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Abstract

We propose the first algorithm for non-rigid 2D-to-3D

shape matching, where the input is a 2D query shape as well

as a 3D target shape and the output is a continuous match-

ing curve represented as a closed contour on the 3D shape.

We cast the problem as finding the shortest circular path on

the product 3-manifold of the two shapes. We prove that

the optimal matching can be computed in polynomial time

with a (worst-case) complexity of O(mn2 log(n)), wherem

and n denote the number of vertices on the 2D and the 3D

shape respectively. Quantitative evaluation confirms that

the method provides excellent results for sketch-based de-

formable 3D shape retrieval.

1. Introduction

The last decade has witnessed a tremendous growth in

the quantity and quality of geometric data available in the

public domain. One of the driving forces of this growth has

been the development in 3D sensing and printing technol-

ogy, bringing affordable sensors such as Microsoft Kinect

or Intel RealSense and 3D printers such as MakerBot to the

mass market. The availability of large geometric datasets

brings forth the need to explore, organize, and search in 3D

shape collections, ideally in the same easy and efficient way

as modern search engines allow to process text documents.

Numerous works on content-based shape retrieval [8,

32, 5] try to extend popular search paradigms to a set-

ting where the3D query shape is matched to shapes in the

database using geometric similarities. Typically, a 3D shape

is represented as a descriptor vector aggregating some local

geometric features, and retrieval is done efficiently by com-

paring such vectors [5]. However, the need for the query to

be a 3D shape significantly limits the practical usefulness

of such search engines: non-expert human users are typi-

Figure 1. We propose the first shape matching method between a

2D query shape (left) and a 3D target shape (right), both of which

are allowed to deform non-rigidly. The globally optimal match-

ing (shown on top of the 3D target) is guaranteed to be continuous.

cally not very skilled with 3D modeling, and thus providing

a good query example can be challenging.

As an alternative to 3D-to-3D shape retrieval, several re-

cent works proposed 2D-to-3D or sketch-based shape re-

trieval, where the query is a 2D image representing the pro-

jection or the silhouette of a 3D shape as seen from some

viewpoint [7, 9, 14, 30, 11]. This setting is much more

natural to human users who in most cases are capable of

sketching a 2D drawing of the query shape; however, the un-

derlying problem of ‘multi-modal’ similarity between a 3D

object and its 2D representation is a very challenging one,

especially if one desires to deal with non-rigid shapes such

as human body poses. In fact, so far all methods for 2D-to-

3D matching have limited the attention to rigid shapes such

as chairs, cars, etc.

In this paper, we propose a method for automatically

finding correspondence between 2D and 3D deformable ob-
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jects. To the best of our knowledge, this is the first method

to address the problem in the deformable setting. The input

to our algorithm is a 2D query curve and a 3D target sur-

face, and the output is the corresponding continuous curve

on the surface (see Fig. 1). Our method guarantees a glob-

ally optimal solution and has polynomial time complexity.

As a byproduct of the correspondence we also get a 2D-to-

3D similarity criterion, allowing to perform efficient sketch-

based shape retrieval.

The rest of this paper is organized as follows. In the re-

maining part of this section, we review the previous works

and summarize our contributions. In Section 2, we for-

mulate the 2D-to-3D matching problem as an energy min-

imization problem and discuss its discretization and opti-

mization. Section 3 shows experimental results. We con-

sider a challenging application, namely deformable sketch-

based retrieval. Finally, Section 4 concludes the paper dis-

cussing the limitations and potential extensions of the ap-

proach.

1.1. Related work

2D and 3D shape correspondence. The classical 2D-to-

2D and 3D-to-3D settings of the shape matching problem

have been thoroughly researched in the computer vision and

graphics communities (see [33] for a survey). In the domain

of 3D-to-3D shape matching, a major challenge is to have

theoretical guarantees about the optimality and quality of

the correspondence. Several popular methods try to find

a correspondence that minimally distorts intrinsic distances

between pairs of corresponding points by approximate solu-

tion to the quadratic assignment problem [13, 16, 6, 21, 25].

A recent line of works builds upon the functional represen-

tation [18, 19, 22, 12, 23], where a point-wise map is re-

placed by a linear map between function spaces. This way,

finding correspondence boils down to solving a linear sys-

tem of equations. The drawback of this framework is its

inability to guarantee basic properties of the map such as

continuity. This is because not every linear operator is au-

tomatically continuous. A method for finding guaranteed

continuous correspondence was proposed by Windheuser et

al. [34]. Similarly to [34], our method comes with the the-

oretical guarantee of a continuous solution, however at a

significantly lower computational cost (about half a minute

instead of several hours).

