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Abstract

Since Convolutional Neural Networks (CNNs) have be-

come the leading learning paradigm in visual recognition,

Naive Bayes Nearest Neighbor (NBNN)-based classifiers

have lost momentum in the community. This is because (1)

such algorithms cannot use CNN activations as input fea-

tures; (2) they cannot be used as final layer of CNN archi-

tectures for end-to-end training , and (3) they are generally

not scalable and hence cannot handle big data. This pa-

per proposes a framework that addresses all these issues,

thus bringing back NBNNs on the map. We solve the first

by extracting CNN activations from local patches at mul-

tiple scale levels, similarly to [13]. We address simulta-

neously the second and third by proposing a scalable ver-

sion of Naive Bayes Non-linear Learning (NBNL, [7]). Re-

sults obtained using pre-trained CNNs on standard scene

and domain adaptation databases show the strength of our

approach, opening a new season for NBNNs.

1. Introduction

The current easy access to terabytes of visual data, com-

bined with the impressive ability of deep learning algo-

rithms to exploit them, has led to a paradigm shift in vi-

sual recognition over the last few years. The so called shal-

low architectures, i.e. learning algorithms consisting of 1-3

levels, have survived only when (a) they have been able to

scale over very large amount of data and classes ( i.e. ≥ 106

and ≥ 103 respectively); (b) they could be used as the final

layer of Convolutional Neural Network (CNN)s, allowing

for end-to-end learning, and/or (c) they could use effectively

the activation layers of pre-computed CNNs [5, 3] as input

features. All shallow architectures which do not comply

with these requirements have started to fade away.

One of those fading algorithms is the Naı̈ve Bayes Near-

est Neighbour (NBNN) classifier [2]. Indeed, the key requi-

sites of NBNN-based approaches do not fit well with CNNs.

To begin with, they require local feature representations

without any vector quantization, as opposed to the global

feature representation derived from the CNN activation lay-

ers [5, 3]. Moreover, NBNN-based algorithms rely on the

Image-2-Class (I2C) paradigm: for every image, each lo-

cal descriptor is considered as independently sampled from

a class-specific feature distribution. Hence, each descriptor

votes for the most probable class, and the collection of votes

is used to label each image. As opposed to that, CNNs op-

erate on another classification principle. These two intrinsic

features of NBNN approaches led to a strong generalization

ability, showcased by remarkable results in place classifica-

tion [7] and domain adaptation [42]. Still, as of today no

solution has been found for bridging these two approaches.

This paper fills this gap. We propose a simple way

to compute local features from whole images, using pre-

trained CNNs. Our starting point is the paper of Gong et

al. [13], on which to a large extent we build. We extract

CNN activations for local patches at multiple scale levels.

As opposed to [13], we do not perform any pooling or con-

catenation. The resulting features can be used directly as in-

put to any NBNN-based classifier. However, the total num-

ber of examples can be very large, especially when doing

a dense sampling for the patches and tackling large scale

problems. To deal with this, while at the same time max-

imizing the predictive power of NBNN-based approaches,

we propose a scalable version of Naive Bayes Non-linear

Learning (NBNL, [7]). NBNL tries to circumvent limita-

tions of NBNN through non-linear learning powered by La-

tent Locally-Linear SVM [8], that to our knowledge is the

current state of the art among NBNN-based classifiers. Our

stochastic algorithm retains the generality and robustness of

the original method, yet it wins by having low memory foot-

print. At the same time, it considerably increases its scala-

bility during training, making it applicable also to problems

2100



with hundreds of classes, where a dense sampling strategy

might lead to 107 features or more. Moreover, we show that

our smoothed version of NBNL could in principle be used

as final layer for an end-to-end training of a CNN. Figure 1

shows schematically the whole framework.

We assess our approach on scene recognition and domain

adaptation datasets. These two research areas are those

where NBNN-based algorithms showed more promise in

the pre-CNN era. We show that on the Scene 15 [22],

UIUC Sports [23], and MIT Indoor [33] datasets we achieve

the state of the art among single-features approaches. To

the best of our knowledge, these are the first results re-

ported where an NBNN-based method achieves the state of

the art not only among other NBNN-based approaches, but

also among traditional techniques. Regarding domain adap-

tation, experiments on the Office+Caltech256 [12] dataset

show that by just using our approach to build a source clas-

sifier and then testing it on the target, we achieve remarkable

results in the unsupervised setting, and the state of the art in

the semi-supervised one. This further underlines the current

power and remarkable future potential of our contribution.

