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Abstract

The appearance of (outdoor) scenes changes consider-

ably with the strength of certain transient attributes, such

as “rainy”, “dark” or “sunny”. Obviously, this also af-

fects the representation of an image in feature space, e.g.,

as activations at a certain CNN layer, and consequently im-

pacts scene recognition performance. In this work, we in-

vestigate the variability in these transient attributes as a

rich source of information for studying how image repre-

sentations change as a function of attribute strength. In

particular, we leverage a recently introduced dataset with

fine-grain annotations to estimate feature trajectories for a

collection of transient attributes and then show how these

trajectories can be transferred to new image representa-

tions. This enables us to synthesize new data along the

transferred trajectories with respect to the dimensions of

the space spanned by the transient attributes. Applicabil-

ity of this concept is demonstrated on the problem of one-

shot recognition of scene locations. We show that data syn-

thesized via feature trajectory transfer considerably boosts

recognition performance, (1) with respect to baselines and

(2) in combination with state-of-the-art approaches in one-

shot learning.

1. Introduction

Learning new visual concepts from only a single image

is a remarkable ability of human perception. Yet, the pre-

dominant setting of recognition experiments in computer vi-

sion is to measure success of a learning process with respect

to hundreds or even thousands of training instances. While

datasets of such size were previously only available for

object-centric recognition [2], the emergence of the Places

database [31] has made a large corpus of scene-centric data

available for research. Coupled with advances in CNN-

based representations and variants thereof, the performance

of scene recognition systems has improved remarkably in

the recent past [8, 31, 3], even on already well established

(and relatively small) benchmarks such as “15 Scenes”.

However, large scale databases are typically constructed
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Image representation Scenario A Scenario B ∆

SUN attributes (XS) 65.1 93.0 -27.9

Places-CNN (Xfc7) 79.5 98.3 -18.8

Scenario A: limited attribute variability for training

In this illustration, the transient attribute is “sunny”.

Scenario B: full attribute variability for training

Figure 1: Introductory experiment on the Transient Attributes

Database of [11]. The task is to distinguish scenes from different

webcams. In Scenario A, images with annotated attribute strengths

(in the range of [0, 1]) less than 0.4 are excluded during training

and used for testing. Results are averaged over 40 attributes. Sce-

nario B represents a standard five-fold cross-validation setup, us-

ing random splits of the data. The size of each training split is set

to approximately the size as in Scenario A. In summary, significant

drops in recognition accuracy occur when only limited variability

is present in the training data with respect to (transient) attributes.

by fetching images from the web and subsequently crowd-

sourcing the annotation task. Consequently, a considerable

user bias [25] is expected, e.g., with respect to captured

conditions. It is, e.g., highly unlikely that scenes of “city

skylines” or “beaches” are captured during rainy or cloudy

conditions. Hence, we expect that the observed variability

of transient states in readily available scene databases will

be limited. The question then is if this existing visual data

is rich enough to sufficiently inform the process of learning

to recognize scenes from single instances, i.e., the afore-

mentioned task on which humans perform so exceptionally

well.
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While the majority of approaches to scene recognition

either rely on variants of Bag-of-Words [6, 13], Fisher vec-

tors [22], or outputs of certain CNN layers [8, 31, 3], sev-

eral works have also advocated more abstract, semantic (at-

tribute) representations [21, 23, 10]. Largely due to the ab-

sence of fine-grained semantic annotations, the axes of the

semantic space typically correspond to the scene category

labels. To alleviate this problem and to enable attribute rep-

resentations of scene images, Patterson et al. [18] have re-

cently introduced the SUN attribute database. This is moti-

vated by the success of attributes in object-centric recogni-

tion [4, 12]. However, construction of the attribute vocabu-

lary is guided by the premise of enhancing discriminability

of scene categories. Somewhat orthogonal to this objective,

Laffont et al. [11] recently introduced the concept of tran-

sient attributes, such as “sunny” or “foggy”. This is particu-

larly interesting in the context of studying scene variability,

since the collection of attributes is designed with high vari-

ability in mind (as opposed to discriminability). Equipped

with a collection of trained attribute strength regressors, this

enables us to more thoroughly assess variability issues.

Is limited scene variability a problem? To motivate our

work, we start with three simple experiments. For technical

details, we refer the reader to Section 4.

First, we consider the (supposedly) simple recognition

problem of distinguishing images from the 101 webcams

used in the Transient Attribute Database (TADB) [11]. We

refer to this task as recognition of scene locations, since

each webcam records images from one particular location.