In our 2D-to-3D correspondence problem, the 2D shape

is modeled as a closed planar curve, and the 3D shape as

a surface in R
3. To find the correspondence, we look for

a closed curve on the surface. From this perspective, our

method can be seen as an extension of an image segmenta-

tion task that looks for a closed curve within a 2D image do-

main. It was shown in [28] that this segmentation problem

can be formulated as finding a shortest path in the product

graph of the 2D image domain and the 1D curve domain,

where the size of the graph depends on the Lipschitz con-

stant of the mapping. The drawback is that this constant is

typically unknown in advance. Differently from [28], the

size of the constructed graph with our method is indepen-

dent of the Lipschitz constant.

Furthermore, one of the main challenges in our method

is to find an initial match on the product graph. In [28] this

problem was solved by parallelization. As a result, the over-

all computation time is not reduced, but just distributed in-

telligently among several computational cores. Instead, we

use a branch-and-bound approach that only computes short-

est paths in those regions that are ‘most promising’. This

strategy reduces the running time substantially (especially

with well-chosen shape descriptors), while still converging

to a global optimum.

Even in the simpler 2D-to-2D setting, the computation

of a globally-optimal correspondence can be very slow if

we do not know an initial match. For example, the run-

ning time of Dynamic Time Warping methods is O(n2)
if an initial match is given, and O(n3) if every possible

initial match is tested independently, where n is the num-

ber of shape samples. It was shown that by exploiting the

planarity of the involved graph, the running time of the

whole matching including an initial match can be reduced

to O(n2 log(n)) by using shortest circular path or graph

cut approaches [15, 26, 27]. A competitive approach is the

branch-and-bound approach of [1]. While it does not reduce

the worst case time complexity of O(n3), it is rather fast in

practice. Since it does not use the planarity of the involved

graph, we can adapt it to our scenario in order to reduce the

practical running time substantially.

Sketch-based retrieval. One of the important applica-

tions of 2D-to-3D matching is shape-from-sketch retrieval.

This problem has recently drawn the attention of the ma-

chine learning community as a fertile playground for cross-

modal feature learning [7, 9, 14, 30, 11]. Herzog et al. [10]

recently proposed to learn a shared semantic space from

multiple annotated databases, on which a metric that links

semantically similar objects represented in different modal-

ities (namely 2D drawings and 3D targets) is learned. Al-

though this approach yields promising results in the rigid

setting and can address some variability of the shapes, its

applicability to the non-rigid setting is an open question. In

contrast, our method targets explicitly the setting when both

the 3D target and the 2D query are allowed to deform in a

non-rigid fashion. Furthermore, the method of [10] as well

as other existing approaches mostly focus on finding simi-

larity between a 2D sketch and a 3D shape, while we solve

the more difficult problem of finding correspondence (from

which a criterion of similarity is obtained as a byproduct).
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Figure 2. Correspondences on a cat (left) and a human. The hu-

man shapes exhibit a topological change along the hands (compare

“middle” and “right”), which is handled well by our method.

1.2. Contribution

The main contribution of our paper is to present the first

automatic method for guaranteed continuous matching of

2D and 3D non-rigid shapes. Prior approaches to the 2D-

to-3D matching problem were limited to the less challeng-

ing rigid setting. Our method finds a globally optimal so-

lution in polynomial time. In our experiments we observed

running times in the range of 5-30 seconds. Secondly, our

approach allows using different local feature descriptors for

2D and 3D data. In particular, we show how spectral 2D

and 3D features can be compared such that we obtain a

semantically driven matching between 2D and 3D shapes.

Thirdly, we show the application of our 2D-to-3D match-

ing for deformable shape retrieval from sketches, a task that

traditionally requires large sets of human-labeled data.

2. 2D-to-3D matching

In this section, we formulate, discretize and optimize the

shape matching problem between a 2D query shape and a

3D target shape. By a shape we refer to the outer shell of

an object. The object itself will be referred to as the shape’s

solid. The 3D ball B = {x ∈ R
3| ‖x‖ ≤ 1} is for example

the solid of the sphere S
2 = {x ∈ R

3| ‖x‖ = 1}. We

summarize this convention in the following definition:

Definition 1. A compact set S ⊂ R
d is called a shape of

dimension d if it is a connected, smooth manifold and if it

can be represented as the boundary S = ∂U of an open

subset U ⊂ R
d. In this case, we call U the solid of S.

