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Abstract

We revisit the idea of brain damage, i.e. the pruning of

the coefficients of a neural network, and suggest how brain

damage can be modified and used to speedup convolutional

layers in ConvNets. The approach uses the fact that many

efficient implementations reduce generalized convolutions

to matrix multiplications. The suggested brain damage pro-

cess prunes the convolutional kernel tensor in a group-wise

fashion. After such pruning, convolutions can be reduced

to multiplications of thinned dense matrices, which leads to

speedup. We investigate different ways to add group-wise

prunning to the learning process, and show that several-

fold speedups of convolutional layers can be attained using

group-sparsity regularizers. Our approach can adjust the

shapes of the receptive fields in the convolutional layers,

and even prune excessive feature maps from ConvNets, all

in data-driven way.

1. Introduction

In the original Optimal Brain Damage work [32] of

25 years ago, LeCun et al. observed that a carefully de-

signed “brain-damage” process can sparsify the coefficients

of a multi-layer neural network very significantly while

incurring minimal or no loss of the prediction accuracy.

Such process resembles the biological learning processes

in mammals, in whose brains the number of synapses peak

during early childhood and is then reduced substantially in

the process of synaptic pruning [8]. The optimal brain dam-

age algorithm and its variants, however, impose sparsity in

an unstructured way. As a result, while a large number

of parameters can be pruned, the attained level of sparsity

in the network is usually insufficient to achieve substantial

computational speedup on modern architectures.

These days, due to the overwhelming success of very big

convolutional neural networks (ConvNets) [30] on a variety

of machine learning problems, the task of speeding up Con-

vNets has become a topic of active research and engineer-

ing. Generalized convolution, i.e. the operation of convolv-

ing a 4D kernel tensor with the stack of input maps in order

to produce the stack of output maps, is at the core of Con-

vNets and also represents their speed bottleneck. Here, we

present a simple approach that modifies the standard gener-

alized convolution process by imposing structured “brain-

damage” on the kernel tensor. We demonstrate that consid-

erable speed-up of ConvNets can be obtained for a certain

structure.

This structure is motivated by the observation that the

majority of current implementations of generalized convo-

lutions (including the most efficient one at the time of sub-

mission) [9, 16, 26, 12, 46, 37] compute generalized con-

volutions by reducing them to matrix multiplications (this

reduction is also referred to as lowering, unrolling, or the

im2col operation). While unstructured brain damage in a

convolutional layer, i.e. shrinking some of the coefficients

of the convolutional kernel tensor to zero, will make one

of the factor matrices (the filter matrix) sparse, it will not

make the overall multiplication run faster. Our idea there-

fore is to group together the entries of the convolutional ten-

sor in a certain fashion and to shrink such groups to zero in

a coordinated way. By doing this, we can eliminate rows

and columns from both factor matrices that are multiplied

when convolution is reduced to matrix multiplication. Re-

peated elimination of rows and columns makes both factor

matrices thinner (but still dense) and results in faster matrix

multiplication.

We demonstrate that conventional group sparsity regu-

larizer [48] embedded into stochastic gradient descent min-

imization is able to accomplish group-wise brain damage

efficiently. The use of group sparsity thus allows us to op-

timize receptive fields in the convolutional network. Our

approach therefore makes the case for the natural idea of

using structured sparsity as a simple way to optimize con-

nectivity in deep architectures. In the experiments, our

12554



speed-up factors exceed those obtained by recent tensor-

factorization based methods. For example, we show that

group-wise brain damage can accelerate the bottleneck lay-

ers of AlexNet (’conv2’ and ’conv3’) by a factor of 8.5x

simultaneously, while incurring only modest ( 1%) loss of

the prediction accuracy.

2. Related work

As ConvNets are growing in size and are spreading to-

wards real-time and large-scale computer vision systems,

a lot of attention is attracted to the problem of speeding

up convolutional layers (e.g. through the use of Fourier

transforms [36, 45]). Several recent works investigate var-

ious kinds of tensor factorization in order to break gen-

eralized convolution into a sequence of smaller convolu-

tions with fewer parameters [21, 15, 29]. Using inexact

low-rank factorizations within such approaches allows to

obtain considerable speedup when low enough decompo-

sition rank is used. Our approach is related to tensor-

factorization approaches as we also seek to replace full con-

volution tensor with a tensor that has fewer parameters. Our

approach however does not perform any sort of decomposi-

tion/factorization for the kernel tensor.

