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Abstract

We propose using relaxed deep supervision (RDS) within
convolutional neural networks for edge detection. The
conventional deep supervision utilizes the general ground-
truth to guide intermediate predictions. Instead, we build
hierarchical supervisory signals with additional relaxed la-
bels to consider the diversities in deep neural networks. We
begin by capturing the relaxed labels from simple detectors
(e.g. Canny). Then we merge them with the general ground-
truth to generate the RDS. Finally we employ the RDS
to supervise the edge network following a coarse-to-fine
paradigm. These relaxed labels can be seen as some false
positives that are difficult to be classified. We consider these
false positives in the supervision, and are able to achieve
high performance for better edge detection. We compensate
for the lack of training images by capturing coarse edge
annotations from a large dataset of image segmentations
to pretrain the model. Extensive experiments demonstrate
that our approach achieves state-of-the-art performance on
the well-known BSDS500 dataset (ODS F-score of .792)
and obtains superior cross-dataset generalization results on
NYUD dataset.

1. Introduction

Edge detection, which aims to extract the important
edges from images, has served as a fundamental task in the
computer vision community for several decades. Typically,
edge detection is considered as a low-level problem, and it
is frequently used for high-level vision applications, such
as object detection [12] and segmentation [1]. Most of the
traditional edge detection approaches [4, | 1, 6, 38, 23, 18,

, 34] extract discriminative local features with color and
gradient clues, such as gPb [1], Sketch tokens [24], and
Structured Edges (SE) [8].

Although learning various low-level features does well
in detecting edges, many researchers have begun to take ad-
vantage of object-level or high-level features to investigate
how humans perceive edges [3]. Inspired by the substantial
successes from deep learning and convolutional neural

networks (CNNs), such as image-level classification [21,

, 37], object-level detection [14, 16], pixel-level label-
ing [10, 27], and other tasks [36, 26], more and more works
tend to transfer deep features from high-level vision tasks
to low-level problems. Specifically, recent developments
in the design of edge features are moving from carefully-
engineered descriptors to hierarchical deep features. This
line of works includes DeepNet [20], CSCNN [17], N4-
Fields [13], DeepEdge [2], HFL [3], DeepContour [32],
HED [39] and so on.

One difficulty in edge detection is attributed to the false
positives, that is, many non-edge pixels are incorrectly
predicted as edges as compared with the human annotated
ground-truth. To alleviate this issue, HED [39] imposed
general supervision (i.e. the annotated ground-truth) in
the intermediate layers, and therefore the false positives
could be corrected earlier. However, using only one general
supervision ignores the network diversities: diverse repre-
sentations of hierarchical layers. In addition, the general
supervision can not be well-suited to all intermediate layers.
Hence, how to explore diverse supervision that can adapt to
all of the intermediate layers or hierarchical diversities for
edge detection?

In this paper, we propose using diverse deep supervision
that can vary from coarse level to fine level as deep features
become more discriminative. Our diverse supervision is
called relaxed deep supervision (RDS). RDS consists of
additional relaxed labels, apart from the positive labels
(edge points) and negative labels (non-edge points). These
relaxed labels are used to adapt to the diversities of inter-
mediate layers. Briefly speaking, we capture the relaxed
labels from simple yet efficient off-the-shelf detectors, for
example Canny [4] or SE [8]. Then, we insert the extracted
relaxed labels into the original ground-truth to generate
RDS. Finally, RDS can guide intermediate layers in a
coarse-to-fine paradigm. That is, RDS can process the false
positives using a “delayed strategy”, in which the loss cost
of the relaxed labels are ignored in current supervision, and
then will be reconsidered in the next supervision. As a
result, more discriminative layers are assigned to process
more false positives (difficult points). In summary, RDS can
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not only maintain high performance, but also incorporate
network diversities for better edge detection.