Note that this definition implies that a 3D shape is a 2-

manifold and a 2D shape is a 1-manifold.

This section is organized as follows. In Section 2.1 we

will cast the 2D-to-3D shape matching problem as an en-

ergy minimization problem, which we will globally opti-

mize in Section 2.2. To this end, we assume that descriptive

features for both shapes are given and that it is possible to

measure the dissimilarity between 2D and 3D features. The

specific choice of such features depends on the application.

For the application of shape retrieval that we discuss in

Section 3.3 we use purely spectral features.

2.1. Energy formulation

Given the 2D query shape M ⊂ R
2 and the 3D target

shape N ⊂ R
3, we call a mapping ϕ : M → N a 2D-to-3D

matching if it is an immersion, i.e., if dϕ is of maximal rank.

The goal of this paper is it to find a 2D-to-3D matching that

sets points that look alike into correspondence. To this end

let fM : M → R
kM and fN : N → R

kN be two different

feature maps. We want to stress that the dimensions kM
and kN do not need to agree. In order to measure the dis-

similarity between the 2D feature fM (x) of x ∈M and the

3D feature fN (y) of y ∈ N , we assume a positive distance

function dist : RkM ×R
kN → R

+
0 . This distance takes care

of the difficult task of comparing 2D features with 3D fea-

tures.

Given the two feature maps fM and fN as well as the

distance function dist, we call a 2D-to-3D matching ϕ op-

timal if it minimizes the energy

E(ϕ) : =

∫

Γϕ

dist(fM (s1), fN (s2))ds, (1)

where Γϕ = {(s1, s2) ∈ M ×N |s2 = ϕ(s1)} denotes the

graph of ϕ. Note that Γϕ is a simplicial complex due to the

immersion property of ϕ. E is therefore defined as a line

integral and takes the differential dϕ into account.

Since M is a one-dimensional manifold, the endomor-

phism dϕ⊤
x dϕx of the tangent space TxM is uniquely rep-

resented by a scalar, to which we refer to as Jϕ(x). Using

the substitution rule we can rewrite E as

E(ϕ) =

∫

M

dist(fM (x), fN ◦ ϕ(x))
√

1 + Jϕ(x)dx. (2)

Hence, the energy E can be broken into the data term

dist(fM (·), fN ◦ ϕ(·)) and the regularizer
√

1 + Jϕ(·).

Regularization. If we ignore the data term, the global min-

imum of E would result in a constant ϕ. This ϕ is continu-

ous, but matches every point on M to the same point on N .

It therefore ignores the similarity information stored in the

data term.

Data term. If we ignore the regularizer, the global

minimum of E can be computed by selecting for each

x ∈ M a y ∈ N that minimizes the feature distance

dist(fM (x), fN (y)). In this case, the minimizer ofE might

be neither injective nor continuous. Combining the data

term with the regularization results in a smooth matching

function ϕ that also takes the data term into account.

Alternatively to the energy described here, one could

also choose to enforce injectivity of ϕ : M → N . This

would lead to a linear assignment problem (LAP), which

allows for non-continuous matchings and is rather slow. If
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the shapes M and N are discretized at m and n points,

respectively, the overall running time of the Hungarian

method [17] to solve this problem is O(n3). The method

that we propose does not only provide for a smoother so-

lution, but also has a better worst case runtime complexity

than the LAP (cf. Theorem 1). Exploring the running time

of the LAP approach for one matching instance resulted in

a running time of 11 hours instead of just a few seconds for

our method.

2.2. Optimization

So far we defined the energy that we like to minimize.

In the following we address the discretization of this mini-

mization problem and we show that a globally optimal so-

lution can be computed efficiently.

To this end we assume that the 2D query shape M and

the 3D target shape N are discretized. Thus, M is given as

a simple circular graph, i.e., GM = (VM , EM ) with

VM ={x0, . . . , xm−1} ⊂ R
2

EM ={(xi, xj) ∈ V2
M | j ≡ i+ 1 mod m}.