2. Related Work

NBNN [2] is a learning-free non-parametric image clas-

sification scheme. It proved its robustness and generaliza-

tion ability on many different tasks, from image recogni-

tion [2, 43, 41, 40] to domain adaptation [43, 42] to ac-

tion recognition [48]. A number of works went on to im-

prove the generalization performance of NBNN by adding

layers of learning. For example, in [45] the authors in-

cluded a metric learning procedure, thus altering the metric

space of 1-nearest neigbour. A similar idea was also inves-

tigated by Tommasi and Caputo [42], demonstrating that a

plain NBNN performs very well in the domain adaptation

setting, and even better when tuned-up with metric learn-

ing. Another route was pursued by works focused on patch

subset selection and weighting [41, 7, 46]. A somewhat

orthogonal direction was explored by fusing NBNN with

kernel methods, proposing NBNN kernels [43, 34], which

could be used in conjunction with linear classifiers and ulti-

mately combined with another kernels over traditional rep-

resentations. All of these methods were proposed before

the advent of modern features induced by CNN, and typ-

ically were evaluated on feature descriptors such as SIFT

or SURF, extracted from very small image patches. Since

the seminal paper of Donahue et al. [5], the state of the art

has been provided by CNNs’ activations. Building on this,

Gong et al. [13] proposed a multiscale orderless pooling

of CNN features extracted from densely sampled patches.

Later, Liu et al. [25] proposed a similar pooling scheme,

called cross-convolutional-layer pooling, which focuses on

using different convolutional layers together.

In this work, we revisit NBNN considering its power in

conjunction with CNN features, in both categorization and

domain adaptation scenarios. Many proposed algorithms

built on top of NBNNs were thoroughly empirically stud-

ied [40]. However, the amount of training data hardly ever

exceeded ≈ 104 images. This stems from the limitations of

the nearest-neighbor search – the need to store all or most

of training data, and the curse of dimensionality that is of-

ten suffered by non-parametric algorithms. Some variations

have been proposed to improve the time and space com-

plexity of NBNNs. McCann and Lowe [29] proposed to

build one single search structure for all the classes and to

consider only neighboring descriptors, thus offering an in-

crease in performance. In Naı̈ve Bayes Non-linear Learn-

ing (NBNL) [7], the authors retained the idea of patch-

based classification as in NBNN, but followed the way of

non-linear parametric classification. This allowed them to

achieve a compact representation of the classes by learn-

ing a set of prototypes, allowing fast testing and improved

accuracy. Unfortunately, their method was confined to the

batch setting without much improvement in scalability com-

pared to NBNN. In this paper we further develop the idea

of NBNL by proposing a scalable stochastic locally-linear

formulation, drawing inspiration from [7] and [8].

Many works in machine learning, such as [36], re-

side on the assumption that, although natural data live

in a high-dimensional space, they are embedded into a

low-dimensional manifold. Such algorithms try to learn

about the manifold under the assumption that looking close

enough, or locally, it appears approximately linear, thus

can be captured by an hyperplane. A well-known stream

of works on Local Coordinate Coding (LCC) [50, 49, 44]

aims to learn the set of hyperplanes and weights that com-

bine them locally. Often, this is done in the unsupervised

way by minimizing the reconstruction error [50, 49, 52]. In

these works a special attention is given to local weights of

hyperplanes, or codes, which in visual learning problems

are used as features. This approach was taken further by

Locally-Linear Support Vector Machine [21], where codes

are first found through clustering together with nearest-

neigbour search, and then hyperplanes are learned in a sin-

gle optimization problem. As these methods use separate

unsupervised learning stage, they are unaware of the un-

derlying discriminative task and scalability depends on the

efficiency of this pre-training. This limitation is countered

in the literature on Latent SVM [6] and Multiclass Latent

Locally-Linear (ML3) SVM [8], where both, hyperplanes

and codes are learned simultaneously through discrimina-

tive learning problem. Despite non-convexity, smart relax-

ations and optimization methods like Concave-Convex Pro-

cedure (CCCP), enable them to work well in practice. Un-

fortunately, these are typically batch algorithms with heuris-

tical initialization [10], sometimes guided by in-domain

knowledge, such as mining hard-negatives [6]. Other works
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Figure 1: An example illustrating our framework bridging across NBNN-based methods and CNNs for the scene classification

problem. Given a query image, we first compute CNN activations for local patches at different scales, from a pre-trained

architecture. The resulting feature representation can be fed to any NBNN-based classifier, that will then output the image

label. In the paper, we used [53] as pre-trained CNNs, and a scalable version of NBNL [7] as classifier. Note that the

framework holds also for other choices of one or both of these two components.

proposed to scale up learning in this setting [19, 31], how-

ever, none of them demonstrated real scalability empiri-

cally. In this work we address these limitations proposing a

simple scalable Stochastic Multiclass Latent Locally-Linear

SVM, which does not require initialization tricks and easily

handles the order of 106 training examples.

