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Abstract

Deformations of surfaces with the same intrinsic shape

can often be described accurately by a conformal model.

A major focus of computational conformal geometry is the

estimation of the conformal mapping that aligns a given

pair of object surfaces. The uniformization theorem en-

ables this task to be acccomplished in a canonical 2D do-

main, wherein the surfaces can be aligned using a Möbius

transformation. Current algorithms for estimating Möbius

transformations, however, often cannot provide satisfactory

alignment or are computationally too costly. This paper in-

troduces a novel globally optimal algorithm for estimating

Möbius transformations to align surfaces that are topologi-

cal discs. Unlike previous methods, the proposed algorithm

deterministically calculates the best transformation, with-

out requiring good initializations. Further, our algorithm is

also much faster than previous techniques in practice. We

demonstrate the efficacy of our algorithm on data commonly

used in computational conformal geometry.

1. Introduction

Given two 3D shapes, the problem of shape correspon-

dence is to find a meaningful relation (or mapping) between

the elements of the shapes [35]. Solving such a problem is

fundamental to many vision and graphics applications, such

as object recognition, 3D shape retrieval, shape morphing

and attribute transfer - to name a few. A plethora of variants

also exist for the general problem, where the variants differ

based on the type of input data (point cloud, mesh, etc.),

type of alignment function, partial or full overlap, whether

pre-identified landmarks are available, etc.

Within the broad literature on shape correspondence, our

work belongs to the class of conformal geometric meth-

ods [38]. A conformal mapping preserves angles locally,

and is thus insensitive to surface deformations [36]. It has

been observed that object instances with the same intrin-

sic shape (e.g., faces with different expressions [36], de-

formable 2D shapes [12], brains between different individ-

uals [15]) can be aligned well conformally.

The uniformization theorem [7] states that all surfaces

that are topological spheres or discs can be conformally

embedded to a canonical 2D domain, e.g., a unit sphere,

a hyperbolic disc. In Fig. 1(a), these embeddings are repre-

sented by Φ
M̃

and Φ
B̃

for respectively two surfaces M̃ and

B̃. The embedded surfaces can be aligned conformally by a

Möbius transformation f . The direct mapping between the

surfaces can then be composed as Φ−1

B̃
◦ f ◦Φ

M̃
. Note that

in practice, discrete analogues of the mappings are used.

Conformal shape correspondence thus amounts to find-

ing Φ
M̃

, Φ
B̃

and f . Many authors first calculate the embed-

dings Φ
M̃

and Φ
B̃

in a “flattening” step, before estimating

f , e.g., [17, 15, 28, 9, 27, 24]. Various methods have been

devised for flattening [6, 22, 16, 17, 33]. In this paper, we

focus on the second step, i.e., Möbius alignment.

A class of existing methods for Möbius alignment are

correspondence-based. Correspondences between the sur-

faces can be obtained by identifying landmarks (meaning-

ful locations such as corners of eyes or tips of noses) or

matching salient keypoints [17, 15, 36, 9, 29]. Given a

sufficient number of correspondences, a Möbius transfor-

mation can be directly estimated [28]. The effectiveness

of correspondence-based methods hinges on the veracity of

the correspondences and their coverage of the surfaces.

Correspondence-free techniques as we consider in this

paper must directly estimate the Möbius transformation,

and implicitly the surface correspondence. Current meth-

ods include randomized search [28], iterative closest points

(ICP) [8], gradient-based local optimization [24], brute

force enumeration [27], and graph matching [40]. While

not affected by inaccurate or insufficient pre-identified cor-

respondences, these methods suffer, however, from other

weaknesses; namely, no guarantee of success [28], depen-

dence on good initialisation [8, 24], and very high compu-

tational cost [27, 40].

Contributions We propose a novel globally optimal algo-

rithm for correspondence-free Möbius alignment. We focus

on surfaces that are topological discs, i.e., f acts on the hy-

perbolic disc. Based on branch-and-bound (BnB) [20], our

algorithm guarantees global optimality, thus obviating the

need for good intializations. Further, our method is also
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much more efficient than previous techniques. Note that

there have been previous usages of BnB for point set align-

ment, but these are mostly for the rigid case [10, 31, 19].

Conformally aligning sufaces that are topological discs

has many practical applications, e.g., facial expression anal-

ysis [36], shape similarity analysis [27], and brain mapping

[23]. Our work thus presents a useful tool to the very im-

portant area of computational conformal geometry [18].

1.1. Correspondencefree Möbius alignment

On the unit sphere, a Möbius transformation has 6DOF

and is uniquely defined by three distinct correspondences.

Lipman and Funkhouser [28] randomly sample triplets from

both surfaces to create three correspondences, estimate a

Möbius transformation from each sample, and let the sam-

ples vote for the best correspondences. Although it usually

produces good results, the algorithm is random in nature

and does not guarantee optimality or “goodness”. Another

disadvantage is its high cost for large input shapes.