Another more distantly related approach is represented

by a group of methods [2, 20, 41] that compress the initial

large ConvNet into a smaller network with different archi-

tecture while trying to match the outputs of the two net-

works. Our approach is also related to methods that use

structured sparsity [48, 42, 24] to discover optimal architec-

tures of certain machine learners, e.g. to discover the opti-

mal structure of a graphical model [22] or the optimal recep-

tive fields in the two-layered image classifier [25]. On the

other hand, since our approach effectively learns receptive

fields within a ConvNet, it can be related to other receptive

field learning approaches, e.g. [13, 35].

The combination of sparsity and deep learning has been

investigated within several unsupervised approaches such

as sparse autoencoders [5, 7] and sparse deep belief net-

works [33]. We also note two reports that use some form of

sparsification of deep feedforward networks and appeared

in the recent months as we were developing our approach.

Similarly to [32], the work [14] uses sparsification to reduce

the number of parameters in the memory-bound scenario.

Their goal is thus to save memory rather than to attain accel-

eration. In the report of [17], the output of the convolution

is computed at a sparsified set of locations with the gaps be-

ing filled by interpolation. This approach does not sparsify

the convolutional kernel and is therefore different from the

group-wise brain damage approach we suggest here.

Our work focuses on the task of speeding up convolu-

tional layers (as they represent the speed bottleneck) and

is therefore complementary to approaches that focus on the

reduction of size/memory footprint of fully-connected lay-

ers [11, 18, 39, 43, 47].

Finally, we note that the use of sparse matrices in order to

speed-up convolutional neural networks was vrey recently

explored in [34]. Learning with regularizations (including

group lasso) was used there to obtain sparse weights, which

were applied to data via efficiently implemented sparse ma-

trix multiplication. In contrast to their work, we aim to

keep matrix multiplication dense (by imposig structure dur-

ing sparsification), as such operation is much more efficient

on modern architectures.

3. Group-Sparse Convolutions

Below, we discuss the reduction from generalized con-

volution to matrix multiplication [9] and introduce the no-

tation along the way. We then explain the group-sparse

convolution idea. Generalized convolution within a convo-

lutional layer transforms an input stack of S maps of size

W ′×H ′, which can be treated as a three-dimensional ten-

sor (array) Uwhs, into an output stack of T maps of size

W ′′×H ′′ which form a three-dimensional tensor Vwht. The

exact relation between W ′, H ′ and W ′′, H ′′ depends on the

padding and stride settings within the layer, and our ap-

proach can handle any padding/striding settings seamlessly.

The transformation is defined by the following formula:

V (x, y, t) =
S
∑

s=1

∑

i=1..d
j=1..d

K(i, j, s, t) · (1)

U(x+i−d+1
2 , y+j−d+1

2 , s)

Here, K is a four-dimensional kernel tensor of size

d×d×S×T with the first two dimensions corresponding to

the spatial dimensions, the third dimension corresponding

to input maps, the fourth dimension corresponding to out-

put maps. The spatial width and height of the kernel are

denoted as d (for simplicity, we assume square shaped ker-

nels and odd d).

The implementation of (1) constitutes the speed bottle-

neck for ConvNets. In [10], it was suggested to reduce

the computation of all entries of V to the multiplication of

two large and dense matrices. The reduction allows to use

highly optimized implementations of dense matrix multipli-

cations (e.g. variants of BLAS [6] libraries) that have been

developed over many years for all possible computing ar-

chitectures. The reduction proceeds as follows:

• The kernel tensor K is reshaped into the filter matrix

F of size T × d2S, where the t-th row corresponds

to a sequence of S 2D filters K(:, :, s, t) reshaped in a

row-wise fashion into row vectors.

