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Abstract

The growing explosion in the use of surveillance cam-

eras in public security highlights the importance of ve-

hicle search from a large-scale image or video database.

However, compared with person re-identification or face

recognition, vehicle search problem has long been ne-

glected by researchers in vision community. This paper

focuses on an interesting but challenging problem, vehicle

re-identification (a.k.a precise vehicle search). We propose

a Deep Relative Distance Learning (DRDL) method which

exploits a two-branch deep convolutional network to project

raw vehicle images into an Euclidean space where distance

can be directly used to measure the similarity of arbitrary

two vehicles. To further facilitate the future research on

this problem, we also present a carefully-organized large-

scale image database “VehicleID”, which includes multi-

ple images of the same vehicle captured by different real-

world cameras in a city. We evaluate our DRDL method on

our VehicleID dataset and another recently-released vehi-

cle model classification dataset “CompCars” in three sets

of experiments: vehicle re-identification, vehicle model ver-

ification and vehicle retrieval. Experimental results show

that our method can achieve promising results and outper-

forms several state-of-the-art approaches.

1. Introduction

Nowadays, there is an explosive growing requirement

of vehicle search and re-identification (Re-ID) from large-

scale surveillance image and video database in public secu-

rity systems. License plate naturally is an unique ID of a

vehicle, and license plate recognition has already been used

widely in transportation management applications. Unfor-

tunately, we can not identify a vehicle simply by its plate

in some cases. First, most surveillance cameras are not in-
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stalled for license plate capturing, thus, plate recognition

performance drops dramatically on images/video data cap-

tured by these cameras. Furthermore, license plates are of-

ten occluded, removed, or even faked in a large number

of previous security events. Therefore, vision-based ve-

hicle re-identification has a great practical value in real-

world surveillance applications. Specifically, vehicle re-

identification is the problem of identifying the same vehicle

across different surveillance camera views. Fig. 1 gives a

straightforward description of it.

Figure 1. Given multiple candidates as the gallery set, the vehicle

re-identification task is to find the matched one for each probe im-

age. Notice that the illumination and viewpoint in different cam-

eras can be varied a lot and different vehicles could be quite similar

if they are of the same model.

Though the problem of vehicle re-identification has al-

ready been discussed for many years, most of the existed

works rely on a various of different sensors [18, 10, 12].

To our knowledge, there is no previous attempt on the vehi-

cle re-identification task purely by vehicle’s visual appear-

ance yet and the primary reason could be the lack of high-

quality and large-scale vehicle Re-ID datasets. Existed ve-

hicle datasets [9, 21] are usually designed for vehicle at-
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tributes recognition(e.g. color, type, make, and model). In

this paper, we present a new vehicle re-identification dataset

named “VehicleID”, which is collected from multiple real-

world surveillance cameras and includes over 200,000 im-

ages of about 26,000 vehicles. All images are attached with

id numbers indicating their true identities(according to the

vehicle’s license plate). In addition, nearly 90,000 images

of 10,319 vehicles in this dataset have been labeled with the

vehicle model information. Thus, it can also be used for

fine-grained vehicle model recognition.

Another potential reason may be that compared with

the classic person re-identification problem, vehicle re-

identification could be more challenging as too many (usu-

ally thousands) vehicles of one same model have similar vi-

sual appearance. It is really difficult even for humans to tell

the difference between vehicles of the same model without

using their license plates. Nevertheless, there are some spe-

cial marks that can be used to identify a vehicle from oth-

ers, such as some customized painting, favorite decorations,

or even scratches etc. (as illustrating in Fig. 2). There-

fore, vehicle re-identification algorithm should be able to

capture both the inter-class and intra-class difference effi-

ciently. Deep feature has been proved more effective and

robust for recognition task. Inspired by one of the state-of-

the-art method in person re-identification [4], we propose a

Deep Relative Distance Learning (DRDL) model to address

the vehicle re-identification problem.

