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Abstract

While great progress has been made in stereo computa-

tion over the last decades, large textureless regions remain

challenging. Segment-based methods can tackle this prob-

lem properly, but their performances are sensitive to the

segmentation results. In this paper, we alleviate the sensitiv-

ity by generating multiple proposals on absolute and rela-

tive disparities from multi-segmentations. These proposals

supply rich descriptions of surface structures. Especially,

the relative disparity between distant pixels can encode the

large structure, which is critical to handle the large texture-

less regions. The proposals are coordinated by point-wise

competition and pairwise collaboration within a MRF mod-

el. During inference, a dynamic programming is performed

in different directions with various step sizes, so the long-

range connections are better preserved. In the experiments,

we carefully analyzed the effectiveness of the major com-

ponents. Results on the 2014 Middlebury and KITTI 2015

stereo benchmark show that our method is comparable to

state-of-the-art.

1. Introduction

Stereo computation is a fundamental task in computer vi-

sion with many applications like 3D reconstruction [7, 25],

autonomous driving [10], view synthesis [20], etc. Mean-

while it always suffers from matching ambiguities due to

noise, low or repetitive textures, and occlusions. To allevi-

ate the matching ambiguities, many efforts focus on making

a prior on the disparity or surface. Cost filtering methods

[22, 36, 15] assume that a local support region should pos-

sess the same disparity. While most energy based methods

[33, 32, 11] impose smoothness prior that adjacent pixels

tend to have similar disparities or lie on the same surface.

Notably, segmentation of color image [38, 29, 16] has been

adopted to build the disparity prior. Segmentation provides

clues about depth discontinuities and potentially groups the

points belonging to an identical regular surface. Building

a regular 3D surface model over a superpixel can help pre-

serve the depth discontinuity, and in particular can recover

the disparities of large textureless regions.

A major challenge of segment-based methods is how to

segment the images properly, such that both the regularity of

the surface fragments and the depth discontinuities are well

preserved. In the case of under-segmentation, a superpixel

cannot be explained by a single surface model. In the case

of over-segmentation, superpixels may get too small to es-

timate a reliable surface model. It remains an open problem

to select a suitable segmentation scale in general situations.

We consider to make use of multi-segmentation, so that we

can obtain a rich set of overlapping surface fragments. From

these fragments, we can compromise a suitable description

of the 3D scene, which avoids the risk of early-decision in

picking the segmentation method and parameters.

In this paper, we propose a strategy to generate multi-

ple disparity proposals from different segmentations as pri-

ors to regularize the disparities. Disparity proposals include

absolute disparities as well as relative disparities between

pixel pairs. The absolute disparities are the initial dispari-

ties refined by surface models, thus are more reliable. The

relative disparities focus on the surface structure. Unlike the

traditional local smoothness priors, these pairwise relation-

s are structure-dependent, and the long range relations can

encode the large structure directly.

To find out suitable descriptions from multiple proposals,

we develop a coordinating scheme consisting of point-wise

competition and pairwise collaboration. Point-wise compe-

tition picks the best absolute disparities exclusively, which

can effectively suppress the outliers. Pairwise collaboration

casts a vote on relative disparities, which can distinguish

the artificial boundaries. The coordinating scheme is real-

ized by a MRF model with non-local connections. During

inference, we adapt the SGM algorithm by executing the

1D dynamic programming in various step sizes, so the long

range connections can be better preserved without losing

much computation efficiency.

The contributions of this paper are mainly three-fold:

• We use 3D surfaces to generate multiple disparity pro-

posals, where the absolute disparity proposals are reli-

able point-wise estimations and relative disparity pro-

posals reflect the 3D structures.

• We develop a coordinating scheme to mediate multiple
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disparity proposals. The scheme includes point-wise

competition and pairwise collaboration. Both of them

are embedded in a unified MRF model.

• We propose to find an approximate optima of the M-

RF model with non-local connections by performing

1D dynamic programming in different directions with

various spatial step sizes.

