ℰ are not listed.

Dividing the left hand side by � and taking �→ 0, we have

�� =

∫
�∈��

���
∫
�∈��

1��
(14)

implying that �� is the mass centroid of the region ��.
Second, we fix the points in � and choose a tes-

sellation {��}��=1 other than the restricted Voronoi tes-

sellation {���({��}��=1,ℳ)}. Then we compare

ℰ({(��,�ℳ(��))}��=1) with ℰ({(��, ��)}��=1). For any

point � ∈ ℳ belonging to a restricted Voronoi cell �ℳ(��),
we have

�(�, ��) ≤ �(�, ��), �� ∈ � (15)

Since {��}��=1 is not a Voronoi tessellation, the inequality

(15) must hold strictly over some measure nonzero set in

ℳ. Accordingly,

ℰ({(��,�ℳ(��))}��=1) < ℰ({(��, ��)}��=1) (16)

Thus ℰ is minimized when {��}��=1 are chosen to be

{�ℳ(��)}��=1.

Given the initial generators {��}��=1, �� ∈ ℳ, mani-

fold SLIC adopts the Lloyd-like method to iteratively com-

pute RCVT (lines 7-32 in Algorithm 2). Lines 8-14 check

if there are bad-shaped Voronoi cells. If so, split these

cells. Line 15 checks those Voronoi cells with small ar-

eas. If the generators of two neighboring Voronoi cells are

close to each other, we merge them into a single Voronoi

cell. Lines 16-23 compute the restricted Voronoi tessella-

tion���(�,ℳ). Lines 25-30 move the generator of each

restricted Voronoi cell to its mass center. The algorithm ter-

minates when the generators �� do not move or the iteration

number reaches a user-specified threshold.

Denote by�� the set {��}��=1 at each iteration � in Algo-

rithm 2. The Lloyd algorithm is a fixed point iteration of a

Lloyd map T:

�� = T(��−1), for � ≥ 1 (17)

The convergence of the Lloyd algorithm directly obtained

from the proof of Theorem 1:

ℰ(��+1, �� �(��+1,ℳ)) ≤ ℰ(��+1, �� �(��,ℳ))
≤ ℰ(��, �� �(��,ℳ))

(18)

655

The difference between the proposed RCVT and the con-

strained CVT (CCVT) [3] is that the center of mass of

a Voronoi cell in CCVT is always on the manifold ℳ,

whereas RCVT does not have such a requirement. This

seemingly minor change is indeed critical to improve the

runtime performance significantly.

4.2. A Simple Yet Efficient Method

The bottleneck of the Lloyd method is to form the

Voronoi diagram ���(�,ℳ) for the set of seeds � =
{Φ(��)}��=1. Inspired by the local search in SLIC, we

develop a local method to approximate ���(�,ℳ) in

�(�) time.

Observe that RCVT tends to generate uniform restricted

Voronoi cells (RVC) on ℳ. Therefore, the area of each

RVC is roughly
����(ℳ)

�
. To speed up the construction of a

RVC, we limit the size of searching area for each generator

to be
4����(ℳ)

�
. To quickly find the limited search areas,

for each RVC on ℳ, we project its mass centroid back to

the image plane by

� (�) = (�, �), (19)

where � = (�, �, �2

�1
�, �2

�1
�, �2

�1
�) ∈ ℝ

5. We use a 2� × 2�
region Ω centered at � (�) in the image � as the ini-

tial guess, where � =
√
�/�. Then we adjust the

local region Ω by calculating an adaptive scaling factor

� =
√

Ξ/����(Φ(Ω)). Finally we approximate the lim-

ited searching area by the set {Φ(�)∣� ∈ Ω′ ⊂ �}, where Ω′

is the 2�� × 2�� region centered at � (�) in image � .

Now we show that Algorithm 2 runs in �(�) time,

which is independent of the number of superpixels �.

The key is to show �� is bounded by a constant �max =
max{����(Φ(□��

)), �� ∈ �} that is determined by

the color variation of the image � . To see this, note

that �� reaches maximum when ����(Φ(Ω(��))) is min-

imum. ����(Φ(Ω(��))) is minimum when Φ(Ω(��)) is

flat (having the same color), i.e., ����(Φ(Ω(��))) =
4�2 = 4�/�. Therefore �� =

√
Ξ/����(Φ(Ω(��))) ≤√

����(ℳ)/� ≤ √
�max.