DRDL is an end-to-end framework (Fig. 3) specifically

designed for vehicle re-identification. It aims to learn a deep

convolutional network that can project raw vehicle images

into an Euclidean space where the L2 distance can thus be

used directly to measure the similarity of arbitrary two ve-

hicles. The basic idea of DRDL is to minimize the dis-

tances of the same vehicle images and maximize those of

other vehicles. Therefore, a coupled cluster loss function

and a mixed difference network structure are introduced in

DRDL framework. As shown in Fig. 3, the input of DRDL

are two image sets: one positive set (images of the same

vehicle identity) and one negative set (images of other ve-

hicles). The coupled cluster loss is to pull the positive im-

ages closer and push those negative ones far away. While

the mixed difference network structure will benefit the map-

ping model with more explicit model information. Namely,

deep feature and the distance metric are learned simultane-

ously in an unified DRDL framework. The experimental

results show that our method can achieve promising results

and outperforms several state-of-the-art approaches.

Rest of the paper is organized as follows: Related works

are reviewed in section 2. In section 3, we discuss our

coupled clusters loss function and a unified deep network

structure specifically designed for vehicle re-identification.

Section 4 gives an detailed description of our dataset “Vehi-

cleID” including how we collect and organize the raw im-

Figure 2. Special marks which can be used for identification task.

Figure 3. Framework of our model for vehicle re-identification.

The deep neural network aims to map the original vehicle images

into an Euclidean space that the images of the same vehicle tend

to form a cluster while other images tend to locate relatively far

away.

ages, the total number of vehicles and extra vehicle model

annotations on part of this dataset. The evaluation protocols

and experimental results are presented in section 5.

2. Related Work

Most previous object identification research targets at ei-

ther person or human face. Both of them have long been

popular topics in computer vision communities and can be

described as an unified problem: given a probe image and

multiple candidates as the gallery, we need to decide which

one in gallery is the same object of the probe image. How-

ever, there is not much work on vehicle re-identification be-

fore even though vehicle is at least of equal importance as

person and human face in real-world applications. The most

closely related problems which targets at vehicle include ve-

hicle model classification[23, 9, 14, 13] and vehicle model

verification[21]. But being different from our task, all those

methods can only reach the vehicle model level instead of

identifying whether two vehicles are exactly the same one.

Thus, person re-identification is actually the most closely

related problem of ours.

Existed approaches of person re-identification mainly

rely on handcrafted features like color or texture histograms

and then try to model the transformation of person’s ap-
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pearance across different cameras[5, 11]. Zhao et al.[24]

proposed to make use of mid-level features from automat-

ically discovered hierarchical patch cluster trees for view-

invariant and discriminative feature extraction.

Recently, deep convolutional network is also introduced

into person re-identification problem. Yi et al.[22] applied

a “siamese” deep network which has a symmetric structure

with two sub-network to learn pair-wise similarity. Ahmed

et al. formulate the person re-identification as a binary

classification problem[1] and solve it with a specifically

designed deep neural network. The two input images are

first fed into two convolutional layers to extract high level

features and then mixed together by a difference measure-

ment layer together with several other fully-connected lay-

ers. The last layer in this network is a softmax function to

yield the final estimate of whether the input images are of

the same person.

The most similar model of our proposed method is the

triplet loss deep convolutional network. Connecting deep

convolutional network for feature extraction and a special

triplet loss has achieved state-of-the-art performance in both

person re-identification and face recognition problems[4,

16]. It is assumed that samples of the same identity should

be closer from each other compared to samples of dif-

ferent identities. By optimizing the specifically designed

triplet loss function, the network will gradually learn a har-

monic embedding of each input image in Euclidean space

that tends to maximize the relative distance between the

matched pair and the mismatched pair. But generating all

possible triplets would result in numerous triplets and most

of them are too easy to distinguish that would not make any

contribution to the loss convergence in training phase. Ei-

ther offline or online selection in small batch-size data need

to be done in advance.

In this paper, we first present a large-scale dataset that

contains not only a large number of vehicles captured by

real-world surveillance cameras but also multiple images

of each vehicle that were captured across different time or

cameras. Each vehicle image is attached with an unique

id by its license plate. To the best of our knowledge,

there are no similar large-scale datasets before which in-

cludes multiple images captured by multiple different cam-

eras for each vehicle. We call this dataset as “VehicleID”.

Then, we propose an end-to-end framework DRDL that are

suited for both vehicle retrieval and vehicle re-identification

tasks. Notice that two different vehicles(with different li-

cense plates) could be almost the same regarding their ap-

pearance if they belong to the same model. We aim to cap-

ture both the inter-model difference and intra-model differ-

ence between different vehicles.