2. Related Work

Existing stereo methods are generally classified into lo-

cal methods and global methods. Local methods [15, 36,

28, 31] aggregate matching cost on a support region. Glob-

al methods [33, 5, 32, 26] usually optimize a probability

model that typically includes an observation term and a pri-

or term, which our method belongs to. For a comprehensive

taxonomy about stereo methods, we refer readers to the sur-

vey [23]. Here we only discuss the most related work.

Disparity priors of neighboring points play an impor-

tant role in global methods. First-order smoothness priors

[18, 5] force the adjacent two pixels have the same disparity

value. Classical methods such as SGM [13] and graph cut

based method [5] have adopted these priors, which prefer

to recover the disparities of fronto-parallel planes. Second

order smoothness priors penalize large second derivatives

of disparity and can better model general plane structures

[2, 30]. Woodford et al. [33] decompose the triple cliques

which represent the second-order terms into equivalent pai-

rwise representations. Olsson et al. [19] use pairwise in-

teractions with tangent planes to represent second-order s-

moothness. Recently, some methods attempt to learn the

priors from data, e.g., Wei et al. [32] retrieve semantic-

similar patches in training set to regularize the estimate.

Güney and Geiger [11] take object-category specific dis-

parity proposals as priors for a certain object class. Our

work exploits multiple regular 3D surfaces to obtain struc-

ture priors, which can not only act on adjacent pixels, but al-

so propose relative disparity between the points at a longer

distance.

Stereo estimation can also benefit from color image seg-

mentation. Segmentation provides clues about depth dis-

continuities and potentially groups the points belonging to

a same regular surface. Based on the segmentation methods

[29, 3, 14, 16, 27, 4, 38, 34, 35] build a 3D surface mod-

el to estimate the disparity. In these methods, segmenta-

tion cues can be employed either as hard or soft constraints.

Hard constraints indicate pixels within a superpixel strictly

lie on a same 3D surface. Tao et al. [29] model each color

segment as a single disparity plane, which fails if segments

straddle depth boundaries. Soft constraints denote the so-

lutions should be consistent with a given color segment but

also allow for deviation. Sun et al. [27] bias the disparity

map towards the fitted disparity over superpixels by adjust-

ing the data term. Bleyer et al. [3] encourage the segmenta-

tion assumption to be fulfilled in subsegments. Our method

extends the idea of the soft constraints. We make use of

the segmentation to derive multiple disparity proposals, and

prefer our final output to be consistent with both the abso-

lute proposals and the relative proposals.

Multi-segmentation supplies a rich set of representation

of the surface structures. In order to seek most reliable

structures, Bleyer et al. [3] enforce the consistency be-

tween the estimations of the segments and the subsegments.

Chakrabarti et al. propose a consensus framework [6] that

can simultaneously infer inlier regions and enforce smooth-

ness over neighboring inlier regions. We develop a coor-

dinating scheme to mediate disparity proposals based on

multi-segmentation. The scheme includes point-wise com-

petition and pairwise collaboration. Point-wise competition

picks the best absolute disparities exclusively, while pair-

wise collaboration casts a vote on relative disparities. We

embed both mechanisms into a MRF model to exert their

complementary abilities.

3. Our Approach

Given a rectified left image IL and a right image IR, we

aim at estimating the disparity map D of the reference im-

age (e.g., the left image IL). The flow chart of our method

is shown in Fig. 1. First we calculate an initial disparity by

some off-the-shelf method. Then we produce multiple seg-

mentations of the reference image, and fit the initial dispar-

ity within each fragment by a 3D disparity surface. These

3D surfaces are used to generate proposals for the absolute

disparities of individual pixels and the relative disparity be-

tween pairs of pixels. The proposals are used as priors and

coordinated by point-wise competition and pairwise collab-

oration within a MRF model. The output disparity map is

the one that fits the global model best.

3.1. Surface Fragments from MultiSegmentation

We generate 3D surface fragments based on multiple

segmentations. Reference image IL are segmented with dif-

ferent methods and parameters, producing M segmentation

maps. Putting the 2D segments together with an initial dis-

parity map D0, we will obtain a set of 3D surface fragments

S . Each surface fragment s ∈ S is further fitted into a reg-

ular shape. For simplicity we use the 3D plane, which can

be parameterized by Θs = [as, bs, cs]
T . More complex sur-

faces, such as quadratic surfaces, are also applicable here.