Another problem about edge detection is that it requires
expensive human annotations, compared to other tasks (e.g.
image recognition and segmentation). For example the
frequently benchmarked BSDS500 dataset [ 1] has only 200
training images. This small dataset limits the learning abili-
ty of various algorithms based on deep learning. To alleviate
this deficiency, we generate coarse edge annotations (CEA)
from a large collection of segmentation annotations such as
the PASCAL Context dataset [29]. Thereby, we pretrain the
model with CEA and then fine-tune it with the target dataset
(e.g. BSDS500).

Our contributions are summarized as follows: (1) We
propose relaxed deep supervision to guide the intermediate
predictions. Compared with traditional deep supervision,
RDS can adapt to the hierarchical diversities with minimal
manual effort. (2) We show that pre-training the model with
a large collection of CEA is an efficient way to enhance
the learning ability of CNNs and thus yields consider-
able improvements. (3) Despite the apparent simplicity
of RDS, our approach achieves state-of-the-art accuracy
(ODS=.792) on the well-known benchmark BSDS500 [1].
In addition, our implementation can maintain fast conver-
gence and low time complexity.

2. Related work

Deep learning for edge detection. Recently, edge
detection has had significant advances due to the develop-
ments of deep features. Figure | displays the basic pipeline
of current edge detection systems based on deep learning.
Based on how to predict edges with deep model, we broadly
divide them into three categories.

(1) Pixel-level prediction: extract deep feature per pixel
and classify it to edge or non-edge class. Early work
such as [20] developed a convolutional RBM to learn
pixel-level features. Hwang and Liu [17] stacked pixel
features in a multiscale CNN model and then fed them
to a SVM classifier. Bertasius et al. [2] built four CNN
models to describe multi-scale features for candidate edge
points. Then they improved their network structure with
less computational complexity [3].

(2) Patch-level prediction: estimate edge maps for the
input patches and then integrate them for the whole edge
map. For example, the N4-Fields [13] extracted patch
features from a pre-trained CNN model, and then mapped
them to the nearest neighbor annotation from a pre-built
dictionary. Shen et al. [32] clustered contour patches
for mid-level shape classes and solved the model using a
positive-sharing loss function.

(3) Image-level prediction: predict the whole edge map
end-to-end given one input image. Considering the in-
efficiency of the above two categories, Xie and Tu [39]

Edge prediction:

Input | 51 Deep | 3| --pixel-level | 5| Edge-map | 3 NMS
image model --patch-level generation
--image-level

Figure 1: Pipeline of deep learning based edge detection.

proposed a holistically-nested edge detection (HED) ap-
proach that was the first attempt to perform holistic image
training and prediction for edge detection. Their work
took advantage of the high efficiency from end-to-end fully
convolutional networks (FCNs) [27], and additional deep
supervision from deeply supervised nets (DSN) [22].

Additional deep supervision. Lee er al. [22] first-
ly proposed to train deep neural networks with hidden-
layer supervision. They proposed imposing additional
supervision to intermediate layers in order to improve the
directness and transparency of learning network. Similarly,
GoogleNet [37] created two additional side branches and
supervised them with a general ground-truth. Sun et
al. [36] built a robust face recognition network learned with
multiple identification-verification supervision.

3. Our approach

Inspired by the advantage of additional deep supervi-
sion [22] and its application in edge detection [39], we
aim to explore diverse deep supervision to guide CNNs for
better edge detection.

3.1. Relaxed deep supervision

Model. Our edge detection architecture is built on top
of HED network [39], which is trimmed from the VGG-16
net [33] (See Fig. 2). The network architecture contains five
convolutional nets connected with the max-pooling layers.
Each convolutional net has several convolutional layers. In
order to add deep supervision to guide the intermediate
layers, five side-output layers (from side-output 1 to side-
output 5) are inserted behind the intermediate layers. Due to
the deconvolutional operation, the side-output predictions
keep the same spatial size as the input image. In order
to integrate multi-scale predictions, one weighted-fusion
layer followed by fusion-output prediction is concatenated
with five side-output predictions. Notably, HED utilizes
the original ground-truth G as a general supervisory signal
to guide the whole network, including five side-output
predictions and the last fusion-output prediction.