3. Deep Relative Distance Learning

Technically, there are mainly two core components we

need to consider for a re-identification problem: a method

for feature extraction and a distance metric to compare fea-

tures across different images. Previous research on re-

identification usually focuses either on designing better

handcrafted features or building a more comprehensive met-

ric model. But it is mostly empirically determined about

which method for feature extraction and which method for

distance metric. Can we have an unified model to accom-

plish both the two tasks? We believe deep convolutional

network could be a good answer. In fact, all deep learning

approaches for re-identification we mentioned in section 2

are able to extract features and measure the difference at the

same time: for each image feed into the network, we get

either its embedding in Euclidean space or the similarity es-

timation with other images directly. The feature extraction

component and distance metric component are both con-

tained inside the network. To utilize the advantage of deep

convolutional network in vehicle re-identification problem

and inspired by the recently proposed triplet loss[16, 4], we

propose an enhanced model in this paper named Deep Rela-

tive Distance Learning(DRDL). Different with other existed

frameworks, we designed a new loss function to accelerate

the training convergence and add an extra branch to measure

the instance difference between different vehicles while of

the same model. Here for concreteness, we first briefly re-

view the triplet loss and then discuss the details of our pro-

posed model.

3.1. Triplet Loss

In a standard triplet loss network, the inputs are a batch

of triplet units {< xa, xp, xn
i >} where xa and xp belong

to the same identity while xa and xn belong to the different

identities. Let f(x) denote the network’s feature represen-

tation of image x. For a training triplet < xa, xp, xn >,

the ideal feature representation of them should satisfy the

following constraint:

∥f(xa)− f(xp)∥+ α ≤ ∥f(xa)− f(xn)∥ (1)

or equally

∥f(xa)− f(xp)∥2 + α ≤ ∥f(xa)− f(xn)∥2 (2)

where α is a predefined constant parameter representing the

minimum margin between matched and mismatched pairs.

In addition, to avoid the loss function easily exceeding 0,

all image features are constrained in a d-dimensional hy-

persphere ∥f(x)∥22 = 1. This normalization step is also

performed in [4, 16]. Fig. 4 visualizes Eq.(2) in a more

intuitive way. Thus, the loss function can be defined as

L =
N∑

max{∥f(xa)−f(xp)∥22+α−∥f(xa)−f(xn)∥22, 0}

(3)
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Figure 4. Triplet loss.

However, there exists some special cases that the triplet

loss may judge falsely when processing randomly selected

triplet units. Given 3 samples that two of them belong to the

same identity and the other belongs to a different one, there

are two different ways of building triplets as the network’s

input data. Fig. 5 shows both of them. In the left case, the

triplet loss can easily detect the abnormal distance relation-

ship since the intra-class distance is larger than inter-class

distance. But the right case is a bit different. The triplet loss

is 0 since the distance between anchor and positive point is

indeed smaller than the distance between anchor and nega-

tive point. Thus, the network will just neglects this triplet

during backward propagation.

Figure 5. Two different cases when building triplets.

Moreover, since the backward propagation of triplet loss

is actually pulling positive point toward anchor point and

pushing negative point toward the opposite direction of an-

chor point, the loss function is quite sensitive to the selec-

tion of anchor point. This means improper anchors can re-

sult in great interference in the training stage and lead to

a slow convergence. We need a lot more proper triplets to

correct it.

3.2. Coupled Clusters Loss

In order to make the training phase more stable and

accelerate the convergence speed, we propose a new loss

function to replace the triplet loss here: coupled clusters

loss(CCL). We also use a deep convolutional network to

extract features for each image here. But the triplet input

is replaced by two different image sets: one positive set

and one negative set. The former set Xp = {xp
1, · · · , x

p
Np}

contains Np images of the same identity and the other one

Xn = {xn
1 , · · · , x

n
Nn} contains Nn images of other differ-

ent identities. It is assumed that samples belong to the same

identity should locate around a common center point in the

d-dimensional Euclidean space. Thus, samples in the pos-

itive set should form a cluster together and samples in the

negative set should stay relatively far away. Fig. 7 illus-

trates the ideal situation.