Each image is hand-annotated by the strength of 40 differ-

ent transient attributes. We use activations of the final fully-

connected layer (’fc7’) in Places-CNN [31] as our feature

space Xfc7 ⊂ R
4096 and a linear support vector classi-

fier. In Scenario A, images with annotated attribute strength

below a certain threshold are excluded during training and

used for testing. In Scenario B, we perform five-fold cross-

validation using random splits of all available data. Fig. 1

shows that almost perfect accuracy (98.3%) is achieved in

Scenario B. However, the recognition rate drops by almost

20 percentage points in Scenario A. This clearly highlights

that limited variability with respect to the transient state of a

scene can severely impact recognition accuracy, even when

using one of the state-of-the-art CNN representations.

In our second experiment, the task is to predict the scene

category of images in TADB, this time by directly using the

205 category labels as outputted by the pre-trained Places-

CNN. In this setup, images from different scene locations

(i.e., webcams) could be from the same scene category (e.g.,

“mountain”). However, under the assumption of invariance

against the transient states of a scene, we would expect to

obtain consistent predictions over all images from the same

webcam. This is not always the case, though, as can be seen

from Fig. 2 showing scene locations from TADB with highly
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Figure 2: Illustration of the two locations (left) from TADB with

most inconsistent predictions by Places-CNN. The number in the

top-right hand corner of each column denotes the number of differ-

ent predictions. The rightmost column shows the only scene with a

consistent prediction over all its images. The mean number of dif-

ferent category predictions over all TADB webcams is 10.3± 4.6.

inconsistent predictions, as well as the only scene location

where the Places-CNN prediction is consistent over all im-

ages from this webcam. On average, we get 10.3± 4.6 dif-

ferent predictions per webcam. This is in line with our ob-

servation from the previous experiment. It further strength-

ens our conjecture that features learned by Places-CNN are

not invariant with respect to transient states of a scene.

Third, we assess how much variability in transient at-

tributes is covered by existing image corpora for scene

recognition. In particular, we train a collection of regressors

to predict the strength of all 40 attributes in TADB, using the

same CNN-based image representation of the previous two

experiments. We then use the trained regressors to map each

image of the SUN397 database [27] into the 40-dimensional

attribute space. Note that the transient attributes only apply

to outdoor scenes; consequently only images from the out-

door categories in SUN397 were used. For each category

and attribute, we record the 5th and the 95th percentile of

the predicted attribute strength (denoted by p5 and p95) and

compute the range (r = p95 − p5). Fig. 3 shows a series of

boxplots, where each column represents the distribution of

range values r, collected from all images and attributes in a

particular scene category. The median over all range values

is 0.33, indicating that the observed variability is limited

with respect to the transient attributes. We also conducted

the same experiment on 50000 randomly sampled images

from 10 outdoor categories of the Places dataset∗. While

the median increases to 0.41, this is still far below a com-

plete coverage of the transient attribute space. For compari-

son, when running the same experiment on TADB itself, the

median is close to 1 by construction.

In summary, the first two experiments highlight the neg-

ative effect of limited variability in the training data, the

∗abbey, alley, amphitheater, apartment building (outdoor), aqueduct,

arch, badlands, butte, basilica and bayou
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Figure 3: Illustration of limited scene variability with respect to transient attributes in the outdoor scenes of SUN397. Each column

represents the distribution of range values r — defined as r = (p95 − p5), where pi denotes the ith percentile of the data — collected from

all images and attributes in a scene category (listed on the x-axis).

third experiment is a direct illustration of the lack of vari-

ability. Even in case of Places, our experiments suggest

that the image data does not sufficiently cover variability in

transient attributes so that the CNN can learn features that

exhibit the required degree of invariance. Note that the most

extreme scenario of limited variability is learning from sin-

gle instances, i.e., one-shot recognition. Only a single tran-

sient state is observed per scene category. To the best of

our knowledge, this has gained little attention so far in the

scene recognition community. The motivating question for

this work boils down to asking whether we can artificially

increase variability – via data synthesis – by learning how

image representations change depending on the strength of

transient attributes.

Organization. In Section 2 we review related work. Sec-

tion 3 introduces the proposed concept of feature trajectory

transfer. Section 4 presents our experimental evaluation of

the main parts of our pipeline and demonstrates one-shot

recognition of scene locations. Section 5 concludes the pa-

per with a discussion of the main findings and open issues.