Although the fusion-output prediction in HED is inte-
grated with multi-scale predictions, their general supervi-
sion fails to present hierarchical diversities. Instead, our
main aim is to explicitly make use of diverse supervision
associated with different intermediate layers. To this end,
we propose to integrate additional relaxed labels into the
general supervision, and generate hierarchical and specific
supervision, called relaxed deep supervision (RDS). Our

232



Input image

1
1
Convl net |
1
1

____________________

Max-pooling

1
1 1
Side-output3 Side-output4 S!dc—ouuulS 1

on
E N g
S RV DL S
L R 2
>< 5 B -
= o TR { s
= NS 94 =
i

wmssm Positive labels ,
I
wem Relaxed labels ) }

RDS ———————p

m————

'~

R®

R G

Figure 2: The network architecture with RDS (best viewed in color and zoom-in). The proposed RDS, including positive
labels (green color), negative labels (white color for clear visualization), relaxed labels (blue color), is used to supervise the
corresponding side-output prediction. The last fusion-output is still supervised by the original ground-truth G. The total loss

cost in the network is the sum of all /5;4e and [ fye.

approach stems from the fact that hierarchical layers can
represent specific abstracts of the input image [21, 28]. For
example in Fig. 2, the bottom side-output predictions (e.g.
side-output 1, 2) easily detect a large number of small edges
and noise. In contrast, the top predictions(e.g. side-output
4, 5) can fire stronger responses around the positive labels.
However, the general supervision can not be well-suited to
all side-output predictions. In contrast, our RDS can not
only preserve the strong supervision from the ground-truth,
but also allow specific diversities due to the relaxed labels.
In the following, we present two simple yet efficient ways
to capture the relaxed labels based on off-the-shelf edge
detectors, including Canny [4] and SE [&].

Relaxed labels based on Canny detector. The Canny
algorithm [4] can detect different scales of edge responses
based on the parameter o, which is the standard deviation
of the Gaussian filter. The aforementioned relaxed labels
can be extracted from Canny edge responses. First, we
need to adjust different scales (o € {1,3,5,7,9}) to obtain
various edge responses for five side-output predictions. We
do not perform complicated learning algorithm to keep
their strong consistency because we intend to maintain high
efficiency of the whole approach. We denote these binary
edge responses with {C(®)}?_ . For example C® is the
edge response when 0 = 5. Second, for the side-output
prediction k, we define its relaxed labels: “belong to the
positive labels of C*), but are not included in the positive
labels of the original ground-truth G.” Thus the relaxed
labels can present the complementary clues apart from the
ground-truth. Finally, the set of relaxed labels can be
computed as follows

D = He® — c® e, (1

where the function H is used to collect the set of positive
labels from the input binary map. As shown in Fig. 3, the
first row gives three scales of Canny edge responses (both

Figure 3: Illustration of extracting relaxed labels (blue
color). The first and second rows display three edge
responses from Canny [4] and SE [8], respectively.

red and blue color) with ¢ = 1,5,9. We highlight the
relaxed labels in blue color, and the red points indicate the
overlap edges between C*) and G. The ground-truth G can
be seen in Fig. 2.

Relaxed labels based on SE detector. To demonstrate
the generalization of our method, we also employ another
edge detector based on Structured Edges (SE) [8]. Briefly
speaking, SE outputs one edge map with pixel-wise proba-
bilities ranging from O to 1. Similarly, we need to create
five binary edge responses from the SE edge map. We
begin by computing the mean value of edge probabilities
in the SE edge map, denoted as v. Then we adjust a
threshold ¢ to binarize SE edge map by ¢ = 7 - v, where
n € {0.5,1.0,1.5,2.0,2.5}. As a result, we obtain five
binary edge responses, denoted as {S*)}?_,. Following
the definition of relaxed labels, we compute the set of
relaxed labels based on SE by

D®) = H(s®) — s 1 @), )}

The second row in Fig. 3 displays the edge responses
from SE and their relaxed labels (blue color). One can
observe that the relaxed labels from SE detector are visually
sparser than those from Canny detector. We will give more
comparison in Sec. 4.2.