The target shape N on the other hand is given as a 3D

mesh GN = (VN , EN ,FN ), where VN = {y0, . . . , yn−1}
denotes the set of vertices, EN the set of unoriented edges,

and FN the set of faces. Further, we assume that the feature

maps fM : M → R
kM and fN : N → R

kN are given as

information on the vertices. Thus, we can write dist(·, ·) as

a matrix D ∈ R
m×n with Dij = dist(fM (xi), fN (yj)).

Given this discretization, we define the product graph

GM×N = (VM×N , EM×N , CM×N ) via

VM×N ={0, . . . ,m} × {0, . . . , n− 1}

EM×N =
{

[(i0, j0), (i1, j1)] ∈ V2
M×N

∣

∣

(i1 = i0) ∧ (yj1 , yj0) ∈ EN or

(i1 = i0 + 1) ∧ (j1 = j0) or

(i1 = i0 + 1) ∧ (yj1 , yj0) ∈ EN}

CM×N [(i0, j0), (i1, j1)] =

Di0,j0
+Di1,j1

2
·
∥

∥(xi0 , yj0)− (xi1 , yj1)
∥

∥ ,

where i := i mod m. The product graph takes the Carte-

sian product of the vertices in GM and GN and connects

them iff their projections on both shapes are connected (or

identical). See Fig. 3 for an illustration.

In addition, the representation of the 2D shape M is ex-

tended by having two copies of x0, namely at position i = 0
and at position i = m. As a result, any matching can be re-

presented by a path from (0, j) to (m, j). Hence, an optimal

matching can be cast as finding a shortest path in a graph if

an initial match (x0, yj) ∈ Γϕ is given. Such a computation

can easily be done by Dijkstra’s algorithm. Using a priority

GM×N

Li

Li+1

Li+2

(i, j)

(i+ 1, k)

i

GM

j

GN

Figure 3. A node (i, j) in the product graph GM×N represents

a match between the vertex i ∈ VM of the contour M and the

vertex j ∈ VN of the surface N . All feasible matches with respect

to vertex i form the layer Li = {i} × VN . Edges are defined

between a node (i, j) and (i+1, j) as well as (i, k) and (i+1, k)
for all surface vertices k ∈ VN that are adjacent to j. All these

edges are directed and enforce a continuous matching.

heap the computation takes O(mn · log(mn)) time. Since

there is no path from (i1, j1) to (i0, j0) if i1 > i0, we asso-

ciate to each layer {i} × {0, . . . , n− 1} a different priority

heap and reduce the running time to O(mn log(n)). These

observations lead to the following theorem.

Theorem 1. Given a 2D query shape M and a 3D tar-

get shape N , discretized by m and n vertices, respec-

tively, we can find a minimizer of (1) in O(mn2 log(n))
time. If n = O(m2), this leads to the subcubic runtime of

O(n2.5 log(n)).

Proof. The runtime analysis follows from the above men-

tioned observations and the fact that we have to test n differ-

ent initial matches. The only thing that remains to be shown

is that the edge costs CM×N [(i0, j0), (i1, j1)] discretize the

line integral of (1). Since we have

Di0,j0
=dist

(

fM (xi0), fN (yj0)
)

Di1,j1
=dist

(

fM (xi1), fN (yj1)
)

the edge cost is a linear approximation of the line integral

associated with the edge [(i0, j0), (i1, j1)].
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This theorem shows that we can find a globally optimal

matching in polynomial time. Nonetheless, this may still

lead to a high running time since we have to find for each

vertex y ∈ VN a shortest path in GM×N . In order to circum-

vent this problem we follow a branch-and-bound strategy

that is inspired by the method of [1].

Data: GM×N = (VM×N , EM×N , CM×N )
Result: Matching path Γϕ

Let R := {0, . . . , n− 1} ;

Define R = {R} and b : R → R via b(R) = 0;

Define isFound=false;

Define bound=∞;

while (isFound=false) and (min b <bound) do

Let R ∈ argmin b;
R = R \ {R};

Find shortest path Γ in GM×N

from {0} ×R to {m} ×R;

Γ is a path from (0, i) to (m, j);
if i = j then

isFound=true;

if length(Γ) <bound then

bound=length(Γ);
Γϕ = Γ

end

else
Divide R into R = R1 ∪R2 such that

x ∈ R1 :⇔ distN (x, i) < distN (x, j);
Set R := R∪ {R1, R2};

Set b(R1) = b(R2) = length(Γ);

end

end

Algorithm 1: 2D-to-3D matching via branch-and-bound.