2. Related work

Most previous works in the literature consider the prob-

lem of scene recognition in a setting where sufficient train-

ing data per scene category is available, e.g., [28, 10, 3, 31].

To the best of our knowledge, one-shot recognition has not

been attempted so far. However, there have been many ef-

forts to one-shot learning in the context of object-centric

recognition [17, 24, 30, 5]. In our review, we primarily fo-

cus on these approaches.

A consensus among most avenues to one-shot learning

is the idea of “knowledge transfer”, i.e., to let knowledge

about previously seen (external) data influence the process

of learning from only a single instance of each new class.

In early work, Miller et al. [17] follow the idea of syn-

thesizing data for classes (in their case digits) with only a

single training instance. This is done through an iterative

process called congealing which aligns the external images

of a given category by optimizing over a class of geometric

transforms (e.g., affine transforms). The learned transforms

are then applied to each single instances of the new cate-

gories to augment the image data.

In [5], Fei-Fei et al. coin the term one-shot learning in

the context of visual recognition problems. They propose a

Bayesian approach where priors on the parameters of mod-

els for known object categories (in the external data) are

learned and later adapted to object categories with few (or

only a single) training instances.

In [7], Fink advocates to leverage pseudo-metric learn-

ing to find a linear projection of external training data that

maximizes class separation. The learned projection is then

used to transform the one-shot instances of new categories

and a classifier is learned in the transform space. Tang et

al. [24] follow a similar idea, but advocate the concept of

learning with micro-sets. The key to achieve better results

is to learn over multiple training sets with only a single in-

stance per category, i.e., the micro-sets. This has the effect

of already simulating a one-shot recognition setting during

metric learning on external data.

Bart and Ullmann [1] propose to use feature adaptation

for one-shot recognition. In particular, features (e.g., infor-

mative image fragments) in new, single instances of a cate-

gory are selected based on their similarity to features in the

external training data and their performance in discriminat-

ing the external categories.

Yu and Aloimonos [30] tackle one-shot learning of ob-

ject categories by leveraging attribute representations and a

topic model that captures the distribution of features related

to attributes. During learning, training data is synthesized

using the attribute description of each new object category.

Pfister et al. [20] propose one-shot learning of gestures

using information from an external weakly-labeled gesture

dataset. Exemplar SVMs [16] are used to train detectors for

the single gesture instances and the detectors are then used

to mine more training data from the external database.

Salakhutdinov et al. [26] consider one-shot learning by

80



adding a hierarchical prior over high-level features of Deep

Boltzmann Machines. The model is trained on external data

plus the one-shot instances of the novel categories. While

the approach generalizes well on the categories with few

(or only a single) training instance(s), information transfer

happens during training which requires to retrain in case

new categories are added.

Recently, Yan et al. [29] have explored multi-task learn-

ing for one-shot recognition of events in video data. Ex-

ternal data from different categories is added to the single

instances of the new categories; then, multi-task learning

is used to distinguish the categories with the intuition that

tasks with lots of training data inform the process of learn-

ing to distinguish the new categories.

Conceptually, our approach is related to Miller et al. [17]

and Yu and Aloimonos [30] in the sense that we also syn-

thesize data. However, Miller et al. synthesize in the input

space of images, while we synthesize image representations

in feature space. The generative model of [30] also allows

feature synthesis, however, does not specifically leverage

the structure of the space as a function of a continuous state.

With respect to other work, we argue that our approach is

not a direct competitor, but rather complementary, e.g., to

the pseudo-metric learning approaches of Fink [7] or Tang

et al. [24]. In Section 4, we present experiments that specif-

ically highlight this point.

3. Methodology

On an abstract level, the key idea of our approach is

to use information obtained from an external training cor-

pus to synthesize additional samples starting from a limited

amount of previously unseen data. The objective is to in-

crease the variability of transient states available for train-

ing. Specifically, we want to use knowledge about how the

appearance of a scene location – as captured by its image

representation – varies depending on the state of some tran-

sient scene attributes. This concept, illustrated in Fig. 4,

is based on two assumptions: First, we can predict the tran-

sient state of a scene image based on its representation. Sec-

ond, we can model the functional dependency between such

a transient state and the elements of the feature representa-

tion as a trajectory in feature space. We will provide empir-

ical evidence backing both assumptions in Section 4.