In the context of Möbius alignment, ICP [8] iterates be-

tween point correspondence assignment and updates to the

Möbius transformation. While it guarantees local conver-

gence, the quality of the alignment depends on the initialza-

tion. Note that ICP has been used in other works on isomet-

ric shape correspondence (e.g., [21, 11]) without explicitly

estimating Möbius transformations. Koehl and Hass [24]

used gradient descent to estimate Möbius transformations.

Similar to ICP, their algorithm is only locally convergent

thus necessitating good initializations.

Lipman et al. [27] introduced the continuous Procrustes

distance to measure shape similarity. A key step in the dis-

tance calculation requires Möbius alignment. To estimate

a 3DOF Möbius transformation on the hyperbolic disc, a

brute force search over all possible correspondences was

applied. This is generally a very costly procedure.

Zeng et al. [40] proposed higher-order graph matching

for shape correspondence, where they construct the higher-

order energy terms based on Möbius transformation. It is

well-known, however, that graph matching is intractable in

general, thus their method is suitable only for very small

input sizes. A subsequent heuristic is used to “upgrade” the

result to a dense correspondence.

2. The Möbius search problem

Given two surfaces M̃ and B̃ with disk topology in 3D

(e.g., 3D scans of faces), we wish to estimate the conformal

mapping that aligns them. The surfaces are first confor-

mally flattened to yield M = Φ
M̃
(M̃) and B = Φ

B̃
(B̃),

where M and B both lie in the hyperbolic disc D [1]. In

our work, we use mid-edge conformal flattening [32] (as

implemented by [27]) to generateM and B.

Conformal flattening is unique up to an automorphism

of the hyperbolic disk, which is a Möbius transformation

f : D 7→ D with the definition

f(x|z, θ) = eiθ
x− z

1− xz̄
. (1)

Here, x, z are complex numbers corresponding to points in

D, z̄ denotes the complex conjugate of z, and θ ∈ [−π;π].
Observe that (1) can be decomposed as f = g ◦ h, where

g : D 7→ D and h : D 7→ D, with the definitions

g(x|θ) = eiθx and h(x|z) =
x− z

1− xz̄
. (2)

Intuitively, parameter z specifies the point that is mapped

by h to the center of D, while θ is a rotation angle.

The task of conformally aligning M̃ and B̃ is thus re-

duced to finding the f that alignsM and B.

2.1. Objective function

In practice the surfaces are discrete and noisy, thus we

must search for the f that is the “best” in some sense. Let

M = {mj}
N1

j=1 and B = {bk}
N2

k=1 be the set of points

after flattening. Recall that the points lie in D and are ex-

pressed as complex numbers. We adopt the objective func-

tion of [10], originally for rigid registration, to our case:

Q(z, θ) =
∑

j

max
k

I (|f(mj |z, θ)− bk| ≤ ǫ) . (3)

Here, |x| denotes the magnitude of a complex number, ǫ is

a matching threshold, and I(·) is an indicator function that

returns 1 if the input statement is true, and 0 otherwise. The

constant threshold ǫ can be changed to ǫj to make it point

specific and dependent on scaling effects of the flattening

on mj .

In words, (3) evaluates the number of points that are

aligned under f(x|z, θ). The inner max checks if there is a

point in B that matches mj — thus, a priori identified cor-

respondences are not assumed. Further, a match is declared

only if the distance between the points is within ǫ — thus, it

is not expected that each point inM has a valid match in B.

This is crucial if the surfaces only partially overlap. Note

that this objective function does not guarantee one-to-one

matching, but that does not hurt the accuracy of the appli-

cations we tested.

2.2. Problem definition

Using (3), the Möbius search problem is defined as

q∗ = max
z,θ

Q(z, θ), (4)

which equates to finding the Möbius transformation that

aligns as many points from M with B as possible. The

problem can be re-expressed as

u∗ = max
z

U(z), (5)

U(z) = max
θ

∑

j

max
k

I (|f(mj |z, θ)− bk| ≤ ǫ) . (6)
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The purpose of this rearrangement is to exploit the fact that,

given z, finding θ can be done very efficiently (Sec. 3), such

that solving for θ can seen as “evaluating” U(z). This en-

ables the formulation of a BnB algorithm (Sec. 4) that opti-

mizes z explicitly and θ implicitly.

3. Solving for rotation angle

Defining m
′
j = h(mj |z), (6) can be rewritten as

U(z) = max
θ

∑

j

max
k

I
(∣

∣eiθm′
j − bk

∣

∣ ≤ ǫ
)

. (7)

Recall that eiθ specifies (via Euler’s equation) a rotation of

the complex plane C about the origin. Define

Ωj
z
= {eiθm′

j | θ ∈ [−π, π]} (8)

as the circle resulting from rotating m
′
j by 2π radians, and

O
k
ǫ = {x | x ∈ C, |x− bk| ≤ ǫ}. (9)

as the disc centered at bk of radius ǫ; see Fig. 1(b).