To obtain 3D surface fragments that are adequate for rep-

resenting the scene structure, we first adopt left-right con-

sistency check (LRC) to select reliable initial disparities,

then apply RANSAC[9] with least squares to derive 3D

planes. Unreliable initial disparities caused by occlusion

or ambiguous matches can be filtered out by LRC.
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Figure 1: Flow Chart of Our Approach. Given the initial disparity together with 2D segments, we can obtain a set of 3D surface fragments, as visualized

using the toolkit cvkit-1.6.6[12]. Surface fragments generate absolute disparities with risks(illustrated by yellow error bars)and relative proposals. Com-

petition scheme selects the disparity with highest matching consistency as pointwise estimation. Collaboration scheme sums the penalty costs of relative

disparity proposals to enforce structure consistency.The relative proposal 1 is rejected since p and q locate in different segments. Finally a MRF model

encodes the matching and structure consistency, in which long range interactions are also included. The output disparity is a global approximate solution.

3.2. Disparity Proposals

The fitted planes can be used to predict the absolute dis-

parities of individual pixels. The predicted disparities are

”flattened” version of the initial disparities, where the out-

liers and the high-frequency noises will be removed. The

fitted planes can also be used to calculate the relative dis-

parities between pixel pairs, which capture the geometric

structure of the scene. The details of calculating the dispar-

ities are given below.

Absolute Disparity. For a pixel p = [px, py]
⊤, the absolute

disparity predicted by the plane of surface fragment s is:

As(p) = aspx + bspy + cs. (1)

The surface fragments, either from the same or differen-

t segmentation map, may have quite different orientations

or offsets, so we will obtain a diverse set of disparity pro-

posals. We find that there are always some good proposals

inside this set. Through point-wise competition, we can find

a good disparity as described in Section 3.3.

Relative Disparity. For a pixel pair p and q, their relative

disparity on the plane of surface fragment s is given by:

Rs(p,q) = (aspx + bspy + cs)−(asqx + bsqy + cs)

= as(px − qx) + bs(py − qy).
(2)

Here the offset of the plane is canceled out, so the relative

disparity will focus on the structure of the surface. Note

that, the pixel pairs here are not restricted to adjacent pixels.

The long range relations are essential for capturing the large

structures of the scene.

3.3. Coordinating Model

Different surface fragments may generate quite different

disparity proposals. We coordinate them through point-wise

competition and pairwise collaboration.

Point-wise Competition. The absolute disparities predict-

ed by different surface fragments may contain a lot of

outliers, since many surface fragments, especially some

large-scale fragments, cannot be fitted precisely into planes.

Therefore we keep only the optimal proposal in a winner-

take-all fashion, as follows:

D̄p = As∗(p)

s∗ = arg min
s∈Sp

Ws · C(p, As(p)),
(3)

where Sp = {s|p ∈ s} is the set of surface fragments con-

taining pixel p. The optimal proposal is supposed to be the

one with the minimum matching cost C between the left and

right images, weighted by the risk Ws of surface fitting.

The risk of surface fitting is defined as Ws = e−γs ,

which is negatively correlated to the confidence of surface

fitting γs. Since only reliable initial disparities are used to

fit the planes, we leverage the fraction of robust matches,

γs = |ŝ|/|s|, to measure the confidence of fitting. Here |ŝ|
is the number of the valid matches within the surface frag-

ment s, and |s| is the total number of pixels in s. Weighted

by Ws, the influence of occluded pixels can be eliminated

in some degree.

The matching cost is a combination of the sum of abso-

lute gradients difference and the Hamming distance of two

Census transformed pixels [37], as follows:

C(p, d) =
∑

q∈N(p)

{| ∇IL([px, py]
⊤)−∇IR([qx − d, qy]

⊤) |

+ λH(TL([px, py]
⊤), TR(ρ([qx − d, qy]

⊤))},

(4)

where ∇I(·) is the gradient image, T (·) is the Census trans-

form. H(·) denotes the Hamming distance between two bit
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strings and λ is a constant parameter. The neighborhood N
is specified to be 5× 5 squares in practice.