We first estimate the center point as the mean value of all

positive samples

cp =
1

Np

Np∑

i

f(xp
i ) (4)

The relative distance relationship is reflected as

∥f(xp
i )− cp∥22 + α ≤ ∥f(xn

j )− cp∥22
∀1 ≤ i ≤ Np and 1 ≤ j ≤ Nn (5)

The coupled clusters loss function is defined as

L(W,Xp, Xn) =∑Np

i
1
2max{0, ∥f(xp

i )− cp∥22 + α− ∥f(xn
∗ )− cp∥22}

(6)

where xn
∗ is the nearest negative sample to the center point.

If ∥f(xp
i ) − cp∥22 + α − ∥f(xn

∗ ) − cp∥22 ≤ 0, the partial

derivative of both the positive and negative samples are 0.

Otherwise the partial derivative of the positive samples are

∂L

∂f(xp
i )

= f(xp
i )− cp (7)

The partial derivative of the nearest negative sample is

∂L

∂f(xn
∗ )

= cp − f(xn
∗ ) (8)

The main idea behind Eq.(5) is absolutely the same as the

triplet constraint in Eq.(2) that intra-class distance should

be smaller than the inter-class distance. But the way we

express it is quite different:

• Distances are measured between samples and a cluster

center rather than any randomly selected anchor sam-

ples;

• The coupled clusters loss function is defined over mul-

tiple samples instead of three.

The first requirement ensures the distances we get and the

direction the samples will be moved to(the loss function’s

partial derivative of each input sample) in backward prop-

agation step are more reliable than the original triplet loss

since the randomly selected anchor is replaced by the cluster

center. Then, the specifically designed loss function guar-

antees all positive samples which are not close enough to

the center will move closer(samples which are already close

enough will be neglected). The selection of the nearest neg-

ative sample xn
∗ will further prevent the relative distance

relationship Eq.(5) being too easily satisfied compared with

a randomly selected negative reference.

3.3. Mixed Difference Network Structure

There is a small but quite important difference between

identifying a specific vehicle and person. In theory, any two
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Figure 6. Mixed difference network structure based on VGG CNN M 1024.

Figure 7. Coupled clusters loss.

persons could not be exactly the same regarding their vi-

sual appearance but two vehicles running on road could be

if they belong to the same vehicle model(for instance, they

both are Audi A4L 2009). But in real-world scenes, it is still

possible to distinguish two vehicles of the same model if

some special markers exist which are showed previously in

Fig. 2. To deal with this case, the distance measurement be-

tween a probe image and multiple candidate vehicles should

include two kind of differences: whether they belong to the

same vehicle model and whether they are the same vehicle.

Since existing models for person re-identification did not

really consider this, we propose a new network structure to

better measure these two difference here.

The base network structure used in our experiments is

VGG CNN M 1024[2]. It contains 5 convolutional layers

and 2 fully-connected layers. The dimension of the net-

work’s last fully-connected layer “fc7” is 1024.

But since the single branch network structure is not ca-

pable of extracting both the vehicle model information and

the instance difference between two candidates of the same

vehicle model both, we extend the single branch network

to a two branches network. Fig. 6 illustrates the detailed

structure.

Notice that the last fully connected layer “fc8” is a

mixed feature of both the vehicle’s model information and

the feature representation learned from single triplet loss or

our coupled clusters loss. The idea behind is quite sim-

ple: two vehicle images are definitely different vehicles if

they are of different vehicle model and in the other case,

i.e. they belong to the same vehicle model, an extra in-

stance difference measurement is needed(The dimension of

“fc8” is set to 1024 in accordance with the output dimen-

sion of standard VGG CNN M 1024 network to eliminate

the influence of feature dimensional difference when per-

forming evaluation experiments). “fc7 2” in the mixed dif-

ference network is just the same as the output feature of

a standard VGG CNN M 1024 network while “fc8” is an

enhanced one suitable for both inter-model difference and

intra-model difference metric.

3.4. Training the Network

All the networks in our experiments are trained with the

widely-used deep learning framework “Caffe”[8]. Train-

ing data consist of multiple positive and negative image sets

and the corresponding labels(i.e. ID and vehicle model).