In each local search region, there are at most 2��� ×
2��� ≤ 4�max�/� pixels. Then the total number of pix-

els visited in all � local regions is bounded by 4�max� .

Therefore, Algorithm 2 takes linear time �(�).

5. Locally Updating Voronoi Cells

5.1. The Splitting Operator

The splitting operator is used to produce more seeds in

content-rich regions. In line 12 of Algorithm 2, a seed �� is

replaced by four new seeds if the following conditions hold:

∙ The local search region Ω′ = 2��� × 2��� around

�� contains very rich content information. This con-

dition is determined by ����(Φ(Ω′(��))) in ℳ. If

si2 si3

si4si1

si=(ui, vi)

 R5

(si)
si1)

si4)

si3)
si2)

I R2

’(si)

’(si))

2 iS

si

(si)

Split

u

v

iS

iS2
iS

Figure 4. Illustration of the splitting operator. Ω′(��) is a 2��� ×
2��� region on the image � around ��. If ����(Φ(Ω′(��))) >
4Ξ (i.e., �� < 0.5), where Ξ = 4����(ℳ)/� is a fixed

area of a local search region in image manifold ℳ, the split-

ting operator replaces �� = (��, ��) into four new generators

��1 = (�� − ���

2
, �� + ���

2
), ��2 = (�� − ���

2
, �� − ���

2
),

��3 = (��+
���

2
, ��−

���

2
) and ��4 = (��+

���

2
, ��+

���

2
). We set

the adaptive scaling factors as ��1 = ��2 = ��3 = ��4 = ��/2.

it is sufficiently large, i.e., the adaptive scaling fac-

tor �� =
√
Ξ/����(Φ(Ω′(��))) is less than a small

threshold (� = 0.5 in Algorithm 2), we consider that

this condition holds.

∙ To prevent endless loop, we can only split a Voronoi

cell whose area is larger than Ξ/4.

If �� is the to-be-split seed, we partition the local adap-

tive local search region Ω′ = 2��� × 2��� into four iden-

tical sub-regions and generate four new seeds at the centers

of sub-regions. For each new seed, we assign the adap-

tive scaling factor to be ��/2. Due to this regular 1-4 split-

ting strategy, we set the threshold � = 0.5 in Algorithm 2

(� = 0.5 means that ����(Φ(Ω(��))) is four times larger

than the area Ξ and after splitting, the expected area of each

subregion is still no less than Ξ). See Figure 4. The posi-

tions of the new seeds and their associated adaptive scaling

factors will be further optimized in the next iteration.

5.2. The Merging Operator

The splitting operator produces more seeds than the user

specified number�. To meet the user’s requirement, Algo-

rithm 2 adopts the merging operator to reduce the number

of seeds in content-sparse regions.

We consider the following two cases. First, if the area of

�ℳ(Φ(��)) of a seed is very small (����(�ℳ(Φ(��))) <
����(ℳ)/8� in our experiment), we randomly choose

a neighbor seed �� and merge �� and �� . Second, if the

sum of areas ����(�ℳ(Φ(��))) + ����(�ℳ(Φ(��))) of

two neighbor seeds �� and �� is smaller than a threshold

�����, they are merged into one. We choose the value of

����� to prevent the merged seed being split again by the

splitting operator. Denote by �� the merged seed of ��
and �� and let ����(�̃ℳ(Φ(��))) = ����(�ℳ(Φ(��))) +

656

200 300 400 500 600 700
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of superpixels

U
n

d
e

r
se

g
m

e
n

ta
ti

o
n

 e
rr

o
r

NC

FH

SL

GraphCut

Turbopixels

SLIC

SSS

Ours

(a) Under segmentation error

200 300 400 500 600 700
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of superpixels

B
o

u
n

d
a

ry
 r

e
ca

ll

NC

FH

SL

GraphCut

Turbopixels

SLIC

SSS

Ours

(b) Boundary recall

200 300 400 500 600 700
0.92

0.93

0.94

0.95

0.96

0.97

0.98

Number of superpixels

A
ch

ie
v

a
b

le
 s

e
g

m
e

n
ta

ti
o

n
 a

cc
u

ra
cy

NC

FH

SL

GraphCut

Turbopixels

SLIC

SSS

Ours

(c) Achievable segmentation accuracy (ASA)