RDS generation. It can be observed that various re-
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Figure 4: Illustration of generating the RDS (best viewed in
zoom-in). R(®) is merged by the set D) and G.

laxed labels are well-suited to our needs of highlighting
hierarchical diversities within the supervision. In the next
stage, we insert the set of relaxed labels into the original
ground-truth. This merging operation is used to generate
RDS, which is an union of positive, negative, and relaxed
labels. Mathematically, we denote five different RDS by
{R(®)}2_,. The construction step can be seen in Fig. 4.
For example the set D) is extracted based on S©).
Consequently, the generated R(®) can not only preserve
the positive labels in the ground-truth G, but also contain
specific relaxed labels. Notably, the relaxed labels are
corresponded to the non-edge points in G. These non-edge
points are seen as some false positives that are difficult to
be predicted. Hence, we intend to use RDS to solve them.

3.2. Training with RDS

In this section we will give the training details with
RDS. Assume a training dataset which contains /N images:
{I,;,G;}Y.|, where I, is the i-th input image and G; is
its binary ground-truth. I; ; denotes the j-th raw pixel
over the spatial dimensions of I;. Assume that we use the
relaxed labels derived from SE detector ({D"}/ ). The

corresponding RDS are denoted as {Rz(k)}szl, where K =
5 in this network. Five different side-output predictions are
separately supervised with the corresponding RDS, and the
fusion-output prediction is still supervised with the original
ground-truth (See Fig. 2). Notably, early supervision (e.g.
RM_ R()) has more relaxed labels than late supervision
(e.g. R®, R(®)). This meets the hierarchical characteristics
of CNN models. Finally, the total loss function Lrpg is
formulated as

N |1
3 (ZW(GE@%R(’“) +lpuse (G “;-Sica,n) NG

1=1j5=1 \k=1

where |I;| is the total number of all pixels in I;. l4;q. and
l ruse Tepresent the loss cost per pixel, from the side-output

and fusion-output, respectively. G(kv) and Gf ¢ indicates
the j-th pixel prediction from the k th side- output and the
fusion-output, respectively. For notational simplicity, the
network parameters, such as weights and bias, are not
included in the equation. In ng), the relaxed labels are
set with 2, different from the positive labels (with 1) and
negative labels (with 0). Therefore, we compute /4,4, based
on the types of pixel labels as follows

a-logP(G (k>) UCJ) =1
Leige(GL), RN = L 8 log(1 — HGW» RP =0 @
0, B g

2,7

RW R R® R R G

Pe P P,0
P30 PO P30 PO P00 PO P 0
P50 (] Ps®  Ps Ps@  Psl P50 Pl P50 (] (]
! I I I I I
BRI _mes)mey _Be) ey BPLL
Flgure 5: RDS employs a coarse-to-fine supervision

strategy. The blue points indicate the relaxed labels, and
the green point is one positive label.

where P(G;’ ey )) using sigmoid function, indicates the prob-
ability of current pixel being an edge point; « and (3 are
used to balance the biased distribution between edge and
non-edge pixels. Since about 90% pixels belong to non-
edge class, we set @« = 97 to enhance the edge class, for
instance = 9 and § = 1. In summary, we compute /;qe
when the pixel has positive or negative label. However,
when the pixel has a relaxed label (RE? = 2), we do not
compute its loss cost and set [5;4. = 0. On the other hand,
the computation of [, excludes the third term in Eq. (4),
because there is no relaxed labels in ;. Next, we consider
the backward propagation (BP). We can deduce the partial

derivations of [s;q. W.I.t. é(-k-) by

(51gm01d(G(k)) 1), R(k.) =1
v = ,8 s1gm01d(G(k3) ngj) =0 (5)
0 RM =2
) “i,5

For each backward propagation with R*) or G, we
utilize the chain rule to compute partial derivations [5] and
update the network parameters based on stochastic gradient
descent (SGD) with a mini-batch size [21].