Specifically in our experiments, our networks are all fine

tuned on VGG CNN M 1024 which is pre-trained with the

ImageNet dataset in ILSVRC-2012[15]. We use a momen-

tum of µ = 0.9 and weight decay λ = 2 × 10−4. The

sizes of both the positive and negative sets are set to 5(im-

ages). Batch-size is set to 15 which means we need to

feed 15 ∗ (5 + 5) = 150 images in each training itera-

tion. We start with a base learning rate of η(0) = 0.01
and then drops by repeatedly multiply 0.7 after every 8000

batch iterations: η(i) = η(0)0.7⌊i/8000⌋. Loss weights of

the upper branch(softmax), lower branch(CCL) and the fi-

nal one(CCL) are 0.5, 0.5, 1.0 respectively.

4. VehicleID Dataset

As mentioned in section 1, the identity information is not

available in “CompCars” dataset[21] and we aim to go fur-

ther than the existed vehicle model recognition task, a more
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Figure 8. VehicleID Dataset. Each vehicle have at least 2 images

in our dataset. Illumination and viewpoint could both varied a lot

in different images. A large number of different vehicles are of the

same mode.

suitable large-scale vehicle dataset named “VehicleID”1 for

re-identification task has been carefully collected and orga-

nized by us. The “VehicleID” dataset contains data captured

during daytime by multiple real-world surveillance cameras

distributed in a small city in China. Similar to existed per-

son re-identification datasets, each vehicle ever appeared in-

cludes more than one images. Thus, this dataset could be

well suitable for vehicle search related tasks.

In addition, we carefully labeled 10319 vehicles(90196

images in total) of their vehicle model information. But dif-

ferent from the “CompCars” dataset[21], our dataset does

not targets at fine-grained vehicle model classification task

since the model distribution is usually quite imbalanced

in real-world scenarios. In “VehicleID” dataset, only 250

most commonly appeared vehicle models are included(like

“MINI-cooper”, “Audi A6L” and “BWM 1 Series”). Fig. 9

shows the exact numbers of each vehicle model. As we can

see, the most commonly seen vehicle models like “Buick

Excelle”, “Chevrolet Cruze” and “Volkswagen Lavida” all

have more than 200 different vehicles(2000+ images) each,

while the most seldom seen vehicle models like “C-Quatre”,

“Toyota Prado” and “Subaru Forester” have only 1 vehicle

of each model.

The “VehicleID” dataset is captured by multiple non-

overlapping surveillance cameras and there are 221763 im-

ages of 26267 vehicles in total(8.44 images/vehicle in aver-

age). Besides, the vehicle in each image is either captured

from the front or the back(viewpoints information is not la-

beled). Fig. 8 demonstrates some examples.

To better assist different vehicle-related experiments,

this dataset is split into two parts for model training and

testing. The first part contains 110178 images of 13134

vehicles and 47558 images have been labeled with vehicle

model information. The second part contains 111585 im-

1Available at http://pkuml.com/resources/pku-vehicleid.html

Figure 9. Vehicle numbers of 250 models.

ages of 13133 vehicles and 42638 images have been labeled

with vehicle model information.

Considering the total number of testing data is still too

large compared with ordinary testing data for person re-

identification(316 pedestrians in VIPeR dataset[7], 50 in

iLIDS dataset[20]), we further extract three subsets(i.e.

small, medium and large) ordered by their size from the

original testing data for our vehicle retrieval and vehicle

re-identification tasks. The quantity distribution of “Vehi-

cleID” is demonstrated in Table 1 and Table 2.

Table 1. Data Split For Training And Testing

Image number Training Testing

With model label 47558 42638

Without model label 67540 68947

All 110178 111585

Table 2. Test Data Split

Small Medium Large

Number of vehicles 800 1600 2400

Number of images 7332 12995 20038

5. Experiments

Two datasets including “CompCars”[21] and our “Ve-

hicleID” dataset are used to evaluate our method. Both of

them have a large collection of different vehicle pictures but

originally designed for different tasks.