200 300 400 500 600 700
0

5

10

15

20

25

30

Number of superpixels

T
im

e
 (

se
co

n
d

s)

NC

FH

SL

GraphCut

Turbopixels

SLIC

SSS

Ours

(d) Runtime with respective to �

200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

Number of superpixels

T
im

e
(s

e
co

n
d

s)

FH

SL

GraphCut

Turbopixels

SLIC

SSS

Ours

(e) Runtime in (d) without NC

241*161 1203*803 1924*1284 2405*1605
0

20

40

60

80

100

Number of image pixels

T
im

e
 (

se
co

n
d

s)

FH

SL

GraphCut

Turbopixels

SLIC

SSS

Ours

(f) Runtime with respective to �

Figure 5. Evaluation of representative algorithms and manifold SLIC on the BSDS500 benchmark for � ∈ [200, 700]. Superpixels

produced by manifold SLIC have the least under segmentation error and the highest boundary recall ratio, indicating that our method

adheres to image boundaries very well. Both SSS and manifold SLIC lead to similar ASA, however, our method significantly outperforms

SSS in terms of runtime performance.

����(�ℳ(Φ(��))). We use ����(�̃ℳ(Φ(��))) as a low-

cost approximation of ����(�ℳ(Φ(��))). We choose

����� = Ξ/5, i.e., ����(�̃ℳ(Φ(��))) < Ξ/5, where Ξ/5
characterizes content-sparse areas by noting that in Algo-

rithm 2, a seed �� is split only if ����(�ℳ(Φ(��))) > Ξ/4.

After merging two neighboring seeds �� and �� , we com-

pute the position of the new seed �� as

�� = � (�̃�), (20)

where � is the projection operator defined in Eqn. (19) and

�̃� =
Φ(��) ⋅����(�ℳ(Φ(��))) + Φ(��) ⋅����(�ℳ(Φ(��)))

����(�ℳ(Φ(��))) +����(�ℳ(Φ(��)))
(21)

We show the pseudo codes of the splitting and merging

operators and an illustrative example in the supplementary

material.

6. Experimental Results

We implemented manifold SLIC in C++ and tested it

on a PC with an Intel I7-860 CPU (2.80GHz) and 8GB

RAM. We compared manifold SLIC with several represen-

tative methods, including NC [16], FH [5], SL [15], Graph-

Cut [17], Turbopixels [9], SLIC [1] and SSS [18], on the

BSDS500 benchmark [13], where each image has a ground

truth segmentation. Following [18], we evaluated the al-

gorithms on 200 randomly selected images of resolution

481× 321.

Adherence to Boundaries. As dense over-segmentation

of images, superpixels should well preserve the boundary

of ground-truth segmentations. Under segmentation error

and boundary recall are the standard measures for boundary

adherence [9, 1, 18]. The former measures the tightness of

superpixels that overlap with a ground-truth segmentation,

and the latter measures what fraction of the ground truth

edges fall within at least two pixels of a superpixel bound-

ary. A high boundary recall means that very few true edges

are missed. As shown in Figure 5(a) and (b), superpixels

generated by manifold SLIC have the least under segmenta-

tion error and the highest boundary recall ratio, demonstrat-

ing its ability to adhere to image boundaries.

Content Sensitivity. The supplementary material shows

typical results of manifold SLIC, in which one can clearly

see that the computed superpixels are content sensitive, i.e.,

they are small in content dense regions and large in content

sparse regions. The content sensitive feature is due to the

fact that regions of high color variance have larger areas on

ℳ.

657

200 300 400 500 600 700
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of superpixels

U
n

d
e

r
s
e

g
m

e
n

ta
ti
o

n
 e

rr
o

r

RS+LS+S&M

ALL+LS+S&M

ALL+GS+S&M

ALL+LS(without S&M)

(a) Under segmentation error

200 300 400 500 600 700
0.75

0.8

0.85

0.9

0.95

Number of superpixels

B
o

u
n

d
a

ry
 r

e
c
a

ll

RS+LS+S&M

ALL+LS+S&M

ALL+GS+S&M

ALL+LS(without S&M)

(b) Boundary recall

200 300 400 500 600 700
0.955

0.96

0.965

0.97

0.975

0.98

Number of superpixels

A
c
h

ie
v
a

b
le

 s
e

g
m

e
n

ta
ti
o

n
 a

c
c
u

ra
c
y

RS+LS+S&M

ALL+LS+S&M

ALL+GS+S&M

ALL+LS(without S&M)

(c) Achievable segmentation accuracy (ASA)

Figure 6. Evaluation of various combinations in the setting of Manifold SLIC on the BSDS500 benchmark for � ∈ [200, 700]. Notations:

random subset in BSDS (RS); all the images in BSDS (ALL); local search proposed in Section 4.2 (LS); global search on the entire

manifold (GS); with the splitting and merging operators (S&M); without the splitting and merging operators (without S&M).