Explanation. Here we will clarify the procedure about
how RDS improves edge detection. As mentioned before,
one difficult issue in edge detection is attributed to the
false positives. The relaxed labels based on Canny/SE
actually correspond to some false positives that are diffi-
cult to be classified. RDS processes these false positives
using a coarse-to-fine paradigm: the false positives (with
relaxed labels) in current supervision are ignored without
computing their loss cost (Equation 4), and then will be
reconsidered in the next supervision. Consequently, top
layers are assigned to process more false positives due to
their high discriminatory power. This procedure is similar
with hierarchical object classification [40], in which diffi-
cult classes are classified from coarse-category prediction
to fine-category prediction.

We clarify this paradigm in Figure 5. In R()
serves as a relaxed label that is difficult to be predicted
in the side-output 1. Thus we do not compute the loss
cost of P, and delay its prediction until in R(®?). In R(?),
P; is converted to be a negative label (no-edge), so this
provides evidence that the side-output 2 associated with
stronger discrimination is able to predict P,. Similarly,
R®) is able to recognize most relaxed labels except for
P5. Therefore, RDS can incrementally improve the strength

234



|

Cf///ﬂ:r’ E,&&(lkuu?p U &l\g’%
(b) Coarse edge annotations

Figure 6: Comparison between fine and coarse edge

annotations. (a) displays three images and their ground-
truth from BSDS500 [I]. (b) shows the images,
segmentations from Pascal Context [29] in the first and
second row. The CEA is extracted in the third row.

of the supervision and assign more false positives to more
high-level layers. Moreover, the network is also involved
in a coarse-to-fine BP procedure: First, the whole network
parameters are updated with coarse supervision GG; Then
fine supervision R(¥) (with specific relaxed labels) is used
to fine-tune their local nets. For example the pixel with P
is updated by all BP (six times), and P, will be updated
twice (by G and R(®).

In a nutshell, RDS can benefit the whole training for
edge detection. It can reduce the total loss cost in the
forward propagation stage and facilitate efficient updates in
the backward propagation stage.

3.3. Pretraining with CEA

Generally, collecting more training data can develop the
learning ability of CNNs. Many visual recognition tasks
have access to large-scale datasets, like ImageNet [31],
MS COCO [25] and PASCAL VOC [9]. But fine edge
annotations (FEA) require rather expensive human effort.
Thus the well-known BSDS500 dataset [1] collects only
200 training images. This small training set limits current
edge detection algorithms in improving the performance.

To alleviate this issue, we attempt to extract coarse
edge annotations (CEA) from a large collection of seg-
mentation annotations. Here, we utilize the Pascal Context
dataset [29], which provides full-scene segmentations for
more than 400 classes, and has 10103 train and val images
in total. Thus we extract the edges alongside the segmenta-
tions. Different from FEA, CEA only provides the outside
boundaries of objects (See the car, people and building in
Fig. 6), but it can facilitate the network learning due to
a large number of images. Notably, there are no overlap

Algorithm 1 RDS: training and testing procedure

1: Input: Training dataset; VGG-16 net; training iterations 77,72
2: Initializing: network parameters W using VGG model
3: Preparation: for one image I;, extract the set of relaxed labels
{ng)}zzl and generate RDS {ng)}zzl, Sec. 3.1.
4: Pre-training: use Pascal Context data and its CEA, ¢t = 0
while ¢t < T do
t<t+1
Forward propagate to compute Lo g 4 in Eq. (6);
Backward propagate to get gradients AW, like Eq. (5);
Update W! = Wt—1 — X\, AW with SGD;
end while
5: Training: use the target training data set (e.g. BSDS500), t = 0
while ¢t < T> do
t<t+1
Forward propagate to compute L zpp g in Eq. (3);
Backward propagate to get gradients AW, like Eq. (5);
Update W = Wi—1 — \; A W with SGD;
end while
6: Testing: feed one image into the learned network with parameters W
and output edge map E;
7: Post-processing: non-max suppression on E;
8: Output: final edge map E;

images between Pascal Context and BSDS500, which are
from Flickr and Corel, respectively. While training with
CEA, we simply compute the fusion-output loss function
and exclude the intermediate supervision by

N L]

Lopa =33 (lruse (G147, Gi)) ©)
i=1j=1
In practice, we pretrain the model with Pascal Context
and its CEA according to Eq. (6), and then fine-tune it with
the BSDS500 dataset as Eq. (3). In summary, we show the
whole algorithm procedure in Algorithm 1, including the
training and testing stages.