Our locally-linear formulation also conceptually reminds

non-linearity used in Maxout Networks [14]. However, un-

like [14], the inputs are weighted and combined with con-

trolled degree of smoothness, which allows us to use ana-

lytic form of non-linearity. Thus, Maxout non-linearity is a

special case of the locally-linear rule we employ.

3. Computing Local CNN Activations

As mentioned before, a key requirement for any NBNN-

based framework is to deal with features that capture local

information about the image. This concretely means to ex-

tract from each whole image a set of local patches at multi-

ple scales, and compute feature descriptors from them. Fol-

lowing [13], we decide here to create orderless image rep-

resentations from pre-trained CNN by extracting deep acti-

vation features from patches obtained at increasingly finer

scales. The effectiveness of such features will depend on

several designer choices, from the pre-trained CNN chosen,

to the sampling rate for the patches, the patch size, and the

computed CNN activations. In the following we discuss

these points and our own designer choices.

Pre-trained CNN. The first hyper-parameter to chose is the

CNN architecture to be used for computing the activations.

The current off-the shelf state of the art choice for this task

on whole images is the Caffe implementation [17], pre-

trained on ILSVRC [37]. We decided to follow this route

here with respect to the architecture type. As one of our

benchmarks is the scene classification problem, we decided

to use their network trained on a hybrid dataset composed

from Places-205 [53] and ILSVRC [37]. Note that other ar-

chitectures like VGG [3] or OverFeat[38] could be used in

the same framework. Note also that, for any given CNN ar-

chitecture within this framework, fine tuning on a validation

set might further improve results.

Patch Extraction. The second set of hyper parameters

to tune are those specifically related to the patch extrac-

tion, i.e. the sampling rate for the patches, the patches

size and the number of scales. Regarding the sampling

rate, we considered two patch sampling settings: (a) dense,

with around 400 patches per image, and (b) sparse, with

approximately 100 patches per image. Since each image

has different proportions, the sampling stride was dynam-

ically computed in order to approximately achieve the de-

sired number of patches. Regarding the patches size and

number of scales, we did set the size of the smallest patch

from {16px, 32px, 64px}, and further doubled the size with

each level. For example, if the size of the smallest patch is

16px and we consider 3 levels, we will extract patches of

size 16× 16px (level 1), 32× 32px (level 2) and 64× 64px

(level 3). As level 0, we considered the whole image, where

before extracting the patches, each image is resized to re-

duce its longest side to 200 pixels.

CNN activations. Finally, we have to choose the fully con-

nected layer of CNN, whose outputs will be used as fea-

tures. The most popular choice in the literature, adopted

also in [53], is to take the output of the seventh fully con-

nected layer after ReLU transformation, that is setting all

negative values to zero. We compared this setting with other

possibilities, namely taking the output of the sixth layer, on

some pilot experiments. We found that also in the NBNN

framework the mainstream approach is the most effective.

4. Scalable Naı̈ve Bayes Non-linear Learning

In this section we describe our main technical contribu-

tion, a novel Stochastic Multiclass Latent Locally-Linear

(STOML3) SVM, designed to resolve the scalability issues

of NBNN. Applied to the NBNN learning framework, it re-

sults in a scalable Naı̈ve Bayes Non-linear Learning tech-

nique (sNBNL). First we introduce the background (sec-

tions 4.1-4.3), and present our algorithm in Section 4.4.

2102



4.1. Definitions

We first introduce the notation and technical definitions

used in the rest of the paper. Denote with small and

capital bold letters respectively column vectors and ma-

trices, e.g. α = [α1, α2, . . . , αd]
T ∈ R

d and A ∈
R

d1×d2 . We will use a non-negative truncation func-

tion [x]+ = max{0, x}, and for the vectors, [x]+ =
[max{0, x1}, . . . ,max{0, xd}]

⊤. To denote the largest el-

ement of the vector, we will use notation max{x} =
max{x1, . . . , xd}. We denote enumeration sets by [n] =
{1, . . . , n} for n ∈ N. Denote by X and Y respectively

the input and output space of the learning problem. Let

the training instance I , w.l.o.g., be composed from n sub-

instances, I = {xi}
n
i=1. Then we denote the training set

of size m by S = {(Ii, yi)}
m
i=1, drawn from the proba-

bility distribution D over Xn × Y . We will focus on the

c-class classification problem so Y = [c], and, w.l.o.g.,

X = {x : ‖x‖2 ≤ 1,x ∈ R
d}. To measure the accu-

racy of a learning algorithm, we have a non-negative con-

vex loss function ℓ(f(x), y), which measures the cost in-

curred predicting f(x) instead of y. Finally we will de-

note a one nearest neighbor function w.r.t. the support set

Z by πZ(x) = argminz∈Z ‖x − z‖2. Alternatively, for

d× n neighbor matrices we will use the notation πZ(x) =
argminz∈{z1,...,zn} ‖x− z‖2.