• The input map stack U is reshaped into the patch ma-

trix P of size d2S × W ′′H ′′, where the l-th column
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Figure 1: Standard Generalized Convolution (top) vs. Generalized Convolution after Group-wise Brain Damage (bottom).

In both cases, we show the diagram for two input maps (S = 2, blue-green color coding). We highlight three output maps

t1, t2, t3 color-coded red-orange-yellow, and we also highlight two spatial locations l1 and l2. In both cases, the output map

stack is obtained by reshaping the product of the filter matrix and the patch matrix. In the standard case, the filters and the

patches sampled during the formation of the patch matrix are dense. After group-wise brain damage, both the filters and the

patch sampling patterns are group-sparse (one sparsity pattern per input map), which results in much thinner filter and patch

matrices and thus leads to much faster matrix multiplication/convolution.

corresponds to a certain output location l = (x, y) and

is stacked from the S patches extracted from S input

maps, all centered at this location and reshaped in a

row-wise fashion into column vectors.

• The filter matrix F is multiplied by the patch matrix P
resulting in a matrix Ṽ of size T × W ′′H ′′ that con-

tains all the elements of V (each column corresponds

to a certain location and contains the values of this lo-

cation in the T output maps). The multiplication im-

plements (1) exactly, as each row-by-column product

within the multiplication corresponds to one instance

of the computation (1) for certain (x, y, t). The out-

put tensor (map stack) V can be obtained from Ṽ by

reshaping.

The construction discussed above has proven to be

highly successful and is used in the majority of modern

ConvNets “backends”, e.g. [10, 16, 26, 12, 46, 37]. Our key

idea is to train ConvNets with sparse convolutional kernels

that are consistent with this construction.

Such consistency can be achieved if the sparsity patterns

are aligned in a certain way. Formally, group-wise brain

damage introduces a sparsity pattern Qs for every input

map s ∈ 1 . . . S. The sparsity pattern is defined as a sub-

set of the full spatial d-by-d grid, i.e. Qs ⊂ {1 . . . d} ⊗
{1 . . . d}. The convolutional operation then becomes a

slight modification of (1):

V (x, y, t) =
S
∑

s=1

∑

(i,j)∈Qs

K(i, j, s, t) · (2)

U(x+i−d+1
2 , y+j−d+1

2 , s)

The reduction of (2) is an almost straightforward repli-

cation of the procedure [10]. The only modifications are

(Figure 1):

• When the filter matrix is assembled, each 2D filter K(:
, :, s, t) is reshaped into a row-vector of length |Qs| by

including only non-zero elements. The filter matrix

thus becomes of size T ×
∑S

s=1 |Qs|.

• When the patch matrix is assembled, each 2D patch at
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Figure 2: The blue curve shows relative speed-up versus

density level τ , measured for forward propagation in the

second convolutional layer of AlexNet on CPU and GPU.

Importantly, the observed speedup is almost linear in the

sparsity level (diagonal). Green curve shows the ‘im2col’

layer speedup on a GPU. While a certain constant overhead

can be seen, we believe that (part of) it can be eliminated

via more elaborated GPU implementation.

location l = (x, y) in map S is reshaped into a col-

umn vector of size |Qs| by sampling the input map

U(:, :, s) sparsely at locations (x+i−d+1
2 , y+j−d+1

2 ),
where (i, j) ∈ Qs. The patch matrix thus becomes of

size
∑S

s=1 |Qs| ×W ′′H ′′.

As a result of this modification, the multiplication of two

dense matrices of sizes T × d2S and d2S × W ′′H ′′ is re-

placed by the multiplication of two dense matrices of sizes

T ×
∑S

s=1 |Qs| and
∑S

s=1 |Qs| × W ′′H ′′, which results

in the d2S/
∑S

s=1 |Qs|-times reduction in the number of

scalar operations. In our experiments with the reference

implementation of [27] the wall-clock reduction in the con-

volution time between the original implementation and the

group-sparse convolution was almost matching the “theo-

retical” speed-up factor (Figure 2).

4. Fast ConvNets with Group-sparse convolu-

tions

We consider two different scenarios that obtain fast Con-

vNets with group-sparse convolutions. First, we consider

training such networks from scratch, and secondly we con-

sider obtaining such networks by modification of pretrained

architectures (i.e. performing “brain damage”).