Let [αjk
z,1, α

jk
z,2] be the range of angles θ, such that rotat-

ing m
′
j with any θ from the range will cause the point to fall

into O
k
ǫ . Intuitively, any θ ∈ [αjk

z,1, α
jk
z,2] will yield

I(|eiθm′
j − bk| ≤ ǫ) = 1. (10)

The range limits αjk
z,1 and αjk

z,2 can be obtained in closed

form via circle-to-circle intersections [2], see Fig. 1(b). In

the case where Ok
ǫ does not intersect Ωj

z
, the range is empty,

implying that no θ can cause m′
j to match bk. For details of

calculating the range limits, see the supplementary material.

For each m
′
j , let the set of angular ranges be

Sj
z
=

{

[αjk
z,1, α

jk
z,2]

}N2

k=1
. (11)

Note that overlapping ranges in Sj
z

are merged, while ranges

that extend beyond [−π, π] are “wrapped around”; see

Fig. 1(c). Function (7) can then be re-expressed as

U(z) = max
θ

∑

j

max
[α1,α2]∈S

j
z

I(θ ∈ [α1, α2]). (12)

In words, evaluating U(z) amounts to finding the θ that in-

tersects as many as possible the angular ranges across Sj
z
,

j = 1, . . . , N1; see Fig. 1(c). Such a problem can be solved

exactly and efficiently inO(N logN) [13, Chapter 10]; see

the supplementary material for the detailed algorithm.

4. Main algorithm

The idea of BnB is to recursively partition and prune the

search space until the globally optimal solution is found. In

the context of maximizing U (5), the search space is the hy-

perbolic disc D (as mentioned in Sec. 2.2, the search for θ is

done implicitly). The main “design choices” are how to par-

tition D, and how to construct an upper bounding function

Û for pruning subregions of D. Algorithm 1 summarizes

our algorithm, and details are provided in the following.

4.1. Partitioning the hyperbolic disc

Algorithm 1 is initialized by enclosing D with the tight-

est bounding square (a subset of the complex plane C). The

square is recursively divided into four equal sub-squares

(Line 13). In each sub-square S, we attempt to update our

current best solution (Line 11), or to prune S using the

bounding function Û (Line 15). A sub-square S that can-

not be pruned is inserted into a priority queue Q for further

processing. Note that since we actually partition the unit

square that encompasses D, a square S may lie outside of

D. Thus if S ∩ D = ∅, S is discarded (Line 5). The above

partitioning and pruning steps effectively explores the space

D. Intuitively, a tighter bounding function Û(S) will prune

more aggressively, thus leading to fewer iterations. In the

following, we describe our bounding function.

4.2. Bounding function

Given a square region S, we must derive an upper bound-

ing function Û(S) that satisfies

Û(S) ≥ max
z∈S

U(z) (13)

to enable pruning in Algorithm 1.

We begin by seeking to bound the region

M
j
S
= {h(mj |z) | z ∈ S} (14)

arising from the uncertainty of z ∈ S for each mj . For

simplicity, we approach this via the tightest bounding disc

R of S instead; see Fig. 2(a). Clearly, since S ⊆ R, then M
j
R

is a bound over M
j
S
. Now, M

j
R

can itself be bounded within

a “wedge” W
j
R

defined by 4 parameters: the bounding radii

rj
R,1 = min

z∈R

|h(mj |z)|, rj
R,2 = max

z∈R

|h(mj |z)|, (15)

and the bounding angles

θj
R,1 = min

z∈R

∠h(mj |z), θj
R,2 = max

z∈R

∠h(mj |z); (16)

see Fig. 2(a). Hence, to bound the region M
j
S
, we determine

W
j
R

that is defined by the four parameters above.

Bounding radii Based on standard identities of complex

numbers [3], we observe the symmetry

|h(mj |z)| =

∣

∣

∣

∣

mj − z

1−mj z̄

∣

∣

∣

∣

=
|mj − z|

|1−mj z̄|
(17)

=
|−(mj − z)|

|1−mj z̄|
=
|z−mj |

|1− zm̄j |
= |h(z|mj)|.
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(a) (b) (c)

Figure 1. (a) Surface alignment using conformal mapping. (b) Intersection of Ωj
z

with O
k
ǫ . (c) Illustration of problem (12) .

(a) (b)

Figure 2. (a) Uncertainty area with bounding parameters. (b) Intersection of the annulus Ω
j

R
with O

k
ǫ .