Achievable Segmentation Accuracy (ASA). Superpix-

els can be used as a preprocessing step for the subsequent

segmentation algorithms. ASA, defined as the highest accu-

racy in all possible segmentations that use superpixels as in-

put, is the upper bound of accuracy of a segmentation [18].

In general, the more number of superpixels, the better ASA

one can obtain. As Figure 5(c) shows, the ASA plot of su-

perpixels produced by manifold SLIC is comparable to that

of SSS for� ≥ 300.

Runtime Performance. Similar to SLIC, manifold

SLIC has an �(�) time complexity, which is independent

of the number of superpixels �. Figure 5(d) plots the run-

time curves for all testing methods. We observe that FH,

SLIC, SL and manifold SLIC are among the fastest algo-

rithms. Our method significantly outperforms SSS in terms

of runtime performance. For example, manifold SLIC runs

10 times faster than SSS for� ∈ [400, 700].

Experiments on the Entire BSDS500 Dataset. Com-

pared with randomly selected images (RS+LS+S&M vs.

ALL+LS+S&M), we observe the improvement of under

segmentation error and achievable segmentation accuracy.

However, the performance of boundary recall drops slightly.

See Figure 6.

Effect on the Local Search. We propose a local method

in Section 4.2 to approximate ���(�,ℳ) in �(�) time.

In Figure 6, we compare the approximate solution of our

local method and the exact solution obtained by search-

ing on the entire manifold (compare ALL+LS+S&M with

ALL+GS+S&M). Judging the results on three metrics, we

observe almost no difference between the exact solution and

the approximate one.

Roles of the Splitting and Merging Operators. Our

method computes restricted CVT on a 2-manifold ℳ ⊂
ℝ

5. The motivation is to compute superpixels with similar

areas on ℳ. The splitting operator adds more seeds in cells

of large areas and the merging operator reduces the seeds

in cells of small areas. Without these two operators, Al-

gorithm 2 reduces to a simple Lloyd algorithm which con-

verges only to a local minimum. Figure 6 compares the per-

formance of Algorithm 2 with and without these two oper-

ators (ALL+LS+S&M vs, ALL+LS(without S&M)) using

three metrics. The results demonstrate that the two opera-

tors play an important role to jump out of the local mini-

mum, leading to a good approximation of the global min-

imization to the CVT energy defined in Eqn. (12). It is

also worth noting that the splitting and merging operators

are designed for our manifold setting and cannot be used

in SLIC, because starting from initial seeds, superpixels in

each iteration in SLIC have similar areas in the image plane.

7. Conclusion

Manifold SLIC extends the conventional SLIC method

to compute content-sensitive superpixels. It maps the input

image � to a 2-dimensional manifold ℳ embedded in the

combined image and color space ℝ
5, whose area elements

reflect the density of image content. We propose a sim-

ple yet efficient method to compute restricted CVT on ℳ,

which induces the content-sensitive superpixels in � . Com-

putational results on the Berkeley benchmark show that

our method outperforms the existing superpixel methods

in terms of under segmentation error, boundary recall and

achievable segmentation accuracy. Manifold SLIC is also

10 times faster than the state-of-the-art content-sensitive su-

perpixel algorithm. Our future work is to apply GPU par-

allel computing [7] to further improve the performance of

manifold SLIC for high-resolution images.

Acknowledgment

This work was supported by Royal Society-Newton

Advanced Fellowship, the Natural Science Foundation of

China (61521002, 61432003, 61322206), TNList Founda-

tion, Tsinghua University Initiative Scientific Research Pro-

gram, RG23/15 and MOE2013-T2-2-011.

658

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,

and S. Süsstrunk. SLIC superpixels compared to

state-of-the-art superpixel methods. IEEE Trans. Pat-

tern Analysis and Machine Intelligence, 34(11):2012–

2281, 2012.