4.1. Training from scratch

Predefined group-sparsity pattern. The simplest solu-

tion that we consider is to choose the sparsity patterns ΩS

in advance in a data-independent manner, and enforce these

patterns during the learning of the network. One particu-

lar case of this approach is simply reducing the spatial size

of filters to a minimum, e.g. three-by-three, or even smaller

rectangular pattern all the way to one-by-one (this is in line

with a recent work of [19] where they consider 2 × 2 fil-

ters for some of their architectures). Note, that with our

approach we are free to choose non-rectangular filters, and

in the experiments we found this very useful.

One of the downsides of this approach is that when de-

signing an architecture with multiple convolution layers,

there are no clear design principles that can guide the choice

of the filter shapes. In contrast, the methods discussed be-

low can start with larger filters and then shrink their sizes

towards optimally-shaped small filters.

Training with group-sparsity regularizer. Rather than

fixing the group-sparsity pattern in advance, it is possible

to find it as a part of learning process while the network

is trained. A classical way to achieve this is through the

use of group-sparsity regularization [48, 42, 24]. Thus, we

consider a regularizer based on l2,1-norm:

Ω2,1(K) = λ
∑

i,j,s

‖Γijs‖ = λ
∑

i,j,s

√

√

√

√

T
∑

t=1

K(i, j, s, t)2 ,

(3)

where the vector Γijs denotes the group of kernel tensor

entries K(i, j, s, :). The effect of the regularizer (3) is in

shrinking some of such groups to zero in a coordinated fash-

ion. When an entire group Γijs is set to zero, one can set the

pixel (i, j) in the sparsity pattern Ωs to zero, thus increasing

the group-sparsity.

For a convolutional layer that is being sparsified, the gra-

dient of (3), i.e.:

∂Ω2,1(K)

∂K(i, j, s, t)
= λ

K(i, j, s, t)
√

∑T

z=1 K(i, j, s, z)2
(4)

can simply be added to the gradient of the learning loss

while performing stochastic gradient updates in the course

of learning. The coefficient λ in (3) and (4) controls the

strength of the regularization w.r.t. the main learning loss.

Generally, using the regularizer (3) will result in a group-

sparsified kernel tensor with some of Γijs having only near-

zero entries. Because of the stochastic nature of SGD and

non-differentiability of l12 norm near zero, the entries in

these groups will not be exactly zero, and further postpro-

cessing is needed to nullify the near zero groups and to set

the sparsity patterns ΩS accordingly.

4.2. Sparsifying with Groupwise Brain Damage

While it is possible to train ConvNets with group-sparse

convolutions from scratch, the main focus of our paper is

developing algorithms that can speed-up existing pretrained

networks that often take excessive time for training. To-

wards this end, we have developed two approaches that

can accelerate pretrained networks by inflicting group-wise
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brain damage in a way that the drop in the prediction accu-

racy is kept small. In both cases, we assume that we have

access to the training dataset D, the model was trained on.

Group-wise sparsification with fine-tuning. Our first

implementation is also based on the group-sparse regular-

izer (3). We start with the input ConvNet and run the learn-

ing process on the dataset D with the added regularizer (3).

After a certain amount of iterations, a predefined number of

groups Γijs with the smallest l2-norm is set to zero. For a

desired density level τ ∈ [0, 1] and respective speedup 1/τ ,

we set d2S (1 − τ) groups to zero, making the respective

QS sparse.

We have found two complications with this approach.

Firstly, for a given density τ it was generally hard to set ap-

propriate regularization strength λ in advance without try-

ing several values. Secondly, for small τ (large speedup)

the appropriate regularization strength λ typically leads to

an excessive regularization, as many groups end up being

biased towards zero but not close to zero. Because of that,

the prediction accuracy for such λ experienced significant

drop in the process of learning as compared to the input

ConvNet.