3.1. Feature trajectory transfer

We adhere to the following conventions. We denote by

I1, . . . , IN the external training corpus of N images. Each

image Ii is assigned to one of C scene locations (categories)

with label yi ∈ [C]† and represented by a D-dimensional

feature vector xi ∈ X ⊂ R
D. Additionally, each image is

annotated with a vector of transient attribute strengths ai ∈

†[n] is the set {1, . . . , n} with n ∈ N

X

xu1 x∗, rk(x
∗) = α

Previously unseen instance

trajectory transfer

Instances in external training corpus
xi Feature vector in X

c Scene location c ∈ [C ]
α Strength of the k-th attribute

rk(·) Attribute strength regressor

xuj

xuM

yu1 = c

yuM = c

yuj = c

Figure 4: Illustration of feature trajectory transfer and synthesis.

For a previously unseen image, given by x
∗
∈ X , we first com-

pute its representation in the transient attribute space by evaluat-

ing the learned attribute regressors rk. Second, we iterate over all

scene locations (here only one scene location is shown) from the

external image corpus and transfer the learned feature trajectories

for each attribute to x
∗. Third, this allows us to predict features

along the trajectory for this attribute (over its full range). The fi-

nal synthesized image representation is a weighted combination of

predictions from all scene locations, see Eq. (4).

R
A
+, where AT denotes the set of attributes and A = |AT |.

Also, let I∗ be a previously unseen image, represented by

x
∗ ∈ X , and let x[d] denotes the d-th component of x.

Since no attribute representation is available for unseen

data, the idea is to use a collection of learned regressors rk :
X → R+, k ∈ [A] to estimate the attribute strength vec-

tor [r1(x
∗), . . . , rA(x

∗)] from x
∗. These attribute strength

regressors can be learned, e.g., using support vector regres-

sion, or Gaussian process regression (cf. Section 4).

For a given scene location, we wish to estimate the path

γk : R+ → X for every attribute in AT . In our case, we rely

on a simple linear model to represent this path. Formally,

lets fix the scene location c and let Sc = {i : yi = c} be the

index set of the M = |Sc| images from this location. The

model, for the k-th attribute, can then be written as

xi = wk · ai[k] + bk + ǫk (1)

where wk,bk ∈ R
D are the slope and intercept parameters

and ǫk denotes (component-wise) Gaussian noise. We can

easily estimate this model, for a specific choice of c, using

linear regression with data vectors z and v, i.e.,

z =






xu1
[d]

...

xuM
[d]




 ,v =






au1
[k]

...

auM
[k]




 , ui ∈ Sc, d ∈ [D]. (2)

Note that for each dimension d and attribute k, we ob-

tain one tuple (wk[d],bk[d]) of slope and intercept that
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parametrizes the linear model. In summary, we estimate

(w1,b1), . . . , (wA,bA) for every scene location c, describ-

ing the feature trajectories in the external data corpus.

Synthesizing new data, starting from a previously unseen

instance x
∗, can now be done in the following way. Lets

consider the feature trajectory of the k-th attribute and scene

location c (parameterized by wk and bk). We define the

synthesis function sk : R+ ×X → X as

sk(t,x
∗) = wk · (t− rk(x

∗)) + x
∗. (3)

Up to this point, we have fixed c for readability. How-

ever, in practice the question remains how to select the most

informative scene location from the external data to perform

trajectory transfer. Conceptually, we follow the principle

(cf. [1]) of identifying informativeness as the similarity of

I∗ to each scene location in the external training corpus. In

particular, our objective is to select locations which are sim-

ilar in appearance, e.g., as measured in the feature space X .

To avoid relying on hard decisions for one location, we ad-

vocate to take the trajectories of all locations into account.

This can be achieved by weighing the contribution of each

model with the similarity of I∗ to a scene location. In our

approach, weights are determined by the posterior probabil-

ity of x∗ under all locations, i.e., ∀c : pc = P [c|x∗]. This

can be obtained, e.g., by using the output of a probability-

calibrated support vector classifier that is trained (on the

external training corpus) to distinguish between locations.

The synthesis function of Eq. (3) is then (re)formulated as

sk(t,x
∗) =






∑

c∈[C]

P [c|x∗]
︸ ︷︷ ︸

pc

w
c
k · (t− rk(x

∗))




+ x

∗. (4)

Alternatively, the contribution of each location could be

ranked by P [c|x∗]. This process of synthesizing additional

feature representations as a function of the desired attribute

strength t ∈ R+ is repeated for every attribute in AT .

Relation to data augmentation. While the process of

synthesizing image representations in X , depending on at-

tribute strength, is particularly useful in our target applica-

tion of one-shot recognition, it can potentially be used as an

augmentation technique in other scenarios as well.