Pairwise Collaboration. From Eq. 2 we can obtain a set

of proposals for the relative disparities, each from a regu-

larized surface fragment. These proposals can impose con-

straints on the structure of the output disparity map. Theo-

retically, a surface fragment can generate a proposal for the

relative disparity between any two pixels. We assume that

the majority of multiple proposals is a good estimate for the

disparity, while the error of the proposal is uncontrollable if

the pixels fall outside the surface fragment. Therefore we

remove these unreliable proposals, and collaborate the rest

of them into the following loss function:

Ep,q(Dp, Dq) =
∑

s∈Sp

⋂
Sq

φ(|Dp−Dq−Rs(p,q)|), (5)

where φ maps the fitting errors εp,q = Dp−Dq−Rs(p,q),
measured in pixels, into three discrete penalties:

φ(|εp,q|) =







0 if εp,q = 0
β1 if εp,q = ±1
β2 otherwise

. (6)

We ensure that β2 ≥ β1. Through minimizing the loss in

Eq.5, the structure of the output disparity map will be con-

sistent to the prior surface structure encoded by Rs(p,q).
As multiple proposals jointly determine the final value,

our pairwise term enjoys two advantages: (1) If two pix-

els p and q always locate in two different fragments, i.e.,

Sp

⋂

Sq = ∅, a scene boundary may possibly exist between

this two pixels. Cutting off all the interactions between p

and q keeps the boundary from being over-smoothed. (2) If

p and q are separated to different fragments in some of the

segmentations, i.e., 0 < |Sp

⋂

Sq| < M , parts of the arti-

ficial edges raised by over-segmentation can be eliminated

via voting over multiple proposals.

3.4. Objective Function

To integrate pointwise and pairwise proposals into a

global model, we formulate the inference of the optimal dis-

parity map by a MRF model, as follows:

E(D) =
∑

p

Ep(Dp) +
∑

p

∑

q∈N (p)

Ep,q(Dp, Dq). (7)

The unary term is defined as:

Ep(Dp) = |Dp − D̄p|, (8)

which measures how well the disparity map D agrees with

the estimated disparity map D̄ (Eq. 3).

The binary terms are inherited from the loss function in

Eq. 5. Note that only the proposals generated by the sur-

face fragments that contain both two pixels are taken into

p

t1

t2

Figure 2: Aggregation from different directions, each direction is de-

composed into Markov chains of various spatial step sizes.

account. This arrangement derives a new type of neighbor-

hood that two pixels are connected as neighbors if and only

if they occur in at least one surface fragment, i.e., N (p) =
{q|Sp

⋂

Sq 6= ∅}. The extent of this neighborhood is con-

sistent with the shape of fragment, which is more natural

than the traditional 4-connected or 8-connected neighbor-

hood. Moreover, the long range relations supply critical

constraints to deal with large textureless regions and to pre-

dict the disparities in occluded regions.

4. Optimization

The optimal disparity map can be obtained by minimiz-

ing the energy in Eq. 7. This is a NP-hard problem. Widely

used semi-global matching (SGM) [13] approximates the

optima by aggregating matching costs in 1D from all di-

rections. We follow the SGM pipeline to divide the 2D

problem into a lot of 1D problems defined on different di-

rections. However, non-local connections are encoded in

our MRF model, that is, the 1D problems have pairwise

constraints over point pairs at different distances. We fur-

ther approximate the high-order 1D graph by many Markov

chains as shown in Fig. 2. Each Markov chain t is of se-

lected, fixed step size, and 1D dynamic programming (DP)

can find the optimal solution and minimum costs for it. The

cost Et(p, Dp) along chain t of a pixel p at disparity Dp

is calculated recursively by DP as

Et(p, Dp) = Ep(Dp)+min
d

{Ep−t,p(d,Dp)+Et(p−t, d)}

(9)

where p−t is the pixel before p specified by Markov chain

t, and d is the scalar disparities of p− t.