4.2. Naı̈ve Bayes Nearest Neighbor Classification

The idea behind NBNNs [2] is to treat each image as a

collection of uniformly or randomly sampled patches. Let I

be the set containing visual descriptors of patches in the test

image, let X1, . . . , Xn be random variables taking values in

the space of these descriptors, and let Y be taking values in

the label set. Denoting by pY (y|I) the unknown conditional

probability density function, the NBNN predictor is,

f(I) = argmax
y∈Y

pY (y | I) . (1)

The key statistical assumption made in NBNN is that

patches are conditionally independent given the class. In

addition, assuming that pY (y) is uniform and switching to

log-likelihood of pY (y |I), we have that,

f(I) = argmax
y∈Y

n∑

i=1

log(pXi
(xi | y)) . (2)

Since pXi
is unknown, NBNN resorts to the non-parametric

Kernel Density Estimator (KDE) [16] with Gaussian ker-

nel function, and further lower-bounds the log-likelihood by

Jensen’s inequality, to make the predictor computationally

efficient. In this form prediction involves nearest neighbor

search, which can be very efficient when the intrinsic di-

mension of the data is small [4]. Denoting the support of

the class y by Wy = ∪(I′,y′)∈S : y=y′I ′, the approximated

empirical NBNN predictor is then,

f̂(I) = argmin
y∈Y

∑

x∈I

‖x− πWy
(x)‖2 . (3)

4.3. Naı̈ve Bayes Non­Linear Learning

As NBNN is a nearest-neighbor-based approach, it

shares its well-known scalability limits. Few works have ex-

plored the potential of NBNN-like schemes surpassing the

order of 104 training examples. Here we review the recently

proposed Naı̈ve Bayes Non-linear Learning (NBNL) [7]

that scales NBNN through parametric learning. It will be

the starting point for our scalable algorithm.

Let W = (W 1, . . . ,W c) ∈ R
d×k×c be the collection

of k-sized supports of NBNN in matrix notation. Follow-

ing [7], we will refer to the columns of any support W y

as prototypes. We will also assume that all prototypes have

bounded norm, that is ‖w‖2 ≤ τ . NBNL rests upon the

observation that NBNN minimizes,

∑

x∈I

‖x− πW y
(x)‖22 =

∑

x∈I

min
i∈[k]
‖x−wy,i‖

2
2

≤ |I|(1 + τ)− 2
∑

x∈I

max
{
W⊤

y x
}

. (4)

The right hand side can be minimized over y ∈ Y , similarly

as in (3), which yields the NBNL predictor

f nbnl(I) = argmax
y∈Y

1

|I|

∑

x∈I

max
{
W⊤

y x
}

. (5)

The key idea is that prototypes in such a predictor need not
be fixed, but can be learned. Fornoni and Caputo [7] pro-
posed to learn prototypes through the regularized empirical
risk minimization. Considering f nbnl, the problem would be
to minimize the following over W ,

1

m

m
∑

i=1

ℓ





1

n

∑

x∈Ii

max
{

W
⊤
yi
x

}

, yi



+ λ
∑

l∈Y

‖W l‖
2

F . (6)

However, in [7], they ultimately proposed to solve a simpler
relaxed problem (due to Jensen’s inequality),

min
W

{

1

mn

mn
∑

i=1

ℓ
(

max
{

W
⊤
yi
xi

}

, yi

)

+ λ
∑

l∈Y

‖W l‖
2

F

}

.

(7)

Problem (7) is generally addressed by the family of la-

tent [6] and locally-linear SVMs [21, 8]. In particu-

lar, [7] employed a non-linear ML3 Support Vector Ma-

chine (SVM) [8], which we briefly review next.