“CompCars” is a recently released large-scale and com-

prehensive image database, much larger both in scale

and diversity compared with other existed vehicle image

datasets. There are 214, 345 images(collected from the In-

ternet) of 1, 716 car models in total and the entire dataset has

been split into three subsets. Following the pipeline of car

model verification[21], we use the Part-I subset which con-

tains 431 car models with a total of 30955 images capturing

the entire car for model training and evaluate our method in
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vehicle verification task on the Part-III subset which con-

tains 22236 images of 1145 models. Notice that the Part-II

subset which contains a list of matched or mismatched pair

data is not being utilized when training our model because

our network is not designed for pair-wise similarity learn-

ing.

We use VGG CNN M 2048[2] and its mixed difference

version in section 3.3 as the feature extractor in all our

experiments. Theoretically, other convolutional networks

like GoogleNet[19], VGG ILSVRC 19 layers[17] can also

be embedded in our framework. To make a comprehen-

sive evaluation of our proposed model, we designed 3 dif-

ferent experiments all together: vehicle model verification,

vehicle retrieval and vehicle re-identification. The detailed

description and the final results are in the following three

subsections.

5.1. Vehicle Model Verification

Since vision based vehicle re-identification problem is

never deeply explored before and most vehicle search tech-

niques are based on analyzing vehicle model information.

We first perform the vehicle model verification task follow-

ing the pipeline of face verification on “CompCars” dataset

to give an overview of our proposed method. This task can

be described as: given two vehicle images, we need to ver-

ify whether they belong to the same vehicle model. Notice

that neither our method nor the standard triplet loss network

is designed for vehicle model verification or classification

tasks. We did not really expect our model to have a compa-

rable result compared with other mature solutions from face

verification problem at first.

Three other methods are introduced to perform the com-

parison experiments. The experimental results of the first

two methods, “Deep Feature+SVM or Joint Bayesian”,

are referred from Yang’s paper[21]. They first utilize a

deep convolutional network to train a vehicle model clas-

sification model on Part-I data of “CompCars”. Then,

Joint Bayesian[3] or SVM is applied to train a verifica-

tion model on Part-II data with the classification network

in step 1 as a feature extractor. The third algorithm,

“VGG CNN M 1024” network with triplet loss function is

trained with Part-I data of “CompCars” and the correspond-

ing vehicle model labels. Part-II data is not being used since

pair-wise data is not suitable for the network’s input.

The training process of our method is quite similar to

the triplet loss network except that the vehicle make infor-

mation is also introduced to assist the model training and

the standard “VGG CNN M 1024” is replaced by its mixed

difference version. To describe it more specifically, the first

branch of the mixed difference network aims to learn the ve-

hicle make information of the input images and the second

branch aims to learn the difference between different vehi-

cle model images. The final mixed feature is an enhanced

Table 3. Predict Accuracy of Vehicle Verification Task

Accuracy Easy Medium Hard

GoogleNet+SVM[21] 0.700 0.690 0.659

GoogleNet+Joint Bayesian[21] 0.833 0.824 0.761

VGG+Triplet Loss / / /

Mixed Diff+CCL(Ours) 0.833 0.788 0.703

feature representation of the input image. Table 3 presents

the final verification accuracy of the above methods.

In this task, the “GoogleNet+Joint Bayesian” framework

achieves the best performance on all three testing datasets

and our approach ranked the second place overall. The

“VGG CNN M 1024+Triplet Loss” got no results because

its loss function failed to converge during the training phase.

Maybe it is just not that easy to form perfect clusters of var-

ious different samples simply distinguished by their vehicle

model information.

5.2. Vehicle Retrieval

Another closely related problem of vehicle search is the

object retrieval task, we evaluate the performance of our

proposed DRDL model following the widely used proto-

col in object retrieval, mean average precision(MAP). We

designed this experiment to measure how much improve-

ment each module in our framework brings. Thus, only

three methods are included in this part: “VGG+Triplet

Loss”, “VGG+Coupled Clusters Loss” and “Mixed Differ-

ence VGG+Coupled Clusters Loss”. Moreover, as small-

scale dataset may affect the deep model’s final test accuracy

and we aim to fully evaluate the potential power of different

models, the entire training data(110178 images in total) in

“VehicleID” is being used for model training. In test phase,

suppose we have Ni images for vehicle model i, we put

max{6, Ni−1} images into the gallery set and the rest into

the probe set. After extracting the normalized features us-

ing the trained deep convolutional network, the difference

between arbitrary two vehicle images is measured directly

by their L2 distance. Table 4 illustrates the final results.