4. Experiments

Our experiments are structured as follows: First, we as-

sess the performance of predicting attribute strength, i.e.,

the quality of rk (see Section 3.1). Second, we evaluate the

quality of our linear model for synthesizing different image

representations. Third, we address the problem of one-shot

recognition of scene locations as our target application.

Datasets. We use the Transient Attributes Database

(TADB) [11] that we already briefly introduced in Section 1

in all recognition experiments. In detail, the dataset con-

tains 8571 images from 101 webcams which serve as our

scene locations. The recognition task is to assign an image

to the correct scene location. While this might sound artifi-

cial and overly simplistic at first, Figs. 1 and 2 reveal that the

task is actually fairly difficult, especially when the training

data is constrained to only contain a certain amount of vari-

ability in the transient states. Each image in TADB is hand-

annotated with 40 transient attributes; this set is denoted as

AT and corresponds to the attribute set in Section 3. Fur-

ther, we also use the SUN Attributes Database (SADB) [18]

which contains 14340 images, each hand-annotated with re-

spect to a collection AS of 102 discriminative attributes.

Note that SADB is only used for training attribute detectors

(i.e., presence/absence). These detectors are then employed

to map images, represented in Xfc7 (specified below), into

the alternative feature space XS ⊂ R
|AS |.

Image representations. All of our image representations

build upon Places-CNN [31], one of the state-of-the-art

CNN architectures for scene recognition. The CNN is based

on the AlexNet architecture of [9]. In particular, we use the

activations of the 4096 neurons in the last fully-connected

layer (’fc7’) and denote this as our feature space Xfc7. We

either represent images directly in that space, use it as an

intermediate image representation to detect discriminative

attributes from AS , or use it to regress the strength of tran-

sient attributes from AT . In all recognition experiments,

we further perform dimensionality reduction of features in

Xfc7 via PCA to 200 dimensions. This retains ≈ 90% of the

variance in the data. In case of features in XS , we also per-

form PCA, not to reduce dimensionality, but to decorrelate

the feature dimensions. PCA is followed by component-

wise normalization to [−1, 1], similar to [24].

Implementation. To obtain regressors for the strength of

the 40 transient attributes in AT , we train a collection of

linear support vector regressors (SVR). To obtain detectors

for the presence/absence of the 102 attributes in AS , we

train a collection of linear support vector classifiers (SVC),

configured for probability outputs. We do not binarize the

predictions (as in [18]), but use the probability for an at-

tribute being present to represent images in XS . Probability

outputs of a SVC are also used to obtain the weights pc re-

quired to compute Eq. (4). In that case, the SVC is trained

(one-vs-all) to distinguish scene locations (i.e., webcams)

from the external TADB training data. The latter setup is

also used for recognition of scene locations in the one-shot

learning experiments. In all cases, we use the SVM im-

plementation available as part of the scikit-learn [19]

toolbox; the SVR/SVC cost parameter C is configured us-

ing five-fold cross-validation on a left-out portion of the

training data. The source code to reproduce the results of

the paper is available online at https://github.com/

rkwitt/TrajectoryTransfer.
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Transient attributes AT [11] SUN attributes AS [18]

MSE R2 MAP

0.05± 0.01 0.28± 0.17 0.90± 0.04

Table 1: Performance of regressing transient attribute strength,

evaluated on TADB, and attribute detection, evaluated on SADB,

using images represented in Xfc7.

4.1. Attribute regression / detection performance

Attribute regression. We start by assessing the first as-

sumption of Section 3.1, i.e., predicting a transient state of a

scene from its image representation, in our case x ∈ Xfc7.

We choose the following performance metrics: we report

the mean-squared-error (MSE) and the R2 score per at-

tribute. The R2 score is an informative measure, capturing

how much variation in the dependent variable (i.e., the at-

tribute strength) is explained by the model. A R2 score of

0 indicates no linear dependency, 1 indicates perfect linear

dependency. All results are averaged over 10 random splits

of TADB (split by scene location). In particular, the data for

61 webcams is selected for training, the data for the remain-

ing 40 webcams is selected for testing. This is equivalent to

the Holdout experiment reported in [11]. Table 1 lists the

performance measures. Overall, the MSE of 0.05 is compa-

rable to the results of [11]. From the R2 statistic of 0.28, we

see that there is a linear relationship, yet this relationship is

not particularly strong. Nevertheless, the computational ad-

vantages of using a linear SVR (e.g., training/testing in lin-

ear time) nicely balances the tradeoff between model choice

and computational resources.