Multiclass Latent Locally-Linear (ML3) SVM. In ML3

SVM one aims to solve a problem similar to (7). ML3 SVM
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is a locally-linear parametric classification algorithm, where

we assume that in a given small locality the optimal decision

boundary is approximately linear [50, 21, 18, 19]. Usually,

in locally-linear versions of SVM we consider score func-

tions f LL

W
(x) = x⊤Wβ(x), where β(x) is a function spec-

ifying local combination of hyperplanes W at a particular

point of the input space. Typically one has to choose β(x)
before solving the main optimization problem [6, 50, 21].

This amounts to the separate procedure dedicated just to

learn and fix weights β(x). ML3 SVM addresses this by

the score function with automatic weighting,

fML3
W

(x) = max
‖α‖p≤1,α�0

{x⊤Wα} = ‖[W⊤x]+‖q , (8)

for any p ∈ [1; +∞] and q = p
p−1 . Given a point x, this

rule leads to the combination of hyperplanes, such that the

margin of a combined linear classifier is maximized on x.

The objective function of ML3 SVM is non-convex,

however, by posing it as a difference of convex functions,

we can find a reasonably good solution by Concave-Convex

Procedure (CCCP) [51]. This essentially confines the algo-

rithm to the batch setting, because we need to solve a sepa-

rate convex optimization problem at every CCCP iteration.

Besides its batch nature, ML3 heavily relies on heuristic

weight initialization by first solving a linear SVM problem.

4.4. Stochastic ML3 SVM

In this section we fix the limitations of ML3 by introduc-

ing a novel scalable stochastic formulation, conceptually

similar to the one of ML3. Namely, we propose a Stochastic

Multiclass Latent Locally-Linear (STOML3) SVM which

can run online, is free from any initialization tricks, and en-

joys stationary point convergence guarantee. This stochas-

tic formulation allows to use NBNL at scales out of reach

for ML3 SVM and NBNN. We call this new version, the

scalable NBNL (sNBNL).

Rather than solving a regularized empirical risk as in (7),

we will aim at minimizing a regularized risk directly, sim-

ilarly as in the popular Stochastic Gradient Descent (SGD)

approach to learning. More formally, our goal is to solve,

min
W

{
E

(x,y)∼D
[ℓ(W, (x, y))] + λ

∑

l∈Y
‖W l‖

2
F

}
, (9)

where we chose a differentiable multiclass logistic loss,

ℓ(W, (x, y)) = log


1 +

∑

r 6=y

exp
(
fML3
W r

(x)− fML3
W y

(x)
)

 .

In practice we cannot solve (9) directly, since D is un-

known, thus the gradient cannot be computed. However,

we can still compute an unbiased estimate of the gradient

given a point (x, y) ∼ D, and thus update the solution iter-

atively. Alike the batch formulation of ML3 SVM, the re-

sulting objective function is non-convex. We approach (9)

through the Stochastic Majorization-Minimization (SMM)

framework [27], which unlike SGD, provides a stationary

point convergence guarantee, and converges faster in prac-

tice [28, 35]. We summarize the STOML3 SVM in pseu-

docode, and defer its technical derivation details to the fol-

lowing section. The computational complexity of every

STOML3 SVM update is in O(|Y|kd), however in practice

we bringing it down to O(|Y|) through GPU optimization.

Connection to Neural Network Learning. Latent

locally-linear classification, ML3 SVM, and STOML3

SVM can be interpreted as a variant of a shallow artificial

neural network, Figure 2. The main difference between

Figure 2: Latent locally-linear classification.

... ...
...

One-vs-All classifier

Function of 

Learned

Input

traditional models such as multilayer perceptrons, is that

the hidden layer consists of linear units (z = w⊤x),

whereas the weights of the output layer, α are adjusted

automatically depending on the outputs of hidden layer z,

thus for learned w, α is a function of input x. Specifically,

these weights are adjusted to maximize the margin by

combining outputs of hidden units. Clearly, for different

regions of the input space, resulting combinations are

different, yielding non-linear decision surface.

From the artificial neural network learning point of view,

it would be interesting to consider deeper architectures of

STOML3. Another possibility would be to combine it with

convolutional layers to investigate end-to-end locally-linear

classification. We leave these directions to the future work.

4.4.1 Derivation

To derive STOML3 SVM we use the Stochastic

Majorization-Minimization (SMM) framework pro-

posed by Mairal [27]. SMM deals with minimization of a

differentiable function that has a form of expectation, by

minimizing its simpler approximate convex upper-bound.

Specifically, after we sample a training example, we

minimize an upper bound on the term inside of expectation

with realization fixed. In our case, the objective is (9),
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Stochastic Multiclass Latent Locally-Linear (STOML3) SVM

Input: W 0 (initial prototypes), λ ∈ R+ (regularization pa-

rameter), q ≥ 1 (boundary smoothness).