The output disparity for a pixel p is the one that mini-

mizes the total aggregate cost EA(p, Dp), which is calcu-

lated by summing over the costs Et(p, Dp) along all the

chains of different directions and step sizes:

EA(p, Dp) =
∑

t∈T

Et(p, Dp), (10)

where T is a set of Markov chains along all directions with

various step sizes. However, considering all chains is com-

putationally infeasible, we therefore pre-define some spe-

cific Markov chains to reduce the connectivity of the orig-

inal graph. We had tested several configurations of chains,
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and finally chose 4 directions with 2 step sizes as a tradeoff

between effectiveness and efficiency.

The modified SGM inherits the advantages of computa-

tional efficiency, accuracy and simplicity from the original

SGM. Specifically, when finding the minima in Eq. 9, d can

be restricted to a narrow searching scope. For given Dp and

a relative proposal Rs(p− t,p), only 4 states of d need to

be taken into consideration according to Eq. 6. Thus the re-

cursive procedure of Eq. 9 requires O(Dmax) steps at each

pixel, where Dmax is the total number of disparity level-

s. The total complexity is O(WHDmax) with W as image

width and H as image height.

5. Experiments

Our approach that coordinates Multiple Disparity

Proposals is denoted by MDP. In this section, we introduce

the experimental setup, conduct a set of breakdown analysis

to investigate different aspects of our method, and compare

our method with the state-of-the-art approaches.

5.1. Experimental Setup

Implementation details. To generate the 3D surfaces, we

first apply Meanshift [8] and SLIC [1] for color image seg-

mentation. Each method generates two segmentation maps

with different scales: one has about 200 super-pixels and

the other has about 500 super-pixels. We therefore obtain

M = 4 segmentation maps. The initial disparity D0 is ob-

tained by the results of SGM, which is an implementation

from Yamaguchi et al. [35] and we accelerate the code us-

ing AVX512 instruction set. We find that such initialization

is slightly better than the direct matching cost without semi-

global smoothing.

Parameters are set empirically: λ in Eq. 4 is set to 1/16.

Constant penalties β1 and β2 in Eq. 6 are set to 2.5 and 30
respectively. When using RANSAC, the outlier threshold is

set to 1 pixel. In optimization, the dynamic programming is

performed along 4 directions, each with 2 spatial step sizes:

10 pixels and 1 pixels to capture long range relationships

and short range relationships. The estimated scalar disparity

is accurate to 1 pixel.

Dataset and evaluation protocol. We analyze our method

on 2014 Middlebury stereo dataset [23]. This dataset con-

tains 30 image pairs, where 15 image pairs with available

disparity ground-truth are used for training while other 15

image pairs are used for online evaluation. Compared with

older version Middlebury dataset, it provides more images

with higher quality. Most image pairs have large amount of

textureless regions and are imperfect rectified, making the

dataset very challenging.

Following the standard evaluation protocol, we use error

rate (%) for error threshold of 2.0 pixels at non-occluded

regions as the evaluation metric. We present a selection of

important results, readers can refer to [24] for more results.

5.2. Empirical Analysis

We systematically analyze each component over the

training set, which provides the ground truth disparities that

enable us to evaluate our approach step by step.

The effect of coordinating scheme. The coordinating
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（a)SLIC200 （b)SLIC500 （c)Multi-segmentation

Figure 5: Qualitative evaluation on multiple segmentation proposals.

scheme consists of two parts: point-wise competition and

pairwise collaboration. To investigate the effect of each

part, we demonstrate four stepwise results: the initialization

disparity D0, the result of only performing point-wise com-

petition (D0+Comp.), the result of only performing pair-

wise competition (D0+Colla.) and the result of perform-

ing both point-wise competition and pairwise collaboration

(MDP).

As illustrated in Fig. 4, the initial disparity D0 has great

errors on the extracted textureless region. We therefore u-

tilize multiple proposals. By only performing point-wise

competition scheme, the disparities in D0+Comp. can s-

elect the reliable disparity estimations, but there remains a

lot of wrongly estimated points because all the M proposal-

s can be wrong. By only performing pairwise competition,

the disparities in D0+Colla. reflect the structure of scene,

such as the wall at the right of guitar, but the estimated

absolute disparities may not be accurate without regarding

the point-wise matching consistency. MDP combines the

point-wise competition and pairwise collaboration, there-

fore yields relative satisfactory results.