3.4. Implementation

We implemented our approach with the publicly avail-
able Caffe framework [19] and HED implementation [39].
Likewise, the whole network is initialized with the VGG-16
net [33] pretrained on ImageNet dataset [31].

Parameters. We refer to some basic parameters as HED
net, including momentum (0.9), weight decay (0.0002),
initialization of the side-output filters (0), and initialization
of fusion-output filter (0.2). The training images are resized
to 400x400 and the batch size is 8. More importantly,
we present some different parameters in our experiments.
For example, the learning rate is fixed with le-9. This
learning rate is quite efficient and reducing it during training
iterations has no remarkable improvement. The training
will be terminated after 25 epoches. Another difference is
the class-balanced parameters a and (3 in Eq. (4). We utilize
the fixed class-balanced parameters (« = 9,8 = 1) for all
images. On the other hand, we also try to tune ¢ and 7
used for computing the relaxed labels in Sec. 3.1. But our
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test image ground truth

Figure 7: Comparison of edge detection results between
without and with ground-truth dilation.

w/o dilation training with dilation training

algorithm is relatively insensitive to them.

Ground-truth dilation. Frequently, human subjects
annotate the ground-truth edges with thin boundaries (e.g.
one pixel width). However, the predicted edges from deep
models has rather thick boundaries. To tackle this incon-
sistency, we dilate the positive labels in the ground-truth
of train set using traditional morphologic dilation operator.
Figure 7 compares the detection results between without
and with dilation training. It can be seen that training with
the dilated ground-truth contributes to predicting stronger
edge maps. Quantitatively, the dilation process can increase
about .02 accuracy (ODS) on BSDS500 test set. Hence,
the ground-truth dilation is a quite useful step for edge
detection. Note that we do not dilate the test set. In addition,
the postprocessing non-maximal suppression (NMS) [4]
can be used to thin the predicted edges.

Fast convergence. We also evaluate the convergence
of our implementation by analyzing the training loss w.r.t.
iterations. It is observed that during the first five epoches,
the loss cost reduces quickly. Afterwards, it tends to keep
steady until almost convergence. Thereby, our implementa-
tion is beneficial for fast convergence.

4. Results

We conduct the majority of experiments on BSDS500
dataset [1], and then verify its cross-dataset generalization
on NYUDv2 dataset [30].

4.1. Baselines

To experimentally evaluate the effectiveness and advan-
tage of RDS, we also implemented two baseline methods.
(1) Baseline 1: only supervises the fusion-output prediction
with the general supervision (i.e. original ground-truth).
(2) Baseline 2: imposes the general supervision to not
only the fusion-output prediction, but also five side-output
predictions. In Table 1, the Baseline 1 achieves ODS=.762
on BSDS500. Relatively, the Baseline 2 improves the
accuracy to ODS=.780. This provides evidence of the
benefits of additional intermediate supervision. The perfor-
mance gap with/without intermediate supervision in HED
is less than that of our Baselinel and Baseline2. The
reason is that we do not perform data augmentation (e.g.
rotation and flip) that has been employed in HED. Although
the data augmentation may decrease the improvement of
intermediate supervision, we believe that it should not
remove our awareness of its importance.

Table 1: Results on BSDS500 testing set. RDS(Canny)
and RDS(SE) derive the relaxed labels from Canny and SE.
CEA uses the extra data from Pascal Context dataset.