We observe that in practice we only have to compute a

few shortest paths if we employ Algorithm 1. The main idea

is to follow a coarse-to-fine strategy. First we compute the

shortest path between {0}×R and {m}×R, which connects

(0, i) with (m, j). If this path connects the corresponding

points, i.e., i = j, we found a matching path. Otherwise, we

separate the region R into two sub-regions, R1 containing i

and R2 containing j, and recompute shortest paths in those

smaller sub-regions. Since the shortest path of correspond-

ing sub-regions will not include the previously computed

path, we can use its length as lower bound for both R1 and

R2. Thus, we can control the order in which these subdo-

mains are processed. We propose to separateR with respect

to the geodesic distance distN on the target shape N . After

we found our first matching path, we still have to process

those subdomains whose lower bound is smaller than the

computed matching path. Afterwards, we are sure that we

found the globally optimal matching path Γϕ.

(a) input 2D (b) (c) (d) input 3D

isometric
≈

Figure 4. Spectral features are constructed by considering the

query shape (a) as the boundary of a 2D region (b), which is as-

sumed to be a near-isometric deformation of a sub-region (c) of the

3D target shape (d). The 2D tessellation (b) is obtained via [29].

3. Applications and results

In this section, we apply the proposed method to the

problem of sketch-based deformable shape retrieval. We

emphasize that our method is parameter-free, and the

only choice is with respect to the 2D and 3D features

fM (·), fN (·) as well as the distance function dist(·, ·) be-

tween them.

Datasets. Due to the novelty of the application, to date

there is no benchmark available for evaluating deformable

2D-to-3D shape retrieval methods. We therefore construct

such a benchmark using the FAUST [3] and TOSCA [4]

datasets. The former dataset consists of 100 human shapes,

subdivided into 10 classes (different individuals), each in

10 different poses. The latter consists of 80 shapes, sub-

divided into 9 classes (humans and animals in different

poses). Ground-truth correspondences within each class are

available. Shape sizes are fixed to 7K (FAUST) and 10K

(TOSCA) vertices.

In both datasets, each class comes with a ‘null’ shape in

a “neutral pose”, which we use to define the 2D queries. To

this end, we cut each null shape across a plane of symmetry,

and project the resulting boundary onto a plane. This gives

rise to 2D queries of 200–400 points on average. Note that

by doing so we retain the ground-truth point-to-point map-

ping between the resulting 2D silhouette and the originating

3D target. This allows us to define a quantitative measure

on the quality of the 2D-to-3D matching between objects of

the same class1.

Error measure. Let M be a 2D shape represented as a

planar curve, and N a 3D shape represented as a surface.

Let ϕ : M → N be a matching between a 2D query shape

1The dataset containing shapes and matching is publicly available at

https://vision.in.tum.de/˜laehner/Elastic2D3D/
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and a 3D target shape, and let ϕ0 be the ground-truth match-

ing. The matching error of ϕ at point x ∈M is given by

εϕ(x) =
distN (ϕ(x), ϕ0(x))

diam(N)
, (3)

where distN : N ×N → R
+
0 denotes the geodesic distance

on N and diam(N) = maxx,y∈N distN (x, y) the geodesic

diameter of N . Note that due to the normalization, the val-

ues of the error ε are within [0, 1].

Spectral features. In this paper we advocate the adoption

of spectral quantities to define compatible features between

2D and 3D shapes. Note that differently from existing meth-

ods for 2D-to-3D matching, we compute local features in-

dependently for each given pair of shapes, i.e., no cross-

modal metric learning is carried out.

Let ∆N be the symmetric Laplace-Beltrami operator on

the 3D shape N . ∆N admits an eigendecomposition with

non-negative eigenvalues 0 = λ0 < λ1 ≤ . . . and corre-

sponding orthogonal eigenfunctions ψj : N → R such that

∆Nψj = λjψj . For the definition of our feature maps, we

consider multi-dimensional spectral descriptors, i.e., fea-

tures constructed as functions of λj and ψj . Note that, since

∆N is invariant to isometric transformations of N , the de-

rived spectral descriptors also inherit this invariance.