The average error rates over 15 image pairs in the train-

ing set have been reported in Fig. 3 a. It can be seen that

performing point-wise competition and pairwise collabora-

tion independently can reduce the error rate by 1.9% and

1.7% respectively, and performing them simultaneously can

reduce the error rate by 5%. The results suggest the com-

plementary ability of the competition and collaboration.

The effect of multiple segmentation proposals. To verify

the necessity of coordinating multiple segmentation propos-

als, we compared MDP with 4 original disparity proposals

that are induced by 4 segmentation methods. The disparity

proposals corresponding to Meanshift with 200 superpixels,

Meanshifit with 500 superpixels, SLIC with 200 superpix-

els and SLIC with 500 superpixels are denoted by MS200,

MS500, SLIC200, SLIC500, respectively. As shown in Fig.

3 c, MDP has the lowest average error rates over other 4 sin-
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gle disparity proposals. The results indicate that our coordi-

nating strategy can effectively exploit reliable information

from different proposals.

A concrete example is displayed in Fig. 5. According to

the error maps in the last row, employing larger scale seg-

mentation (SLIC200) can help recover the textureless re-

gions, i.e., the table surface, but fails at the objects on the

table with fine structures. Employing smaller scale segmen-

tation (SLIC500) fails at large textureless regions but excels

at recovering smaller structures. Our method integrates the

advantages of multiple segmentation proposals, as shown in

the last error map, both textureless regions and tiny struc-

tures can be recovered.

Influence of Initial Disparity. To investigate the influence

of different disparities, we apply different types of initial-

izations for our method. In addition to SGM, we also utilize

the results of MeshStereo [39] and LPS [26]. The average

error rates of different initial disparities and the disparities

after MDP are demonstrated in Fig. 3 b. We find that our

method is not just effective on a specified initial method but

can generally reduce the error of different disparity method-

s. The results indicate that our method is complementary to

previous stereo computation methods, and it can potentially

incorporate more types of initialization to further improve

our method.

Surface Structure Prior and Long Range Constraints.

The pairwise term in Eq. 7 is distinguished from those of

previous methods in two aspects. (1) We adopt a struc-

ture preserving prior instead of first-order smoothness prior.

(2) We can impose the long range constraints while most

methods can only consider the constraints between adjacent

points. To show the improvement due to these differences,

we construct two variants Smooth-P and LocalS-P. Smooth-
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Name Res Avg Austr AustrP Bicyc2 Class ClassE Compu Crusa CrusaP Djemb DjembL Hoops Livgrm Nkuba Plants Stairs

MC-CNN-acrt H 8.291 5.591 4.554 5.961 2.831 11.42 8.442 8.321 8.892 2.711 16.31 14.11 13.22 13.01 6.41 11.11

MDP(Ours) H 12.62 14.45 4.997 10.69 10.74 27.23 8.111 12.55 8.071 4.272 30.46 20.52 12.61 17.82 13.43 17.32
MeshStereo[39] H 13.43 5.902 4.885 10.810 12.97 10.61 13.64 12.24 9.013 5.395 27.43 23.54 17.73 21.07 15.47 20.94
LCU Q 17.04 24.77 7.5911 11.612 11.95 27.94 14.05 19.36 15.88 8.1015 36.110 29.18 21.36 18.43 14.14 23.86
TMAP [21] H 17.15 20.26 4.946 8.135 12.86 30.05 14.17 27.911 20.412 5.093 31.58 23.13 20.95 19.04 18.811 18.03
IDR [17] H 18.46 37.514 4.081 7.493 23.314 40.68 15.714 24.57 11.37 5.467 33.19 26.05 21.57 21.78 15.36 21.25
SGM[13] H 18.77 40.315 4.543 8.034 22.913 40.57 14.610 24.78 10.15 5.406 29.66 28.57 23.98 20.05 14.25 30.910
LPS[26] H 19.48 6.143 5.348 9.246 7.532 96.025 15.012 9.612 9.403 5.184 92.425 27.46 24.311 23.010 10.02 25.68
LPS[26] F 20.39 6.724 6.069 9.727 9.873 94.324 14.16 11.23 11.26 5.889 89.324 3612 20.54 23.812 16.08 25.47