Attribute detection. Since we will experiment with the

attribute-based image representation of [18] (i.e., images

represented in XS) in our one-shot recognition tests, we

first need to assess the performance of detecting the pres-

ence/absence of the 102 SUN attributes AS . For this assess-

ment, we use the images from SADB and the original splits

provided by [18]. Table 1 reports the mean average preci-

sion (MAP). Note that the MAP of 0.90 is slightly higher

than the 0.88 originally reported in [18], presumably due to

our use of Places-CNN features. Most notably, the AP per

attribute rarely drops below 0.8.

Trajectory estimation. Next, we address the second as-

sumption of Section 3.1, i.e., whether it is reasonable to

assume linear dependency between the strength of a tran-

sient attribute and the entries of an image representation. In

particular, we measure the quality of regressing the entries

of representations in Xfc7 and XS , as a function of the at-

tribute strength. Our evaluation measures are MSE and the

R2 score. Since, according to Section 3, we fit one trajec-

tory per attribute and scene location, the MSE and R2 are

averaged over all models. From Table 2, we see that a linear

model fits best for data in Xfc7 with a MSE of 0.03 and a

Image representation #Dim. R2 MSE

Places-CNN (Xfc7) 200 0.14 0.03
SUN attributes (XS) 102 0.11 0.03

Table 2: Evaluation of a linear model for regressing image repre-

sentations, evaluated on TADB, in Xfc7 and XS as a function of

the transient attribute strengths.

R2 score of 0.14. For representations in the SUN attribute

space XS , performance is lower in both measures. We hy-

pothesize that this result is due to the additional layer of

indirection, i.e., detecting attribute presence/absence from

features in Xfc7. Overall, the R2 scores are relatively low,

however, they do indicate some linear relationship. We ar-

gue that these results still warrant the use of a linear model,

but obviously leave room for potential improvements.

4.2. One­shot recognition of scene locations

The objective of our one-shot recognition experiments is

to distinguish scene locations from only a single image per

location available for training. Due to the characteristics of

one-shot learning, i.e., a very limited amount of available

data and therefore no variability in the transient states, tra-

jectory transfer is a natural approach to this problem.

We run all recognition experiments on TADB. We use

only this database, since it is specifically designed to have a

high degree of variability in the transient attributes. This

allows us to assess the quality of trajectory transfer on

suitable evaluation data. Note that we deliberately do not

use SUN397, or Places to demonstrate our approach, since

scene variability (cf. Section 1, Fig. 3) is quite limited, cer-

tainly not with respect to scene configurations, but with re-

spect to the range of transient attribute strengths.

Evaluation setup. We follow a standard cross-validation

protocol. In detail, we repeatedly (for 10 times) split the

number of scene locations into 61 training and 40 testing

locations at random. The 61 locations serve as our exter-

nal training corpus that is used for (1) training the attribute

strength regressors for all attributes in AT , (2) estimating

feature trajectories and (3) computing the weights for tra-

jectory transfer. For one-shot recognition, we select one im-

age at random from each of the 40 test locations. Random

chance for this classification problem is at 2.5%. We stick

to the following notation in Table 3: whenever the one-shot

instances of the 40 scenes are used as training data, we de-

note this by (A). Experiments with data synthesized using

trajectory transfer are indicated by (+S). Recognition rates

are reported for the remaining (i.e., after removal of the one-

shot instances) images of the test split, averaged over the

cross-validation runs. We synthesize data for all attributes

in AT , using R different attribute strengths, linearly spaced

in [0, 1]. This is done, since the hand-annotated attribute

strengths in [11] are also normalized to that range.
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Comparison(s). To establish baselines for one-shot recog-

nition, we first train a linear SVC on the single instances of

the 40 scene locations in the testing portion of each split and

refer to this first baseline as SVC (A). Our second baseline

is obtained by adding data synthesized from random trajec-

tories, indicated as SVC (A+Random).

Regarding one-shot approaches from the literature, we

compare against the approaches of Fink [7] and Tang et al.

[24] which are both based on learning a suitable pseudo-

metric from the external training data. In both cases, we

learn a linear transformation. In particular, we implement

[7] using LSML [14] for metric learning (instead of POLA).