ODS OIS AP

Baseline 1 762 782 766
Baseline 2 780 .802 .786
RDS(Canny) 785 803 .813
RDS(SE) 787 804 817
RDS(gPb) 786 .803 .814
CEA 765 185 724
RDS(Canny) + CEA | .790 .809 .819
RDS(SE) + CEA 792 810 .818

4.2. BSDS500 results

The BSDS500 dataset [1] consists of 200 training, 100
validation, and 200 testing images. The validation set
is used to fine-tune the hyperparameters. Each image is
manually annotated by five human annotators on average.
For training images, we just preserve their positive labels
annotated by at least three human annotators. In testing
stage, we extract the fusion-output prediction to evaluate
the performance, based on three measures: fixed contour
threshold (ODS), per-image best threshold (OIS) and aver-
age precision (AP).

Results discussion. Table 1 reports the results regarding
our approach. We discuss them from the following aspects.

(1) RDS yields considerable improvements over the
general supervision approach (Baseline 2). This verifies
the advantage of RDS for incorporating hierarchical diver-
sities. In details, the result of RDS with relaxed labels
from Canny, denoted as RDS(Canny), achieves ODS=.785.
Furthermore, the RDS(SE) result reaches to ODS=.787.

(2) RDS is relatively insensitive to different choices of
relaxed labels. First, we can see that RDS can obtain similar
results with Canny and SE. In addition, we use another
detector, gPb [1], to capture the relaxed labels. Similarly,
its result (ODS=.786) keeps consistent with RDS(Canny)
and RDS(SE). Thus we have not invested too much effort
in optimizing various relaxed labels now.

(3) Pretraining with CEA demonstrate further gains for
both RDS(Canny) and RDS(SE), reaching to ODS=.790
and .792, respectively. In addition, we also evaluate the
model pretrained by CEA on the BSDS500 test set (without
finetuning on BSDS500 training set). Significantly, it
can still achieve ODS=.765. These results evidences the
necessity and advantage of a large-scale fruitful dataset.

Table 2: Comparing the importance of early and late
supervision on BSDS500 testing dataset.
RO R®  RG®)  RW ROG) G| ODS OIS AP

v | 762 782 766
v v Vv v | 770 795 778
4 v y

780 801 785
v v v v v 787 804 817
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Table 3: Edge detection results on BSDS500 dataset.

ODS OIS AP

Human .80 .80 -
gPb-owt-ucm [1] 726 757 .696
Sketch Tokens [24] 727 746 780
SCG [38] 739 758 773
MS [18] 74 77 78
SE-Var [8] 746 767 803
OEF [15] 749 772 817
MES [34] 756 776 756
DeepNet [20] 738 759 758
N4-Fields [13] 153 769 784
DeepEdge [2] 753 772 807
MSC [35] 56 776 787
CSCNN [17] 756 775 798
DeepContour [32] 757 776 790
HFL [3] 767 788 795
HED-latemerge [39] 782 804 .833
HED-multiscale [39] 790 808  .811
RDS (ours) 792 810 818

Early supervision and late supervision. Since we
know the advantage of additional deep supervision, but
whether all the intermediate supervision has the same im-
portance or not. We employ the RDS(SE) method to
evaluate this test (See Table 2). Here we briefly divide two
groups: early supervision and late supervision. The early
supervision consists of RW, R® and R®), and the late
supervision includes R*) and R(). In addition, the fuse-
output supervision with G is necessary all the time. We
train the model with early and late supervision separately
and compare their effects. We can see that (1) compared
with no intermediate supervision, using the late supervision
achieves more boosts than the early supervision; (2) training
with both early and late supervision outperforms any single
way. These results show that all intermediate supervision
provides useful and complementary information.

Comparisons with state-of-the-art. Here we compare
our RDS(SE)+CEA result against other leading methods on
BSDS500 dataset in Table 3. Precision/recall curves are
illustrated in Fig. 8. These methods can be categorized into
non deep-learning and deep learning groups (See the upper
part and lower part in the table). As far as we know, the
recent work, MES [34], shows the superior result in the
non deep-learning group. On the other hand, HED [39],
as an edge detector based on deep learning, leads other
methods, meanwhile retaining high efficiency. Our method,
RDS, improves the ODS by 1 point and OIS by 0.6 point
as compared with HED-latemerge. It is worth mentioning
that HED has better average precision (AP), due to its late-
merging step. However, we do not perform this optional
late-merging step. Besides, HED further presents better
results using multi-scale augmentation. Nevertheless, our
results are still competitive. In Fig. 9, we illustrate some
examples of edge detection results and visually compare
with MES [34] and HED [39]. In addition, Figure 10 shows

! Augmenting the training images with three scales.