Output: W (learned prototypes).

φ(z) := ‖[z]+‖q

1: A0
k ← 0, B0

k ← 0, W̄
0
k ← 0, ∀k ∈ Y .

2: for t = 1, 2, . . . do

3: Draw example (xt, yt) ∼ D .

4: γt ← 1− 1√
t

5: sk ←W t−1 ⊤
k xt, ∀k ∈ Y

6: for k ∈ Y do

7: At
k ← γtA

t−1
k + 1√

t

exp(φ(sk))∑
j∈Y

exp(φ(sj))
∇φ(sk)x

⊤
t

8: Bt
k ← γtB

t−1
k + I{k=yt}√

t
∇φ(syt

)x⊤
t

9: W̄
t

k ← γtW̄
t−1
k + 1√

t
W t−1

k

10: W t
k ←

1
1+λ

(
W̄

t

k −At
k +Bt

k

)

11: end for

12: end for

and thus for a realization (x, y) ∼ D we need to specify a

convex upper-bound of a regularized loss function,

g(W ) := ℓ(W, (x, y)) + λ
∑

l∈Y
‖W l‖

2
F . (10)

More formally, in SMM such a convex upper-bound is

called the surrogate function of an objective, defined as:

Strongly Convex First-Order Surrogate Functions [27].

Fix V ∈ R
d×k×c, and let h be a strongly convex function

such that h ≥ g and h(V ) = g(V ). Let h − g be differen-

tiable and the gradient∇(h−g) be L-Lipschitz continuous.

We will call h the first order surrogate function of g.

We can choose among many different surrogates, but we

have to keep in mind that it should be easily minimized with

every incoming training example. That said, we choose,

h(W ) = g1(V )+∇g1(V )⊤(W −V )+ L
2
‖W −V ‖2+g2(W ) ,

where g1 = ℓ, g2 is the regularizer. This choice is motivated

by efficiency, because we can find minimum of h(W ) ana-

lytically. It is also not hard to see that h is a strongly convex

first-order surrogate function. Thus, given optimal W , the

rest of the derivation follows the optimization template of

Mairal [27], summarized in our pseudocode.

5. Experiments

In this section we test experimentally our framework. We

considered two tasks, scene recognition and domain adap-

tation, where in the past NBNN methods showed promise.

Our experiments aim to verify two claims: first, that such

methods coupled with local CNN activations at multiple

scales are able to achieve results competitive with, or even

better than, end-to-end, fine tuned CNN architectures. Sec-

ond, that scalable NBNL outperforms NBNN, thus paving

the way for the use of our approach on large scale scenarios

that have been so far prohibitive for NBNN methods. In the

rest of the section we describe the datasets and experimental

settings used, and the variants of our framework that were

tested (Section 5.1). Section 5.2 describes the results ob-

tained in scene recognition, exploring how the performance

changes when varying the parameters relative to the patch

extraction, and the scalability of the approach. Section 5.3

reports results obtained in the domain adaptation setting.

5.1. Experimental Settings

Datasets. For the scene recognition setting, we used

the Scene 15 [22], UIUC Sports [23], and MIT Indoor [33]

databases. For Scene 15, we used 100 images per class for

training and 100 for testing. For UIUC Sports, we used

70 images per class for training and 60 images for testing.

For MIT Indoor, we used 80 images per class for training

and 20 for testing. These choices are all consistent with the

standard protocols reported in the literature. Each configu-

ration is tested on 5 splits. For the large scale experiments,

we used the SUN-397 database [47] that totals 1.6 million

image patches. We strictly followed the experimental pro-

cedure described in [47]. For all scene experiments, we

concatenated the CNN activations with the absolute posi-

tion of every patch. For the domain adaptation scenario, we

considered the Office + Caltech database [12], which con-

tains a subset of ten classes shared between Office and Cal-

tech256 [15]. Here we keep 20 images per class for training

(15 if the target is either Webcam or DSLR) and use the rest

as test set. Each configuration was tested on 10 splits.

Baselines For every scenario, for every setting, we always

used the following three variants of our framework: (1)

CNN-NBNN: this consists of using the NBNN classifier as

originally proposed [2] , combined with the local CNN ac-

tivations. (2) CNN-NBNL: the same as (1), using NBNL

as classifier [7]. (3) CNN-sNBNL: the same as (1), (2), but

using our scalable version of NBNL.