Algorithm 1 Möbius Search

Require: Point setsM,B ⊆ D, threshold ǫ
1: Q ← empty priority queue, S ← tightest bounding

square of D, u∗ ← 0, z∗ ← null
2: Insert S into Q with priority Û(S)
3: while Q is not empty do

4: Obtain a square S with the highest priority from Q
5: if S ∩ D 6= ∅ then

6: z0 ← center point of S

7: if U(z0) = u∗ then

8: z
∗ ← z0

9: return u∗

10: else if U(z0) > u∗ then

11: z
∗ ← z0, u∗ ← U(z0)

12: end if

13: Subdivide S into four squares {Sl}
4
l=1

14: for all l = 1, . . . , 4 do

15: if Û(Sl) > u∗ then

16: Insert Sl into Q with priority Û(Sl)
17: end if

18: end for

19: end if

20: end while

21: return u∗ and z
∗; obtain θ∗ solving U(z∗) (12).

The bounding radii (15) can thus also be obtained as

rj
R,1 = min

z∈R

|h(z|mj)|, rj
R,2 = max

z∈R

|h(z|mj)|. (18)

Let the center and radius of R be cR and rR. The range

of h(z|mj) for all z ∈ R is defined as

N
j
R
= {h(z|mj) | z ∈ R}. (19)

Now, it is known that, if R is a disc, N
j
R

is also a disc [30,

Chapter 3]. Further, the center and radius of N
j
R

are

c
N

j

R

=
γ −mj

1− m̄jγ
, (20)

r
N

j

R

=

∣

∣

∣

∣

c
N

j

R

−
cR + rR −mj

1− m̄j(cR + rR)

∣

∣

∣

∣

, (21)

where γ = cR − r2R/(−1/m̄j + cR). (22)

Note that the region M
j
R

, obtained by reversing the role of

z and mj in (19), is not a disc in general.

The bounding radii (18) can then be calculated as

rj
R,1 = |c

N
j

R

| − r
N

j

R

, rj
R,2 = |c

N
j

R

|+ r
N

j

R

(23)

in closed form, where we offset the former to 0 if negative,

and clamp the latter to 1 if greater than 1.

Bounding angles Manipulating h(mj |z) again by

h(mj |z) =
(mj − z)(1−mj z̄)

(1−mj z̄)(1−mj z̄)
=

(mj − z)(1− m̄jz)

|(1−mj z̄)|2
,

we can express h(mj |z) as a multiplication and scaling of

two complex numbers. Using the identity

ab = |a||b|ei(∠a+∠b) ∀a,b ∈ C, (24)
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of complex numbers [3], we can surmise that

∠h(mj |z) = ∠(mj − z) + ∠(1− m̄jz). (25)

Define the regions

A
j
R
= {mj − z | z ∈ R}, B

j
R
= {1− m̄jz | z ∈ R}.

Clearly A
j
R

a disc; obtained by reflecting disc R and trans-

lating the result by mj . Its center and radius are respectively

c
A

j

R

= −cR +mj , r
A

j

R

= rR. (26)

Since multiplying two complex numbers serves to multiply

their respective magnitudes (24), multiplying R with m̄i ex-

pands the disc by a factor of |mj |. Thus B
j
R

is also a disc

with center and radius respectively

c
B
j

R

= −m̄jcR + 1, r
B
j

R

= |mj |rR. (27)

The bounding angles (16) can then be calculated as

θj
R,1 = min

a∈A
j

R
,b∈B

j

R

∠a+ ∠b, (28)

θj
R,2 = max

a∈A
j

R
,b∈B

j

R

∠a+ ∠b. (29)

These values can be obtained in closed form, since the an-

gular ranges of A
j
R

and B
j
R

are known.

Bound calculation Given the wedge W
j
R

, we are now

ready to compute the upper bound (13). Our strategy here

is a generalization of the technique in Sec. 3.

First, generalizing (8), we define the annulus

Ωj
R
= {eiθx | x ∈W

j
R
, θ ∈ [−π, π]} (30)

obtained by rotating the wedge W
j
R

by 2π radians; see

Fig. 2(b). Continuing the idea in Sec. 3, for each pair (j, k),

we obtain the angular range [αjk
R,1, α

jk
R,2], that bounds the ro-

tation angle θ that allows a point from W
j
R

to “touch” O
k
ǫ ;

see Fig. 2(b) for an intuitive example. The range limits can

also be obtained in closed form; for brevity, we leave the

details in the supplementary material.

Of course, if O
k
ǫ does not intersect with Ωj

R
, then the

range is empty. This implies that f(mj |z, θ) cannot match

with bk under all z ∈ S and θ ∈ [−π, π].
Define now Sj

R
to be the set of angular intervals

Sj
R
= {[αjk

R,1, α
jk
R,2]}

N2

k=1. (31)

Again, overlapping and out-of-bound ranges are prepro-

cessed as in Sec. 3. The upper bound is evaluated as

Û(S) = max
θ

∑

j

max
[α1,α2]∈S

j

R

I(θ ∈ [α1, α2]), (32)

which again can be solved exactly and efficiently as a line

intersection problem; cf. (12).

4.3. Algorithm convergence

Here, we establish the proofs required [20] to guarantee

that Algorithm 1 converges to the globally optimal result.