Popular spectral features are the scaled Heat Kernel

Signature (HKS) [31] and the Wave Kernel Signature

(WKS) [2], which we denote as fHKS
N : N → R

d and

fWKS
N : N → R

d respectively. In our experiments we used

d = 100 and default values as described in the respective

papers. All descriptors were normalized to have maximum

value 1 in order to improve their robustness.

For the 2D case, designing features that can be compared

to their 3D counterparts can be a challenging task. The dif-

ficulty is exacerbated here because the shapes are allowed

to deform. To this end, we consider the solid U of M , i.e.,

∂U = M (cf. Definition 1). In other words, we model the

2D query as a flat 2-manifold with boundary. This new man-

ifold can be regarded as a nearly isometric transformation

(due to flatness and possibly a change in pose) of a portion

of the full 3D target (see Fig. 4). Taking this perspective

allows us to leverage some recent advances in partial 3D

matching [23], namely that partiality transformations of a

surface preserve the Laplacian eigenvalues and eigenfunc-

tions, up to some bounded perturbation.

An implication of this is that we can still compute spec-

tral descriptors on the flat solid U and expect them to be

comparable with those on the full 3D target. By doing so,

we make the assumption that U can be approximated as a

part of nearly-isometrically deformed M . We then define

the feature maps fHKS
M , fWKS

M : M → R
d on M by restrict-

ing the descriptors computed on U to its boundary curve

input 3D input 2D, tessellated input 2D

Figure 5. Computation of local features for elastic matching. Top:

L1-distance (blue to red) between spectral 3D descriptors of a ref-

erence point (white dot) and 3D descriptors computed on the re-

maining shape (left) as well as 2D descriptors on the tessellated

query solid (middle). Bottom: Consensus regions detected in 3D

and 2D using [24]. The restricted features (right) are used in the

energy (1) to drive the matching process.

∂U =M (see Fig. 5, top row). In other words, we have the

spectral features fM = fU |M for the query shape M .

Segment features. As an additional ‘coarse’ feature we

use corresponding regions on the 2D query and the 3D

shape. Based on the previous observations, we are able to

automatically extract compatible regions on the two objects

(namely on U and N ) by consensus segmentation [24], a

deformation-invariant region detection technique which di-

rectly operates with the Laplace-Beltrami eigenfunctions of

a given shape. The region detection step on the two shapes

is performed independently; we then obtain the 2D-to-3D

region mapping by solving a simple linear assignment prob-

lem via the Hungarian algorithm [17]. Note that this assign-

ment problem is typically very small. Assuming we have r

regions per shape (usually in the range of 5 to 10), the final

result of this procedure is a pair of corresponding labelings

fSEG
M : M → N

r and fSEG
N : N → N

r (see Fig. 5, bottom

row).

Distance function. The final feature maps are obtained by

simple concatenation, namely f := (fHKS, fWKS, fSEG).
In order to compare the feature maps on M and N , we de-

fine the distance function:

dist(fM (x), fN (y)) = ‖fHKS
M (x)− fHKS

N (y)‖1 (4)

+ ‖fWKS
M (x)− fWKS

N (y)‖1
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Figure 6. Sensitivity of the spectral features to increasing number

of eigenfunctions. On the right we show typical solutions obtained

when using 25 (blue) and 200 (red) eigenfunctions.

if fSEG
M (x) = fSEG

N (y), and set dist(fM (x), fN (y)) = τ

otherwise. Here, τ > 0 is a large positive value to pre-

vent matching points belonging to different regions. In our

experiments, we used τ = 103.

3.1. Sensitivity analysis

We performed a sensitivity analysis of our elastic match-

ing method on a subset of our FAUST-derived dataset, under

different parametrizations of the spectral features. In most

shape analysis applications, only the first k eigenfunctions

of ∆ are used to define fWKS and fHKS. In the classical

3D-to-3D setting, for large k the resulting descriptors tend

to be more accurate, but at the same time become more sen-

sitive to the lack of isometry relating the two shapes.

We observed a similar trend in our 2D-to-3D setting, as

reported in Fig. 6. From this analysis we selected k = 25
as the fixed number of eigenfunctions for all subsequent ex-

periments. In the figure, we plot cumulative curves show-

ing the percent of matches which have geodesic error (3)

smaller than a variable threshold.