Since the training data is absolutely sufficient now, it

would not be a difficult problem any more for the stan-

dard triplet loss to converge. In all three testing datasets,

the mean average precision keeps growing significantly af-

ter applying our proposed coupled clusters loss function and

the mixed difference network structure compared with the

original triplet loss framework. It strongly proves the sig-

nificant effects of our proposed approach.

Table 4. MAP of Vehicle Retrieval Task
MAP Small Medium Large

VGG+Triplet Loss[4] 0.444 0.391 0.373

VGG+CCL(Ours) 0.492 0.448 0.386

Mixed Diff+CCL(Ours) 0.546 0.481 0.455
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Figure 10. CMC on VehicleID Dataset(gallery size=800).

5.3. Vehicle Re-identification

In this part, we adopted the widely used cumulative

match curve(CMC) approach[6] in person re-identification

problem and performed the vehicle re-identification exper-

iments on “VehicleID” dataset. For each test dataset split

in Table 2, we randomly select one image of each vehicle

and put it into the gallery set. Other images are all probe

queries. The detailed information of the gallery set and the

probe set in each test subset is in Table 5. Following the

common method when evaluating model predict accuracy,

we repeat it 10 times in testing phase to get the final CMC

curve.

Table 5. Gallery and Probe Split for Vehicle ReID Task

Number of images Small Medium Large

Gallery size 800 1600 2400

Probe size 6532 11395 17638

Table 6. Match Rate of Vehicle ReID Task
Match Rate Small Medium Large

VGG+Triplet Loss[4]

top 1

0.404 0.354 0.319

VGG+CCL(Ours) 0.436 0.370 0.329

Mixed Diff+CCL(Ours) 0.490 0.428 0.382

VGG+Triplet Loss[4]

top 5

0.617 0.546 0.503

VGG+CCL(Ours) 0.642 0.571 0.533

Mixed Diff+CCL(Ours) 0.735 0.668 0.616

The detailed match rate from top-1 to top-50 of the var-

ious models evaluated on the small-scale test data(gallery

size is 800) is illustrated in Fig 10. Considering the num-

ber of vehicle models in “CompCars” are far more larger

than our “VehicleID” dataset and “VGG CNN M 1024” is

a relative small network for multi-class classification, we

also trained a more powerful network, i.e. “GoogleNet”,

on both datasets. From the results, we can see that when

using the same learning model(like the Joint Bayesian),

“GoogleNet” beats “VGG CNN M 1024” about 2% in top-

1 matching rate and owns significant advantages from top-5

to top-50(6%− 7%). On the other hand, though the various

vehicle model information the “CompCars” dataset has, the

image type difference(web-nature images and surveillance-

nature images) greatly affected the overall predict accuracy.

“GoogleNet” trained on “VehicleID” beats the one trained

on “CompCars” about 3%. The standard “CNN+Triplet

Loss” framework works well in this experiment, outper-

forms all other models except ours. After applying our

proposed coupled clusters loss and the mixed difference

network structure, the match rate further increased about

4% − 10% along the CMC curve. Table 6 illustrates the

top-1 and top-5 match rate of the best three models on all

three test data splits, which reveal the significant advantages

of our method again.

6. Conclusions

In this paper, we propose a Deep Relative Distance

Learning (DRDL) model to solve an important but not well

explored problem: vehicle re-identification. We exploits

a two-branch deep convolutional network to map vehicle

images into an Euclidean space thus, L2 distance can be

directly used for similarity estimation. Compared with

existed methods, the specifically designed coupled clus-

ters loss function and the mixed difference network struc-

ture achieves a high predict accuracy. Experimental results

demonstrate that DRDL achieves promising results and out-

performs several state-of-the-art approaches. Although the

methods is proposed for vehicle Re-ID, it could work well

on vehicle model verification and vehicle retrieval tasks

either. For the lack of vehicle re-identification datasets,

we present a carefully-labeled large-scale dataset named

“VehicleID”, which includes multiple images of the same

vehicle captured by different real-world cameras. With

the nearly 200,000 images of 26,267 vehicles and well-

organized identity label, the dataset could easily be used for

future research on vehicle re-identification or fine-grained

vehicle model recognition tasks.
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