Lemma 1 Û(S) obtained according to (32) satisfies (13).

Proof By design, the relationship

M
j
S
⊆M

j
R
⊆W

j
R

(33)

always holds. Thus, the annulus Ωj
R

bounds the location of

f(mj |z, θ) for all z ∈ S and θ ∈ [−π, π]. The angular

intervals Sj
R

are also optimistic since they are constructed

by aligning W
j
R

with O
k
ǫ for all k. This establishes that

Û(S) cannot underestimate U(z) for all z ∈ S.

Lemma 2 As S collapses to a single point z,

Û(S) = U(z). (34)

Proof If S is a single point z, then M
j
S
, defined in (14),

equates to the singleton set {h(mj |z)}. Since R is the tight-

est bounding disc of S, M
j
R

also equates to M
j
S
. Now, based

on definitions (15) and (16), W
j
R

also collapses to a single

point {h(mj |z)}, thus yielding M
j
S
= M

j
R
= W

j
R

.

The annulus Ωj
R

thus becomes the circle Ωj
z
, and the an-

gular ranges Sj
R

and Sj
z

are equal. Thus, Û(S) as defined

in (32) reduces to U(z) as defined in (12).

5. Results

We benchmarked the performance of our algorithm

(Möbius Search, henceforth represented as MS) against the

previous methods surveyed in Sec. 1.1, namely

• Möbius voting (MV) [28]. We used the code provided by

the authors [4]. However, since in this paper we focus on

aligning surfaces that are topological discs (f is 3DOF),

we modified the code such that a random sample consists

of two randomly chosen correspondences.

• Brute force method (BF). Following [27], we imple-

mented BF as follows: all possible pairings betweenM
and B are considered. Each pairing is sufficient to esti-

mate z. For each z, θ is enumerated across a sufficiently

fine grid along [−π, π] to find the best combination.

• Iterative closest points (ICP). The original method of [8]

was modified as alluded in [28] for Möbius alignment.

• Graph matching (GM) [40]. We used the implementation

of [26] for graph matching. Since our paper focuses on

the 3DOF Möbius transform f , we included up to binary

energies only in the cost function. Note, however, that

this does not significantly simplify the problem, since

graph matching is intractable even for binary graphs [5].
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(a) (b) (c) (d) (e)

Figure 3. Steps for generating synthetic data: (a) car-01 shape; (b) conformal map of (a); (c) centers of circles in (b); (d) M being

sub-sampled from (c); (e) B was generated by applying a random Möbius transformation to M then added with noise and outliers.

Although we did not compare against the gradient descent

method of [24], as a locally convergent method, we expect

its performance to be similar to ICP. Also, GM is only fea-

sible for small input sizes N1, N2. In our experiments, GM

was run with N1, N2 ≤ 20 (in [40], input sizes of at most

15 was tested for the true graph matching part).

All experiments were run on a standard PC with 3.5GHz

processor and 8GB of main memory. Due to page limits,

only representative results can be shown here; see the sup-

plementary material for more results.

5.1. Comparison metrics

Given a pair of conformally flattened surfaces M and

B, each method above was executed to estimate f . Apart

from recording the runtime, we also obtained the following

quality measures of the estimated f :

• Qbnb: the value of (3) for f .

• Qmv: the number of mutually closest pairs under f ,

where (j, k) is a mutually closest pair if bk is the nearest

neighbor of f(mj) among B and vice versa.

Note that Qmv is as defined and used in [28, 27] for assess-

ing deformation errors of Möbius alignment.

Where ground truth correspondences {mt,bt}
T
t=1 (from

landmarks etc.) were available, we used them to calculate

the following quality metric:

• Qtruth: the number of ground truth correspondences that

are mutually closest pairs under f .

5.2. Synthetic data experiment

The purpose of this experiment is to evaluate the perfor-

mance and accuracy of the methods under controlled set-

tings. The steps to generate input point sets M and B are

summarized in Fig. 3: first, a 2D shape from the MPEG7

dataset [25] (specifically, car-01) was chosen and confor-

mally mapped to D using the circle packing technique [34].

A number of N1 points were then randomly sampled to pro-

duce the set M. A random Möbius transformation f was

generated (by randomly choosing z and θ) and applied on

M to yield the set B. Gaussian noise of σ = 0.01 was af-

flicted on B to increase realism. Further, to simulate outliers

and partially overlapping data, ρ% of points on bothM and

B were randomly chosen and re-sampled to lie uniformly

in D. In our experiment, we used N1 = {100, 50, 20} and

ρ = {0, 25, 50}. For MS and (3), ǫ =0.01 was used. Again,

note that GM is only feasible for N1 = 20.