Tang et al. [24] adapt neighborhood component analysis

(NCA) to the setting of one-shot learning and advocate the

use of so called micro-sets during optimization of the trans-

form. We closely follow the original setup of [24] by choos-

ing 10 instances of every class for testing, one for training

and SGD for optimization. Whenever we report results with

metric learning, we add (+ML) and the reference to the spe-

cific approach, e.g., SVC (A+ML).

Additionally, we combine feature trajectory transfer with

the aforementioned pseudo-metric learning approaches of

[7] and [24]. As mentioned earlier, those approaches are

not necessarily competitors, but rather provide complemen-

tary information. In fact, learning a suitable metric can be

naturally combined with data synthesized by our approach:

the learned transform is not only applied to the one-shot

instances, but also on the synthetic instances. We indicate

such combinations as (A+S+ML) when reporting results.

4.2.1 Results

Table 3 lists the results for our one-shot recognition exper-

iments. The number of synthesized samples for trajectory

transfer is set to R = 5. This leads to a total of 5 · 40 = 200
additional features per one-shot instance. Interestingly, we

found that increasing the number of synthesized samples

per attribute does not improve the recognition accuracy. In

fact, R ≥ 2 already produces stable results. One reason for

this behavior could be that our approach independently syn-

thesizes data for each attribute. This is certainly suboptimal

and introduces redundancies. For example, sweeping “day-

light” from 0 → 1 might have similar effects than sweeping

“night” from 1 → 0. A second reason might be that lin-

early spacing R = 2 values over the range [0, 1], by design,

covers the extreme ends of the transient attribute strengths.

A first observation is that using all available data (i.e.,

all images of the 40 locations in each test split) in a five-

fold cross-validation setup, denoted by SVC (Ref, CV)

in Table 3, leads to almost perfect recognition accuracy. The

observed behavior is in line with our initial experiment in

Fig. 1. The small difference in the numerical results can be

explained by the fact that in Fig. 1 data from all 101 scene

locations was used, whereas in Table 3 cross-validation was

Image representation

Xfc7 XS

SVC (A) 78.0± 4.5 61.2± 4.9
→ SVC (A+S) 80.7± 4.5 61.7± 5.0

SVC (A+Random) 77.7± 4.5 60.5± 5.1
SVC (A+ML [7]) 88.2± 3.9 61.6± 5.2

→ SVC (A+S+ML [7]) 89.2± 3.9 61.2± 5.2
SVC (A+ML [24]) 80.6± 4.6 61.8± 4.5

→ SVC (A+S+ML [24]) 84.1± 4.1 63.5± 4.4

SVC (Ref, CV) 99.5± 0.1 97.4± 0.4

Table 3: Accuracy (±1σ, averaged over ten runs) of one-shot

recognition; (1) using one-shot instances only (A), (2) using one-

shot instances + synthesized data (A+S) and (3) using (A, or A+S)

in combination with metric learning (+ML). Random chance is at

1/40 = 2.5%. SVC (Ref, CV) reports the accuracy that can

be obtained using all available data. Results obtained with syn-

thesized data are marked by ’→’; highlighted cells indicate im-

provements from adding synthesized data. For comparison, SVC

(A+Random) lists the results obtained via random trajectories.

performed on data from only 40 locations.

Second, we see that using data synthesized via trajectory

transfer always improves recognition accuracy over not in-

cluding synthetic data for image representations in Xfc7.

This effect is less pronounced for representations in XS .

Third, and most notably, the results indicate the com-

plementary nature of synthetic data (obtained via trajec-

tory transfer) in combination with pseudo-metric learning

[7, 24]. While, relying on the learned transformations alone,

i.e., (A+ML), already leads to fairly good results, includ-

ing synthetic data is beneficial with accuracy gains rang-

ing from 1 to 3 percentage points. Overall, the top perfor-

mance is obtained by SVC (A+S+ML [7]) with 89.2%.

This is a considerable improvement over the baseline SVC

(A) and reduces the gap between using all available data

and only using the one-shot instances to ≈ 10 percentage

points. Extracting the minimum (81.5%) and maximum

(93.4%) accuracies obtained with SVC (A+S+ML [7])

over all splits also shows that performance depends on the

specific instances that are used as one-shot examples. This

is not surprising, since the transient states of these images

essentially anchor the process of trajectory transfer.

Since, we cannot directly visualize the synthesized fea-

ture representations, Fig. 6 shows a selection of image re-

trieval results instead. Starting from our one-shot exam-

ples, we synthesized representations using trajectory trans-

fer (for “sunny”) and used these to search for the closest

(i.e., nearest-neighbor) image in the external data. While,

Fig. 6 only shows a small selection, the retrieved images

appear to reflect the desired change in attribute strength.