5.2. Scene Classification Experiments

We performed extensive experiments over Scene 15,

UIUC Sports and MIT Indoor for assessing how perfor-

mance changes when varying the parameters of the CNN

activation extraction. Specifically, we varied the sampling

density, patch size and the number of levels. We also com-

pared results when taking the activations before or after

ReLU. As classifier, we always used NBNN (preliminary

experiments using also NBNL and sNBNL did not show any

significant variation in behaviors). Figure 4 reports a repre-

sentative set of our findings. We see that larger patch sizes

generally yield better performance, but combining patches

taken at different scales further improves accuracy. For ex-
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Figure 3: Top-scoring patches from “snowboarding” and

“polo” categories of Sports 8 dataset.

ample, using only 64×64px patches gives a worse accuracy

than using 32 × 32px and 64 × 64px patches. This shows

that distinct scales hold complementary information. Dense

sampling does not improve the accuracy significantly.

Overall, using together 32px, 64px, and 128px patches

seems to be the best and most stable configuration. The

stability of results breaks down when we supply smaller

patches of 16px. We speculate that at this patch size there

is not enough visual information for CNN to provide mean-

ingful representation. Finally, we note that CNN features

extracted before ReLU generally perform better. That said,

in the rest of the paper we always use simultaneously 32px,

64px, and 128px patches, no ReLU and sparse sampling.

Next we compare sNBNL against NBNL in efficiency

and effectiveness. Our goal is to confirm the ability of

sNBNL to reach the same results as NBNL at a lower com-

putational cost. Table 2 shows the results obtained using

NBNL and sNBNL on the three databases, in terms of ac-

curacy and training time. We see that the two algorithms

achieve basically the same results, as confirmed by a sign-

test (p < 0.05). Instead w.r.t. the training time these differ-

ences are remarkable, with sNBNL achieving on average a

speed up of 25 times compared to NBNL. This is a first ex-

perimental confirmation of the scalability of our approach.

Table 1 compares our results with previous work. We see

that we achieve consistently the best accuracy among the

single cue methods. This is impressive for an approach that

uses an off-the-shelf pre-trained CNN, without any fine tun-

ing. Moreover, on the Scene 15 database, our performance

surpasses also that of multi-cue approaches.

We conclude this section by probing the potential of our

framework on a larger scale experiment. We run experi-

ments on the SUN-397 [47] dataset. Note that this dataset is

out of reach for NBNN, and prohibitive also for NBNL. We

trained GPU-optimized implementation of STOML3 SVM

Table 1: Comparison of previous work with our approach.

Legend: bold indicates the best performance among single

feature methods, red bold indicates the overall best.

Method Scene 15 Sports 8 MIT67
NBNN (Surf)[7] 72.8 67.6 −
NBNL (Surf)[7] 82.42 85.54 42.15
CNN-NBNN 88.24± 0.99 94.46± 0.47 63.92± 1.63
Lin. SVM(CNN) 90± 0.63 94.16± 1.13 64.62± 1.04
CNN-NBNL 92.42± 0.64 95.29± 0.61 73± 0.36

CNN-sNBNL 92.88± 0.89 95.28± 0.68 72.79± 0.73
Hybrid CNN[53] 91.59 94.22 70.8
LScSPM[9] 89.78 85.27 −
MOP-CNN[13] − − 68.88
DDSFL + CAFFE[54] 92.81 96.78 76.23

ISPR + IFV[24] 91.06 92.08 68.50
CNN Fusion[20] 92.1 94.8 70.1

Table 2: NBNL vs sNBNL in accuracy, training and testing

time in seconds, over the three scene recognition databases.

Sports 8 Scenes 15 ISR 67

Acc. Train Test Acc. Train Test Acc. Train Test

NBNL 94.2 1024.4 13.9 91.5 5729.2 95.9 72.5 9690 63.2
sNBNL 95.2 63.5 0.4 91.6 210.3 1.9 72.7 304.2 1.3
Speed-up - ×16 ×34 - ×27 ×50 - ×32 ×49

in minibatches of 2500 examples on 10 splits originally pro-

posed in [47]. As in the previous scene recognition exper-

iments, we concatenated the absolute patch positions with

the feature vector. We perform data standardization and we

set the regularization parameter λ to 1 – note that even better

results can be obtained by tuning it. CNN-sNBNL achieves

a performance of 55.8 ± 0.29%, which surpasses recently

reported results by Zhou et al. [53] of 53.86 ± 0.21% and

54.32 ± 0.14%. These were obtained by training a linear

SVM on Hybrid and Places-205 CNN features respectively.

We also comment on the patch importance by showing

the high-scoring patches in representative images. We focus

on Sports-8 and select patches which have the highest score

according to the STOML3 predictor (8). We highlight those

and dim the rest of the image in Fig. 3. Notably, NBNL puts

higher score on patches semantically related to the category.