Fig. 4 shows the results. It can be seen that MS always

achieved the theoretical maximum (1 − ρ)N1 of the objec-

tive function (3). In the presence of low oulier rates (ρ is

0% or 25%), the estimated f of MS, MV, BF and GM were

of similar quality. When the outlier percentage ρ was 50%,

however, only MS could produce good (in fact, optimal) re-

sults. Note that in Fig. 4 the quality of ICP was much lower

than the others due to the lack of good initializations

To accommodate ICP, the experiment was repeated by

producing a “milder” randomized Möbius transformation

that relates M to B, specifically by choosing the param-

eters such that |z| ≤ 0.1 (close to the center of D) and

θ ≤ 10◦. The results for this repeated experiment were

displayed as ICP2 in Fig. 4. It can easily be seen that with

good initialization, ICP gave acceptable quality when there

were no outliers - however, the quality degraded rapidly as

the outlier rate increased. Interestingly, the runtime of MS

increased marginally when the true f was close to the iden-

tity mapping - possibly because as the true z is closer to the

center of D, a deeper search must be conducted to before a

good suboptimal solution z0 is retrieved to enable effective

pruning.

In terms of runtime, MS and MV could terminate well

within 1 minute, though MS occasionally took longer than

MV. Note that MS provides guaranteed global optimality,

unlike MV. The runtime for BF, as anticipated, was too long

to be practical, e.g., more than 3 hours for N = 100. To

view the actual numerical values of the results above, see

the supplementary material.

5.3. Conformal teeth alignment experiment

We followed the experiment by Boyer et al. [9] to per-

form surface alignment on 3D scans of teeth. While the

original aim of Boyer et al. was shape comparison, here,

we focus on the alignment step. In our experiment, we

chose three pairs of teeth originally used in [27], specif-

ically, Human01 and Human04, Chimpanzee51376 and

Chimpanzee51379, and Gorilla167335 and Gorilla16736.
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Figure 4. Results for synthetic data. Columns represent experiments for different values of N1. Rows represent measurements of Qbnb

(defined in (3)), Qmv (defined in 5.1) and runtime (in seconds). Note that the runtime is quoted in log10 scale. ICP2 is explained in 5.2.

GM is only feasible for N1 = 20.

(a) Human 01 (b) Human 04 (c) Chimp. 51376 (d) Chimp.51379 (e) Gorilla 167335 (f) Gorilla 167336

Figure 5. Correspondences found by MS for three pairs of teeth.

The meshes of the teeth were flattened to D using the pro-

gram of Lipman et al. [27]. On the flattened surfaces,

we also conducted the sampling process of [28, 9] to cre-

ate the point sets M and B. Specifically, N1 and N2

points (N1, N2 = {100, 50, 20}) were chosen using the far-

thest point sampling (FPS) algorithm [14]. Note that 13

ground truth correspondences {mt,bt}
13
t=1 (manually an-

notated landmarks) were available per problem instance,

thus Qtruth value could be obtained for each method.

Table 1 summarizes the quantitative results, while Fig. 5

shows qualitative results for MS. As expected, due to the

global optimality guarantees, MS returned the solution with

the highest Qbnb value. Also, MS demonstrated typi-

cally superior accuracy in terms of Qtruth, as compared

to BF and MV. However, when the input size was small

(N1, N2 = 20), none of the methods were able to obtain

satisfactory Qtruth values. This was due to the overly im-

poverished structural information after excessive sampling.

Due to the lack of good initializations (the intialized state

of M and B depends on the implementation of the con-

formal flattening procedure), ICP generally could not find

good estimates of f , and it was able to align about half of

the ground truth correspondences. While GM was feasible

on N1, N2 = 20, it is apparent that the estimated f was far

from ideal due to the overly sparse input data. In terms of

runtime, all the methods except BF were able to terminate

in about or less than 1 minute.

5.4. Conformal face alignment experiment

The previous experiment was repeated for conformal

face alignment, following [39]. While the previous works

aimed at applications such as facial expression recognition,

in our experiment, we focused on the task of Möbius align-

ment. From a practical standpoint, our MS algorithm can be

used to automatically and deterministically find landmark

correspondences, which is a crucial step in facial process-

ing applications [39].

Again, following the previous works, we used data from

the BU-3DFE face dataset [37], specifically, we chose three

pairs of faces with the same expression but at different de-

grees: Happy 01-Happy 04, Disgust 01-Disgust 02, Sad 01

- Sad 02. The same steps as in Sec. 5.3 were used for flat-

tening and subsampling; see Fig. 6 for the resulting data.