Combined with the results from Table 3, this indicates that

trajectory transfer produces meaningful representations.
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As an additional comparison, we note that a simplified‡

automatic variant of Laffont et al.’s [11] appearance transfer

(to create, for each desired attribute strength and R = 5, ad-

ditional images) leads to an accuracy of 71.7±4.7. Notably,

this result is below the accuracy of training with one-shot

instances alone (SVC+A). While, we obtain reasonable syn-

thetic images in many cases, transferring appearance with-

out segment matching [11, §6.2] (not implemented in our

setup) tends to introduce spurious image details in the final

synthesis results, see Fig. 5; this eventually leads to fea-

tures in Xfc7 that apparently confuse the SVM classifier.

Nevertheless, exploring the full pipeline of [11] is a promis-

ing avenue for future work, regardless of the relatively high

computational demand (compared to trajectory transfer).

Finally, we remark that improvements in recognition

accuracy for image representations in XS are minor and

the the gap between SVC (A) and SVC (Ref, CV) of

≈ 36 percentage points is substantial. In fact, we can only

demonstrate marginal improvements of about 3 percentage

points. This behavior is somewhat expected, since the ad-

ditional layer of abstraction when predicting attributes adds

another source of uncertainty when estimating feature tra-

jectories. Table 2 also support this explanation. By using

Xfc7 directly, we (1) avoid this indirection and (2) use im-

age representations that already are highly discriminative.

5. Discussion

Throughout all experiments of this work, we have seen

that changes in the appearance of a scene with respect to

transient attributes affect the underlying image representa-

tion, e.g., in Xfc7. In the ideal case, features would be to-

tally invariant with respect to the particular state of a tran-

sient attribute. Consequently, one-shot recognition would

“reduce” to the problem of achieving good generalization

with respect to the configuration of a particular scene cate-

gory (i.e., different variants of beaches, alleys, arches, etc.).

However, as we have seen in Figs. 1 and 2, changes in tran-

sient states manifest as changes in the image representations

and negatively impact scene recognition performance.

While the introduction of large scene recognition

datasets, such as Places, has led to better generalization

with respect to variability in scene configuration, the data

collection process (e.g., via image search engines) does not

seem to achieve complete coverage with respect to tran-

sient attribute variability (cf. Section 3). However, the re-

cently released dataset of [11] allows us to study and even-

tually model the functional dependency between transient

attributes and feature representations. This enables the pro-

posed feature trajectory transfer and allows us to increase

variability via synthesized data. As demonstrated in our ex-

periments on one-shot recognition of scene locations, the

‡We closely follow [11], but do not implement segment matching as in

[11, §6.2] and no human is involved in the selection of “target” images.

Transfer result

Single-shot

sunny @ 1.0

glowing @ 1.0 summer @ 0.75summer @ 0.25

sunny @ 0.0

storm @ 0.75

Figure 5: Some qualitatively good (top) and bad (bottom) results

of a simplified variant of Laffont et al.’s appearance transfer [11].

Retrieval result
(query: ssunny(0, x∗))

Retrieval result
(query: ssunny(1, x∗))

Single-shot instance
(x∗ ∈ Xfc7)

Figure 6: Exemplary retrieval results (left/right) for three single-

shot images (middle), when the query is executed based on the

feature representation, synthesized for a desired attribute strength

(here: “sunny” of 0 and 1) via trajectory transfer.

resulting increased coverage of the feature space has a pos-

itive effect on recognition accuracy.

The proposed approach also raises several interesting

issues. First, we remark that regressing feature dimen-

sions independently only makes sense after decorrelation

via PCA. However, this is done one attribute at a time and

ignores potential relationships between the attributes (such

as “sunny” & “daylight”). An alternative strategy could be,

e.g., to regress feature dimensions from combinations of re-

lated transient attributes. A second question is, how trajec-

tory transfer performs as an augmentation technique beyond

one-shot recognition scenarios. Finally, it will be interesting

to (qualitatively) study the results of strategies, e.g., Mahen-

dran and Vedaldi [15], that allow for an inversion of feature

representations. While this might be challenging for acti-

vations from the ’fc7’ layer of Places-CNN, inversion re-

sults from features (produced via trajectory transfer) at ear-

lier layers could potentially lead to greater insight into what

is being captured by the proposed approach.
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