[2] Q. Du, V. Faber, and M. Gunzburger. Centroidal

Voronoi tessellations: Applications and algorithms.

SIAM Review, 41(4):637676, 1999.

[3] Q. Du, M. D. Gunzburger, and L. Ju. Constrained cen-

troidal voronoi tessellations for surfaces. SIAM Jour-

nal on Scientific Computing, 24(5):1488–1506, 2003.

[4] H. Edelsbrunner and N. R. Shah. Triangulating topo-

logical spaces. International Journal of Computa-

tional Geometry & Applications, 7(4):365–378, 1997.

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient

graph-based image segmentation. International Jour-

nal of Computer Vision, 59(2):167–181, 2004.

[6] B. Fulkerson, A. Vedaldi, and S. Soatto. Class

segmentation and object localization with superpixel

neighborhoods. In IEEE International Conference on

Computer Vision (ICCV ’09), pages 670–677, 2009.

[7] Y.-S. Leung, X. Wang, Y. He, Y.-J. Liu, and C. Wang.

A unified framework for isotropic meshing based

on narrow-banded euclidean distance transformation.

Computational Visual Media, 1(3):239–251, 2015.

[8] A. Levinshtein, C. Sminchisescu, and S. Dickinson.

Optimal contour closure by superpixel grouping. In

Europeon Conference on Computer Vision (ECCV

’10), pages 480–493, 2010.

[9] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet,

S. J. Dickinson, and K. Siddiqi. Turbopixels: Fast

superpixels using geometric flows. IEEE Trans. Pat-

tern Analysis and Machine Intelligence, 31(12):2290–

2297, 2009.

[10] M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chel-

lappa. Entropy rate superpixel segmentation. In IEEE

Conference on Computer Vision and Pattern Recogni-

tion (CVPR ’11), pages 2097–2104, 2011.

[11] Y.-J. Liu. Semi-continuity of skeletons in 2-manifold

and discrete Voronoi approximation. IEEE Trans. Pat-

tern Analysis and Machine Intelligence, 37(9):1938–

1944, 2015.

[12] Y.-J. Liu, Z.-Q. Chen, and K. Tang. Construction of

iso-contours, bisectors and Voronoi diagrams on tri-

angulated surfaces. IEEE Trans. Pattern Analysis and

Machine Intelligence, 33(8):1502–1517, 2011.

[13] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A

database of human segmented natural images and its

application to evaluating segmentation algorithms and

measuring ecological statistics. In Proc. 8th Int’l

Conf. Computer Vision, volume 2, pages 416–423,

July 2001.

[14] B. Mic̆us̆ı́k and J. Kos̆ecká. Multi-view superpixel

stereo in urban environments. International Journal

of Computer Vision, 89(1):106–119, 2010.

[15] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mo-

hammed, and G. Jones. Superpixel lattices. In IEEE

Conference on Computer Vision and Pattern Recogni-

tion (CVPR ’08), pages 1–8, 2008.

[16] J. Shi and J. Malik. Normalized cuts and image seg-

mentation. IEEE Trans. Pattern Analysis and Machine

Intelligence, 22(8):888–905, 2000.

[17] O. Veksler, Y. Boykov, and P. Mehrani. Superpixels

and supervoxels in an energy optimization framework.

In Europeon Conference on Computer Vision (ECCV

’10), pages 211–224, 2010.

[18] P. Wang, G. Zeng, R. Gan, J. Wang, and H. Zha.

Structure-sensitive superpixels via geodesic distance.

International Journal of Computer Vision, 103(1):1–

21, 2013.

[19] S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel

tracking. In IEEE International Conference on Com-

puter Vision (ICCV ’11), pages 1323–1330, 2011.

[20] X. Wang, X. Ying, Y.-J. Liu, S.-Q. Xin, W. Wang,

X. Gu, W. Mueller-Wittig, and Y. He. Intrinsic com-

putation of centroidal Voronoi tessellation (CVT) on

meshes. Computer-Aided Design, 58:51–61, 2015.

[21] C.-C. Yu, Y.-J. Liu, T. Wu, K.-Y. Li, and X. Fu. A

global energy optimization framework for 2.1d sketch

extraction from monocular images. Graphical Mod-

els, 76(5):507–521, 2014.

659