For this dataset, since the ground truth landmarks were not

available, we manually annotated 13 landmarks on the faces

to create ground truth correspondences. Table 1 summa-
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(a) Happy 01 (b) Happy 04 (c) Digust 01 (d) Disgust 02 (e) Sad 01 (f) Sad 02

Figure 6. Correspondences found by MS between three pairs of face

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

H
u
m

an
0
1

H
u
m

an
0
4

100

MS 40 80 13 45.056

BF 30 84 13 10185.000

MV 35 81 13 29.160

ICP 22 76 6 0.027

50

MS 8 38 13 8.780

BF 3 41 12 629.000

MV 3 39 5 6.891

ICP 4 37 6 0.009

20

MS 11 18 11 0.809

BF 6 18 8 17.265

MV 11 18 12 0.408

GM 5 11 3 26.280

ICP 3 16 7 0.005

G
o
ri

ll
a1

6
7
3
3
5

G
o
ri

ll
a1

6
7
3
3
6

100

MS 68 83 12 12.370

BF 66 81 12 10659.000

MV 61 80 12 5.651

ICP 8 78 6 0.052

50

MS 26 39 6 3.234

BF 22 38 5 634.000

MV 24 39 6 5.970

ICP 1 36 7 0.005

20

MS 11 16 5 0.180

MV 10 15 4 0.347

BF 10 16 6 17.208

GM 8 10 1 77.513

ICP 0 14 6 0.001

C
h
im

p
an

ze
e5

1
3
7
6

C
h
im

p
an

ze
e5

1
3
7
9

100

MS 54 82 12 26.913

BF 52 85 12 10365.000

MV 47 84 12 28.045

ICP 22 48 1 0.027

50

MS 25 42 13 1.774

BF 19 42 8 691.000

MV 20 38 8 3.684

ICP 7 22 3 0.005

20

MS 13 15 0 0.857

BF 7 17 4 17.056

MV 7 12 2 0.260

GM 6 10 0 47.236

ICP 4 9 1 0.068

N1, N2 Methods Qbnb Qmv Qtruth Time (sec)

F
0

0
0

1
D

I0
1

W
H

F
3

D

F
0

0
0

1
D

I0
2

W
H

F
3

D

100

MS 75 81 13 1.999

BF 71 85 13 10656.000

MV 74 66 7 2.853

ICP 46 61 1 0.021

50

MS 22 37 13 1.792

BF 19 41 13 635.000

MV 18 40 13 1.870

ICP 12 26 1 0.005

20

MS 10 15 9 0.220

BF 6 14 8 17.241

MV 6 14 7 0.278

GM 8 16 9 45.059

ICP 3 11 0 0.003
M

0
0
4
4

H
A

0
1
IN

F
3
D

M
0
0
4
4

H
A

0
4
IN

F
3
D

100

MS 53 83 13 15.768

BF 34 84 13 10269.000

MV 40 80 12 28.648

ICP 18 61 1 0.022

50

MS 27 42 13 4.109

BF 25 44 13 641.041

MV 23 44 13 1.549

ICP 3 32 1 0.010

20

MS 16 19 13 0.373

BF 14 19 13 17.544

MV 16 19 13 0.286

GM 7 12 9 55.105

ICP 11 14 0 0.002

M
0
0
2
1

S
A

0
1
W

H
F

3
D

M
0
0
2
1

S
A

0
2
W

H
F

3
D

100

MS 45 85 13 15.081

BF 42 88 13 9695.200

MV 28 56 0 56.793

ICP 32 63 0 0.028

50

MS 24 45 13 14.474

BF 23 46 13 623.966

MV 3 19 4 1.526

ICP 3 34 0 0.006

20

MS 14 14 13 0.231

BF 14 15 13 17.445

MV 14 14 13 0.140

GM 4 13 9 69.509

ICP 5 12 0 0.006

Table 1. Results from conformally aligning three pairs of teeth (left) and three pairs of faces (right). In each problem instance, the best

quality measure and runtime obtained among all the methods are bolded. MS: Möbius Search, MV: Möbius voting, BF: brute force, GM:

graph matching. See Sec. 5.1 for definitions of the quality measures.

rizes the quantitative results, while Fig. 6 illustrates quali-

tative results of MS. It can be seen that MS generally out-

performed the other methods in terms of both accuracy and

runtime.

6. Conclusions and future work

We proposed a novel approach for conformal surface

alignment with guaranteed global optimum. Our experi-

ments showed that this algorithm is much more efficient

than state-of-the-art techniques for conformally aligning

topological disc surfaces.

This work opens up a new direction for further research

on global optimization methods in the field of computa-

tional conformal geometry. One notable expansion which

can be studied in the future is 6DOF Möbius search for

genus zero surfaces with spherical topology.

Acknowledgements This work was supported by ARC

grants DP160103490 and DP130102524.