Fortunately, one can recover from most of this drop by

the subsequent fine-tuning of the network, that follows af-

ter the brain-damage process. For the fine-tuning, we fix

the sparsity patterns QS and restart learning without group-

sparse regularization. We then train for an excessive num-

ber of epochs. As a result of such fine-tuning, the network

adapts to the imposed sparsity patterns, while the prediction

accuracy goes up and recovers most of the drop.

Gradual group-wise sparsification. To avoid the two

complications discussed above we developed an alternative

approach that essentially combines the brain-damage and

the fine-tuning processes, and furthermore avoids most of

the need for manual search for good meta-parameter values.

The approach also often leads to considerably better results.

In this approach, we consider the truncated l12 regular-

izer:

ΩT
2,1(K) = λ

∑

i,j,s

min(‖Γijs‖, θ) (5)

The gradient of (5) equals (4) when ‖Γijs‖ < θ and is

zero otherwise. Informally speaking, the value of θ con-

trols which groups are considered “promising” and are be-

ing shrinked towards zero, and which groups are considered

to be too far from zero and therefore stay unaffected by the

regularizer (5).

To perform brain-damage, we then create a validation

set on which we monitor the performance of the network.

We choose the maximum drop δ of the prediction accu-

racy on the validation set that we are willing to tolerate.

We then start with an input ConvNet and perform learning

with the regularizer (5) while varying θ. Specifically, after

each epoch we monitor the performance of the network on
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Figure 3: Accuracy vs. density level on MNIST dataset

(LeNet architecture) for various ConvNets with group-

sparse convolutions. We compare the results obtained by

training with l2,1 and l1 regularizations followed by spar-

sifications, as well as training with predefined sparsity pat-

terns ΩS (black dots). Overall, training with l2,1 regularizer

obtains the best result that can be further improved by fine-

tuning without regularization.

a hold-out set and increase θ (intensifying brain damage) if

the accuracy drop is less than δ and decrease θ, thus reliev-

ing certain groups from the effect of the regularizer, if the

drop is greater than δ.

To perform the actual sparsification, we also introduce

an additional threshold ǫ≪δ. In the process of learning,

when the norm of a certain group falls below the thresh-

old (i.e. |Γijs‖ < ǫ) the group is greedily fixed to zero

and eliminated from the tensor. The sparsity thus monotoni-

cally increases through the process, and we carry on training

until the sparsification process stalls, i.e. the system keeps

training with Γ and performance drop oscillating, while no

new groups have their lengths fall under ǫ for a number of

epochs. In our experiments, all increments and decrements

of θ was based on five-percent quantiles of the groups. I.e.

every time θ is adjusted, we set θ to bring 5% of groups Γijs

in or out of the ‖Γijs‖<θ “territory”.

Overall, we found the whole procedure to be rather in-

sensitive to the choices of λ and ǫ, and overall to be more

practical and lead to higher group-sparsity and speed-ups

than those attainable by the sparsification with fine-tuning

approach. Most importantly, we could use same λ and ǫ, as

well as same shared value of θ when sparsifiying multiple

layers simultaneously.

5. Experiments

Implementation details. Our implementation is based

on Caffe [27] and modifies their original convolution,

which is implemented as two subsequent transformations
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method density speed-up accuracy drop

Accelerating the second convolutional layer of AlexNet

Denton et al. [15]: Tensor decomposition + Fine-tuning 2.7x ∼ 1%
Lebedev et al. [29]: CP-decomposition + Fine-tuning 4.5x ∼ 1%

Jaderberg et al. [21]: Tensor decomposition + Fine-tuning 6.6x ∼ 1%
Training with fixed sparsity patterns 0.12 8.33 0.82%