0.9,

0.8

0.71
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Figure 8: Precision and recall curves on BSDS500 test
dataset. These methods are ranked according to their best
F-score (ODS). Our method achieves superior result as
compared with other top-tier performance.

an example of a zoomed-in region in one image. RDS can
extract meaningful edges in a small region.

4.3. Cross dataset generalization

To investigate the generalization of one edge detector,
it is necessary to conduct experiments on another dataset.
Following the experimental setup in [8, 32], the NYUD
dataset (v2) [30] is used as the cross dataset. With the
model trained on BSDS500 training set, we evaluate the
NYUD performance with its 654 testing images. In Table 4,
we compare our ODS results with SE [7, 8] and DeepCon-
tour [32]. Notably, to compensate for the relatively inexact
ground truth in NYUD dataset, the maximum tolerance
(maxDist) allowed for correct matches of edge predictions
to ground truth increases from .0075 to .011 [8]. In
summary, RDS achieves better cross-dataset generalization
results, no matter what the maximum tolerance is.

4.4. Computational cost

In this section, we evaluate the computational cost of
the proposed RDS method, including training and testing
stages. The experimental environment is CPU i7 with 64GB
RAM and NVIDIA K40 GPU. (1) Training stage: we need
to extract the relaxed labels using off-the-shelf Canny or
SE. They are both quite efficient detectors with about 15

Table 4: Cross-dataset generalization results. The model
trained on BSDS500 is used to evaluate NYU test set.

maxDist=.0075 | maxDist=.011
DeepContour [32] .55 -
SE [7, 8] .55 .64
RDS(SE) 611 627
RDS(SE) + CEA .655 674
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i

Figure 9: Illustration of five edge detection examples. The first and second rows list the original image and its ground truth.
The third and forth rows display the results from MES [34] (Threshold=.407) and HED [39] (Threshold=.320). The proposed
RDS(SE) (Threshold=.390) and RDS(SE)+CEA (Threshold=.347) methods are shown in the fifth and sixth rows. Compared
with HED [39], RDS can reduce the false positives, such as the stones in the first image. Meanwhile, our method can obtain
more true positives, for example our closed boundaries of the boats in the second image.

Zoom in GT

Figure 10: Result of a zoomed in region in one image.

and 2.5 FPS (frames per second), respectively. Next, we
use the CEA data to pretrain the network with about 10K
iterations, which takes about 10 hours on one K40 GPU.
Finally, it just spends less than one hour to train the model
on the BSDS500 training set (200 images) with 25 epoches.
(2) Testing stage: apart from computing the relaxed labels,
our method takes about about 500ms to predict the fusion-
output edge map. Thus RDS has the similar magnitude of
computational speed as HED.

5. Conclusion

In this paper, we developed an edge detection method
influenced by relaxed deep supervision (RDS) to guide the
CNN model. Compared with the general deep supervision,

RDS takes advantage of all of the intermediate layers or
hierarchical diversities within the network, and focuses on
the false positives. Consequently, our method achieves
considerable improvements, meanwhile retaining high
efficiency. In addition, we pretrained the model with coarse
edge annotations (CEA) extracted from a large collection
of segmentation annotations. This pretraining step obtains
further gains. Our results on BSDS500 dataset show state-
of-the-art accuracy (ODS=.792). Another cross-dataset test
indicates the promising generalization properties of our
method. Our work can provide promising insights into
efficiently exploiting diverse deep supervision to guide the
network. In addition, it is feasible to apply this relaxation
strategy to other visual recognition tasks, such as object
recognition and image segmentation.
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