2514



References

[1] https://en.wikipedia.org/wiki/Poincare_

disk_model. 2

[2] http://mathworld.wolfram.com/

Circle-CircleIntersection.html. 3

[3] http://mathworld.wolfram.com/

ComplexNumber.html. 3, 5

[4] https://www.cs.princeton.edu/˜vk/

projects/CorrsCode/. 5

[5] https://en.wikipedia.org/wiki/Quadratic_

assignment_problem. 5

[6] S. Angenent, S. Haker, A. Tannenbaum, and R. Kikinis. Con-

formal geometry and brain flattening. In MICCAI, 1999. 1

[7] L. Bers. Uniformization, moduli and Kleinian groups. In

Bull. London Math. Soc., volume 4, pages 257–300, 1972. 1

[8] P. J. Besl and N. D. MacKay. A method for registration of

3-d shapes. IEEE TPAMI, 14(2):239–256, 1992. 1, 2, 5

[9] D. Boyer, Y. Lipman, E. StClair, J. Puente, B. Patel,

T. Funkhouser, J. Jernvall, and I. Daubechies. Algorithms

to automatically quantify the geometry similarity of anatom-

ical surfaces. In Proc. Nat’l Academy of Sciences, 2011. 1,

6, 7

[10] T. Breuel. Implementation techniques for geometric branch-

and-bound matching methods. CVIU, 90(3):258–294, 2003.

2

[11] A. Bronstein, M. Bronstein, and R. Kimmel. General-

ized multidimensional scaling: a framework for isometry-

invariant partial surface matching. In Proc. Nat’l Academy

of Science, 2006. 2

[12] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and

R. Kimmel. Analysis of two-dimensional non-rigid shapes.

IJCV, 78(1):67–88, 2008. 1

[13] M. De Berg, M. Van Kreveld, M. Overmars, and O. C.

Schwarzkopf. Computational geometry. Springer, 2000. 3

[14] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The far-

thest point strategy for progressive image sampling. Image

Processing, IEEE Transactions on, 6(9):1305–1315, 1997. 7

[15] X. Gu, Y. Wang, T. Chan, P. Thompson, and S.-T. Yau.

Genus zero surface conformal mapping and its application

to brain surface mapping. IEEE Trans. Medical Imaging,

23(8):949–958, 2004. 1

[16] X. Gu and S.-T. Yau. Global conformal surface parametriza-

tion. In Proc. Eurographics Symp. Geometry Processing,

2003. 1

[17] X. D. Gu and B. C. Vemuri. Matching 3D shapes using 2d

conformal representations. In MICCAI, 2004. 1

[18] X. D. Gu and S.-T. Yau. Computational conformal geometry.

Advanced Lectures in Mathematics. Higher Education Press,

2008. 2

[19] R. I. Hartley and F. Kahl. Global optimization through rota-

tion space search. IJCV, 82:64–79, 2009. 2

[20] R. Horst and H. Tuy. Global optimization. Springer, 1996.

1, 5

[21] Q.-X. Huang, B. Adams, M. Wicke, and L. J. Guibas. Non-

rigid registration under isometric deformations. Computer

Graphics Forum, 27(5):1449–1457, 2008. 2

[22] M. Hurdal, P. Bowers, K. Stephenson, D. Sumners, K. Rehm,

K. Shaper, and D. Rotenberg. Quasiconformally flat map-

ping the human cerebellum. In MICCAI, 1999. 1

[23] M. K. Hurdal and K. Stephenson. Discrete conformal meth-

ods for cortical brain flattening. Neuroimage, 45(1):S86–

S98, 2009. 2

[24] P. Koehl and J. Hass. Automatic alignment of genus-zero

surfaces. IEEE TPAMI, 36(3):466–478, 2014. 1, 2, 6

[25] L. J. Latecki, R. Lakämper, and U. Eckhardt. Shape descrip-

tors for non-rigid shapes with a single closed contour. In

Computer Vision and Pattern Recognition, 2000. Proceed-

ings. IEEE Conference on, volume 1, pages 424–429. IEEE,

2000. 6

[26] M. Leordeanu, M. Hebert, and R. Sukthankar. An integer

projected fixed point method for graph matching and map

inference. In Advances in neural information processing sys-

tems, pages 1114–1122, 2009. 5

[27] Y. Lipman, R. Al-Aifari, and I. Daubechies. The continuous

Procrustes distance between two surfaces. Communication

on Pure and Applied Mathematics, 66(6):934–964, 2011. 1,

2, 5, 6, 7

[28] Y. Lipman and T. Funkhouser. Möbius voting for surface

correspondence. In ACM Transactions on Graphics (TOG),

volume 28, page 72. ACM, 2009. 1, 2, 5, 6, 7

[29] H. Lu, L.-P. Nolte, and M. Reyes. Interest points location for

brain image using landmark-annotated atlas. Int’l J. Imaging

Systems Technology, 22:145–152, 2012. 1

[30] D. Mumford, C. Series, and D. Wright. Indra’s pearls: the

vision of Felix Klein. Cambridge University Press, 2002. 4

[31] C. Olsson, F. Kahl, and M. Oskarsson. Branch-and-bound

methods for Euclidean registration problems. IEEE TPAMI,

31(5):783–794, 2009. 2

[32] U. Pinkall and K. Polthier. Computing discrete minimal

surfaces and their conjugates. Experimental mathematics,

2(1):15–36, 1993. 2
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