We conclude that the reported results clearly showcase

the power of our framework in the scene recognition setting.

5.3. Domain Adaptation Experiments

We report here experiments performed on the Of-

fice+Caltech database, both in the unsupervised and semi-

supervised scenarios. Note that none of the three in-

stantiations of our framework are a domain adaptation

algorithm, hence we simply use each of them on the

source data, and test the obtained classifier on the tar-

get. Concretely, in the unsupervised setting we simply

train NBNN/NBNL/sNBNL on the source; for the semi-

supervised setting, we add three target images to the source

and proceed as for the unsupervised case. A similar experi-

ment was first presented in [42], showing that NBNN gener-
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Figure 4: Results obtained by NBNN on CNN features computed with different patch sizes, sampling rates, on three datasets.
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Table 3: Unsupervised domain adaptation results

Alg. \Dataset A→W A→ C W→ A W→ C C→ A C→W

NBNN[42] 31.8 31.3 37.4 26.8 41 28.4
DA-NBNN[42] 35 41 42 33 55 36
CNN-NBNN 60.23± 3.5 75.2± 1.0 66.87± 1.3 63.3± 1.2 79.03± 0.9 61.28± 4.6
CNN-NBNL 62.61± 3.5 71.61± 2.1 56.84± 2.6 50.08± 2.4 79.97± 2.3 61.05± 3.7
CNN-sNBNL 61.93± 3.7 72± 2 63.45± 1.9 55.81± 1.5 80.91± 2.0 64.84± 3.4
GFK[12] 35.7 37.9 35.5 29.3 40.4 −
SWAP[11] 37.6 41.3 38.2 32.2 46.2 46.1
Landmark[11] 46.1 45.5 40.2 35.4 56.7 49.5
LapCNN[26] − 83.6 − 77.8 92.1 81.6
DDC[26] − 84.3 − 76.9 91.3 85.5
DAN[26] − 86 − 81.5 92 −

alizes well across the domains without DA-specific design

in mind. As features, we use the same configuration em-

ployed in the scene recognition experiments, that is patches

of size 32px, 64px and 128px without ReLU. We also per-

formed experiments with sparse sampling.

Tables 3,4 report the results obtained in the unsupervised

and in the semi-supervised settings. We see that, in the un-

supervised setting, our approach is powerful enough to out-

perform several learning-based baselines, in spite of its sim-

plicity. Performance on the semi-supervised setting further

improves, as we achieve the state of the art in all settings.

We stress that this is accomplished by the methods that are

not designed for domain adaptation scenario. Note that we

could not run DA-NBNN, the only existing NBNN-based

domain adaptation method on our local CNN multi scale

activations because of its computational limitations. These

results further confirm the power of the proposed frame-

work, and its potential for future work.

Table 4: Semi supervised domain adaptation results

Alg. \Dataset A→W A→ C W→ A W→ C C→ A C→W

NBNN[42] 56.9 34 43.5 31.6 50.2 57.7
DA-NBNN[42] 62 46 58 42 65 61
CNN-NBNN 88.9± 2.9 76.93± 1.7 80.6± 1.5 70.5± 1.7 84.67± 1.2 90.03± 1.9

CNN-NBNL 84.87± 3.7 74.31± 1.1 77.14± 2.4 68.17± 2.8 83.77± 1.5 86.52± 3.6
CNN-sNBNL 87.54± 2.3 76.74± 1.9 79.38± 1.6 70.17± 1.6 85.62± 1.1 87.28± 2.5
H-L2L[32] 77.1 38.6 51.6 34.0 55.32 −
DASH-N[30] 75.5 54.9 70.4 50.2 71.6 −
SDDL[39] 72 27.4 49.4 29.7 49.5 −
HMP[1] 70 51.7 61.5 46.8 67.7 −

6. Conclusions

This paper provides a method for using CNN activation

features combined with NBNN-based classifiers. The two

key ingredients are: (1) extraction of CNN activations from

local patches at different scales, and (2) a scalable NBNN-

based algorithm that exploits the learning power of locally

linear SVMs. We present an instantiation of this framework

using a pre-trained Caffe architecture, applied to the scene

classification and domain adaptation problems. Results are

very strong: on scene classification we achieve the state

of the art among single cue methods on three widely used

benchmark databases. On domain adaptation, the simple

use of the framework on the source only, leads to promis-

ing results, competitive against many learning methods pro-

posed so far. Future work will further explore the frame-

work in an end-to-end setting and domain adaptation.
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