Training with fixed sparsity patterns 0.2 5x 0.16%

Group-wise sparsification + Fine-tuning 0.1 10x 1.13%

Group-wise sparsification + Fine-tuning 0.2 5x 0.43%

Group-wise sparsification + Fine-tuning 0.3 3.33x 0.11%

Group-wise sparsification + Fine-tuning 0.4 2.5x -0.09%

Gradual group-wise sparsification 0.11 9.0x 0.28%

Gradual group-wise sparsification 0.05 20x 1.07%

Accelerating the second and the third convolutional layers of AlexNet

Training with fixed sparsity patterns 0.12 8.7x 1.54%

Training with fixed sparsity patterns 0.35 2.9x 0.36%

Training with fixed sparsity patterns 0.54 1.9x -0.53%

Group-wise sparsification + Fine-tuning 0.2 5x 1.50%

Group-wise sparsification + Fine-tuning 0.3 3.33x 1.17%

Group-wise sparsification + Fine-tuning 0.5 2x 0.57%

Gradual group-wise sparsification 0.12 8.5x 1.04%

Accelerating all five convolutional layers of AlexNet

Training with fixed sparsity patterns 0.34 3.0x 1.34%

Gradual group-wise sparsification 0.31 3.2x 1.43%

Table 1: Accelerating convolutional layers of the pretrained AlexNet architecture: results of the two variants of our

method for various sparsity levels alongside tensor-decomposition based methods (note: the results for [21] are reproduced

from [29]).

(im2col and matrix multiplication). To implement the

group-sparse convolution we focused on the forward propa-

gation step and CPU computation. Most of our methods can

be extended for backprop step and for GPUs, however mak-

ing such extensions efficient is non-trivial. For our purpose,

we only needed to modify the im2col function, so that it

can fill in the patch matrix while following certain sparsity

patterns.

Datasets. We perform the following experiments.

Firstly, we consider a small-scale setting, and compare

training ConvNets with group-wise brain damage from

scratch with baselines. We use MNIST dataset [31] for

these small-scale experiments. We then consider a large-

scale problem, namely ImageNet (ILSVRC) image classi-

fication and the task of accelerating of a pretrained archi-

tecture, namely the Caffe version of AlexNet [28]. We

also give preliminary results for one of the VGGNet net-

works [44].

5.1. MNIST experiments

We trained the LeNet architecture on the MNIST dataset

from random initialization while adding the group-sparse

regularization (section 4.1) while varying the regularization

strength λ and picking the optimal one for each sparsity

level. The sparsification affects both convolutional layers

of LeNet, and the same density level τ is enforced in both

layers. We also consider a number of baselines:

• A simple baseline that trains the network without reg-

ularization and then simply eliminates (sets to zero)

a certain number of groups Γijs with the smallest l2-

norms. The performance of this baseline was clearly

below all other methods and it is not reported.

• Picking sparsity patterns QS in advance. We consider

filters with only one central non-zero entry and filters

with two adjacent central non-zero elements. These

options correspond to the density of 4% and 8% re-

spectively. The former is essentially equivalent to a

non-convolutional network, where almost all process-

ing happens in the fully-connected layers.

• We also consider a simpler non-group-wise sparsifica-

tion by training with l1-norm regularizer (with vary-

ing λ) but then nullifying groups |Γijs based on their

norms.

2559



The results of the proposed method and the baselines are

shown in Figure 3. The rightmost plot shows the com-

parison of the l1-envelope, l2,1-envelope, and the perfor-

mance of the group-wise brain damage applied to the net-

work trained without sparsity-inducing regularizer. The use

of group-sparsity regularization boosts the performance of

group-wise brain damage very considerably. Twenty-fold

acceleration of convolutional layers can be obtained while

keeping the error low (2.1%, reduced to 1.71% after fine-

tuning). Using l1-regularizer followed by optimal brain

damage works worse than l2,1-regularizer. Pre-fixing spar-

sity patterns achieves good results, which are still worse

than training with group-sparsity regularizer. Note also that

all methods except the baseline with the pre-fixed patterns

can be improved via fine-tuning.

5.2. ILSVRC experiments

We first consider the AlexNet (Caffe reimplementation)

architecture that has five convolutional layers. We consider

the following subtasks: (i) accelerating the second convo-

lutional layer (which is the slowest of all layers), (ii) accel-

erating the second and the third layers (which are the two

slowest layers), (iii) accelerating all five convolutional lay-

ers (which together take the vast majority of the forward-

propagation time). When reporting the final density in sub-

tasks (ii) and (iii), we weigh the densities in different layers

by the forward propagation times.