Table 1: Quantitative Evaluation on the Middleburry Stereo Benchmark at 2 Error Threshold. Our method is ranked at 2nd out of 25 competing

methods at time of submission. Evaluation is only performed on non-occlusion regions. In each cell the number denotes bad pixel rate, Res column denotes

the image resolution the method works on, and subscript denotes ranking. We highlight in bold when our approach outperforms the state-of-the-art.

P changes the pairwise term of MDP to traditional first or-

der smoothness prior, and LocalS-P only imposes the short

range structure prior for the pairwise term.

We visualize the 3D colored point clouds generated from

disparities in Fig. 6 b. It can be seen that there are a lot

of holes on the 3D reconstruction model when using the

first-order smoothness prior. That is, models with first-order

smoothness prior always fail to recovery slanted surfaces.

LocalS-P reduce the holes, which indicates even short range

structure prior can help to recover the slanted surface with

weak texture. The fact that MDP further reduces the holes

reveals the effectiveness of long range constraints. More

quantitative comparison are demonstrated in Fig. 6 a. For

most of the sequences, imposing the long range structure

prior can achieve best results. We adopt the plane model for

3D proposals, which makes our method excel at recovering

slanted surfaces even with weak texture, but it may fail to

predict the curved surface. In the future, we will adopt the

quadratic model to propose the disparity.

Runtime We require 3.1 sec/megapixels (s/mp) for initial-

ization, 14.3s/mp for segmentation and plane-fitting in 4 s-

cales, 1.9s/mp for graph construction and 5.2s/mp for opti-

mization, thus 24.5s/mp in total on a 3.4GHz CPU.

5.3. Comparison to StateoftheArt

Results on 2014 Middlebury. The quantitative compari-

son to the current state-of-the-art on the Middlebury stereo

benchmark are summarized in Table 1 and the full version

can be checked on the Middlebury evaluation website1. Our

method is currently (October 2015) ranked at the second

place amongst 25 competitors for error threshold 2.0. There

are 3 out of 15 images where we are ranked at the first as

highlighted in Table 1. All of the three images have large

textureless slant planes. It is evident that our method out-

performs others in such regions.

Fig. 7 shows some qualitative results of our method. As

evidenced by the error map, it is difficult for other meth-

ods,such as SGM which imposes traditional first-order s-

moothness constraints to recover slanted surfaces. How-

ever, our method excels at estimating slanted surfaces even

with weak texture (marked by red rectangles) due to the sur-

1http://vision.middlebury.edu/stereo/eval3/

face structure constraints and long range prior.

Results on KITTI 2015. To verify the performance across

dataset, we additionally evaluate overall results on KITTI

2015 dataset. This dataset contains 200 training and 200

test image pairs of outdoor scenes. Compared to 2014 Mid-

dlebury dataset, it is relatively more challenging for us since

accurate segmentation is harder.

The error rates of the non-occluded and total areas on the

training set are 4.79% and 5.13%, compared to 7.33% and

8.94% of the initial disparity D0, our method can consis-

tently improve the baseline even on another type of dataset.

We achieve an error rate over total areas of 5.36% on the

test set and rank 8th on the KITTI 2015 leaderboard2.

6. Conclusion

We have presented a novel stereo method which coordi-

nates multiple disparity proposals. The disparity proposals

are generated from 3D surface fragments based upon multi-

segmentation, and then coordinated by point-wise compe-

tition and pairwise collaboration into a MRF model with

long-range connections. In the experiments, we have shown

that our method can integrate advantages of multiple seg-

mentation proposals. Then we verified the complementary

ability of the two components of our coordinating scheme.

Further more, with the long range constraints, our method

has the ability to deal with the low texture regions. Rank-

ings on 2014 Middlebury and KITTI 2015 stereo datasets

indicate that our method has achieved comparable results to

state-of-the-art.
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