3.2. Runtime

We implemented our method in C++, and ran it on an

Intel Core i7 3.4GHz CPU. In Fig. 7 we show the execution

times of our method on the FAUST dataset (10 queries and

100 targets). The plotted results show that for 3D shapes of

fixed size, in practice the runtime grows linearly with the

number of 2D query points m.

3.3. Sketch­based shape retrieval

We consider a particular shape retrieval setting in which

the dataset is assumed to be a collection of 3D shapes,

and the query is a 2D silhouette (possibly drawn by a hu-

man). Differently from previous techniques [7, 9, 14, 30],

our method does not use learning to compute features, and

most importantly, we allow the shapes to deform in a non-

rigid fashion. The 2D-to-3D shape similarity is obtained
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Figure 7. Top: Runtime of our matching method on 3D targets

with ∼7K vertices (FAUST dataset). On the x axis we vary the

size of the 2D query from 25 to 400 points.

Ours ShapeDNA [20] Consensus [24]

cat 1.0000 0.1310 0.1050

human 1.0000 0.9078 0.6532

dog 1.0000 0.1066 0.3330

horse 0.5062 0.0611 0.0629

wolf 1.0000 0.0379 0.0302

MAP 0.9012 0.2489 0.2369

Table 1. Retrieval results on the 2D-to-3D TOSCA dataset. For

each method we show per-class AP and, in the last row, the MAP.

by considering the minimal value of the energy E(ϕ∗) ob-

tained by our optimization problem.

We evaluated the performance of our retrieval pipeline

on the full 2D-to-3D TOSCA dataset. As baselines for our

comparisons we use the spectral retrieval method of [20]

and a pure region-based retrieval technique using segments

computed with [24]. The rationale of these experiments

is to show that the specific features we use are not suffi-

cient to guarantee good retrieval performance. However,

using these quantities in our elastic matching pipeline en-

ables promising results even in challenging cases.

The first baseline method we compare against is

ShapeDNA [20], using the (truncated) spectrum of the

Laplace-Beltrami operator as a ‘global’ isometry-invariant

shape descriptor. We apply this method to compare targets

in the 3D database with flat tessellations of the 2D queries.

The second method used in the comparisons is a sim-

ple evaluation of the matching cost obtained when putting

the consensus regions into correspondence via linear assign-

ment (see Fig. 5). Since this step typically produces good

coarse 2D-to-3D matchings, it can be used as a retrieval

procedure per se.

The results of the shape retrieval experiments are re-

ported in Table 1. We used average precision (AP) and

mean average precision (MAP) as measures of retrieval per-

formance2. Additional qualitative examples of solutions ob-

tained with our method are shown in Fig. 8.

2Precision measures the percentage of correctly retrieved shapes.
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Figure 8. Retrieval examples on the TOSCA dataset. Left: Two of the three 2D queries (cat and wolf) have missing parts (two legs in

contrast to Fig. 2). Each row shows the top 5 results (ranked by matching energy) provided by our method. The corresponding matching

curves are shown on top of the 3D targets. Note that the dataset only contains 3 wolf shapes, which show up as the top 3 matches. The next

matches are shapes of the class “dog”, which is a semantically similar class.

4. Discussion and conclusions

We proposed the first polynomial-time solution for

matching deformable planar curves to 3D shapes. We

prove that the worst-case complexity of this algorithm is

O(mn2 log(n)), wherem and n denote the number of sam-

ples on the query curve and the 3D shape respectively. We

show experimentally that the running time remains linear

with respect to m, even when employing a branch-and-

bound strategy, making it a very efficient approach that

matches curves of hundreds of vertices to 3D shapes with

thousands of vertices in a few seconds. We also would like

to stress that the branch-and-bound strategy is so effective

due to the presented features. Removing the segment fea-

ture fSEG from our framework, increases the running time

by 2–3 orders of magnitude.

Our algorithm provides a powerful tool for shape analy-

sis, and in particular has great potential in applications such

as 3D shape retrieval from 2D sketches.

Limitations. The main limitation of our method is the as-

sumption that the query 2D shape is a closed planar curve.

In some situations, this may limit the ‘expressivity’ of the

sketch and pose a disadvantage compared to image-based

approaches in sketch-based retrieval applications.

Future research directions. One notable drawback of

our discrete optimization is the use of Dijkstra’s algorithm

for finding shortest paths on the product manifold, which in

some situations may not be a consistent discretization of the

geodesic distance. In follow-up works, we will explore the

use of consistent fast-marching-like schemes.
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