We focused on accelerating the existing network from

Caffe zoo (Table 1). As an additional baseline, we evaluate

the variant of our method that trims the network according

to some predefined sparsity pattern, and then learns the net-

work while keeping the same fixed pattern. Namely we con-

sider the following symmetric centered patterns: vertical or

horizontal block 1×3, the 3×3 cross pattern, 3×3 square or

diamond shape inside 5×5 filter.

For the first two subtasks, we evaluated the variant of our

method with sparsity-inducing regularizer for various spar-

sity levels. For several desired density levels τ we searched

for optimal λ through a large range with ten-fold incre-

ments. For each τ we pick λ that results in the minimal

accuracy drop after sparsification before fine-tuning. After

picking the optimal λ, we perform fine-tuning (with fixed

sparsity patterns). Figure 4 demonstrate sparsity patterns

ΩS obtained for different sparsity levels.

Finally, for all three subtasks we evaluated the most ad-

vanced of our methods, namely gradual group-wise spar-

sification. We set the parameters λ and ǫ to 0.01 and 0.1
respectively. We split the test set of ILSVRC randomly into

two halves and use one of the halves solely to estimate the

drop of the classification accuracy in the dynamical adjust-

ment of θ. We then report the performance drop on the other

half of the test set. We set the acceptable performance drop

to be 1% of top-1 accuracy.

As shown in Table 1, the results of gradual sparsification

outperform the tensor factorization methods as well as spar-

sification with fine-tuning considerably, achieving higher

group-sparsification/speed-up for similar prediction accu-

racy drop. Notably, the proposed approach is more success-

ful in speeding-up AlexNet than a number of approaches

based on tensor decomposition. Figure 5 further visualizes

the process of the simultaneous gradual brain damage in-

flicted on all five layers of AlexNet.

“External” computer vision task. Convolutional layers

of large networks pretrained on large annotated training sets

such as ILSVRC can be used as universal spatially local-

ized features in a variety of ways [34, 1], which is particu-

larly valuable for problems with considerably smaller train-

ing sets. Recently, [3] showed that descriptors obtained by

sum-pooling of the features that emerge in the last convo-

lutional layer of a pretrained network can be used as state-

of-the-art holistic descriptors for image retrieval. We fol-

lowed their approach (that includes PCA whitening and nor-

malization as postprocessing) to assess the effect of group-

sparsification on an external task. Comparing AlexNet as a

base model, and the network with the simultaneous group-

sparisfication of all convolutional layers from Table 1 with

3.2x speedup, we have found a negligible drop in perfor-

mance for the INRIA holidays dataset [23] from 0.783 mAP

to 0.780 mAP, and a reasonably small drop for the Oxford

Building dataset [40] from 0.45 to 0.41.

VGGNet results. We have also applied the gradual

group-wise sparsification to the slowest convolutional layer

of VGGNet (the deeper 19 layer version of [44], starting

from its Caffe Zoo version. The sparsification obtained the

density τ = 0.13 with only 0.2% top-1 accuracy drop. In-

terestingly, unlike the experiments with AlexNet where we

rarely observed empty sparsity patterns ΩS (“dead feature

maps”), in this example such all-zero patterns were present

(29 out of 64), suggesting that this manually designed ar-

chitecture contains excessive number of feature maps in this

layer. This result also suggest that our approach is suitable

even for networks with very small initial filter sizes in con-

volutional layers (3 × 3 for VGGNet). When applied to

all convolutional layers of the VGG network, our method

obtains different densities for different layer. It can pose a

problem if some layers are reaching density close to zero

while others are mostly dense, which proved to be the case

with VGGNet. We’ve implemented rescaling described in

[38] to level group norms of different layers and reached

density τ = 0.45 with this approach, which corresponds to

more than 2× speedup with 0.7% accuracy drop

6. Discussion

We have presented an approach to speeding up ConvNets

that uses the group-wise brain damage process that sparsi-

fies convolution operations. The approach takes into ac-
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(a) sparsity 1− τ = 0.9 (b) sparsity 1− τ = 0.8 (c) sparsity 1− τ = 0.6

Figure 4: The sparsity patterns obtained by group-wise brain damage on the second convolutional layer of AlexNet for

different sparsity levels. Nonzero weights are shown in white. In general, group-wise brain damage shrinks the receptive

fields towards the center and tends to make them circular.
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Figure 5: The process of sparsification of all five layers in AlexNet. The left plot shows the monotonic growth of the sparsity

levels of the five convolutional layers as the iterations progress. The middle plot shows the relative prediction accuracy drop

for the current system for the validation part and for the hold-out test set. Finally, the right part visualizes the process of the

adjustment of θ threshold in the truncated l2,1 regularization. This plot shows the percentile of groups Γijs with the l2-norm

less than θ. θ is increased or decreased dependent on whether the performance drop on the validation set is greater or smaller

than 1.2%.

count the way generalized convolutions are reduced to ma-

trix multiplications, and prune the entries of the convolu-

tion kernel in a groupwise fashion. The exact sparsity pat-

terns can be learned from data using group-sparsity regular-

ization. When applied after learning with such regulariza-

tion and followed by fine-tuning, group-wise brain damage

obtains state-of-the-art performance for speeding up Con-

vNets.

Aside from the practical value, the proposed approach

also makes the case for the use of sparse learning for auto-

mated discovery of optimal network architectures, which is

arguably one of the main unsolved problems in deep learn-

ing. In our case, group-sparse regularizer allows the model

to discover optimal receptive fields (Figure 4). It is inter-

esting to see that the optimization process decided to shrink

the receptive fields towards the center compared to the full

version (which is consistent with the findings in [44, 19]).

Perhaps, even more interesting is to see that in general,

the learning process decided to make the receptive fields

roughly circular. Also, the process treated AlexNet and

VGGNet differently, eliminating entire feature maps by as-

signing their sparsity patterns ΩS to zero maps in the latter

case. Note that such elimination brings additional speedup

(since the entire map needs not be computed in the previ-

ous layer). Such elimination can be explicitly encouraged

within our approach using hierarchical group-sparsity regu-

larizers [4, 24].

2561



References

[1] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and

S. Carlsson. From generic to specific deep representa-

tions for visual recognition. 2015 IEEE Conference on

Computer Vision and Pattern Recognition Workshops,

CVPR Workshops, Boston, MA, USA, June 7-12, 2015,

pp. 36–45, 2015.

[2] J. Ba and R. Caruana. Do deep nets really need to

be deep? Advances in Neural Information Processing

Systems (NIPS), pp. 2654–2662, 2014.

[3] A. Babenko and V. Lempitsky. Aggregating local deep

features for image retrieval. The IEEE International

Conference on Computer Vision (ICCV), 2015.

[4] F. R. Bach. Exploring large feature spaces with hier-

archical multiple kernel learning. Advances in neural

information processing systems (NIPS), pp. 105–112,

2009.

[5] Y. Bengio, P. Lamblin, D. Popovici, and

H. Larochelle. Greedy layer-wise training of

deep networks. Advances in neural information

processing systems (NIPS), 19:153, 2007.

[6] L. S. Blackford, A. Petitet, R. Pozo, K. Reming-

ton, R. C. Whaley, J. Demmel, J. Dongarra, I. Duff,

S. Hammarling, and G. Henry. An updated set of ba-

sic linear algebra subprograms (BLAS). ACM Trans-

actions on Mathematical Software, 28(2):135–151,

2002.

[7] Y.-l. Boureau and Y. LeCun. Sparse feature learning

for deep belief networks. Advances in neural informa-

tion processing systems (NIPS), pp. 1185–1192, 2008.

[8] G. Chechik, I. Meilijson, and E. Ruppin. Synap-

tic pruning in development: a computational account.

Neural computation, 10(7):1759–1777, 1998.

[9] K. Chellapilla, S. Puri, and P. Simard. High perfor-

mance convolutional neural networks for document

processing. Tenth International Workshop on Fron-

tiers in Handwriting Recognition, 2006.

[10] K. Chellapilla, S. Puri, and P. Simard. High Perfor-

mance Convolutional Neural Networks for Document

Processing. In G. Lorette, editor, Tenth International

Workshop on Frontiers in Handwriting Recognition,

La Baule (France), 2006. Université de Rennes 1, Su-
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