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Figure 1. Semantic video segmentation on the Cityscapes dataset [6]. Input frame on the left, semantic segmentation computed by our

approach on the right.

Abstract

We present an approach to long-range spatio-temporal

regularization in semantic video segmentation. Temporal

regularization in video is challenging because both the cam-

era and the scene may be in motion. Thus Euclidean dis-

tance in the space-time volume is not a good proxy for cor-

respondence. We optimize the mapping of pixels to a Eu-

clidean feature space so as to minimize distances between

corresponding points. Structured prediction is performed

by a dense CRF that operates on the optimized features. Ex-

perimental results demonstrate that the presented approach

increases the accuracy and temporal consistency of seman-

tic video segmentation.

∗Joint first authors

1. Introduction

Structured prediction has become a standard means of

achieving maximal accuracy in semantic segmentation. In

structured prediction, all pixels are labeled jointly and la-

beling coherence is explicitly enforced. This alleviates

the noise and inconsistency that can arise when pixels are

classified independently. In particular, the fully-connected

CRF [10, 11] – also known as the dense CRF – often yields

significant improvements in semantic segmentation accu-

racy. For example, after the recent breakthrough of Long

et al. [18], who developed a new model for semantic image

segmentation, an application of the dense CRF over the new

model yielded substantial accuracy gains [4, 15, 31].

The natural form of input for vision systems that operate

in the physical world is video. For this reason, we consider

semantic segmentation of video sequences, rather than in-

dividual images. In a typical video sequence, each frame

depicts a different view of the scene. Thus structured pre-

diction can be used not only for spatial regularization within
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individual frames but also for temporal consistency across

frames. In this paper, we address the challenges brought up

by such spatio-temporal regularization.

Long-range temporal regularization in video is compli-

cated by the fact that both the camera and the scene may

be in motion. In particular, camera motion can induce sig-

nificant optical flow across the visual field. For example,

when the camera rotates, a point in the scene can quickly

translate across the image plane. For this reason, simply

appending the time dimension to the feature space used for

regularization can lead to incorrect associations and cause

misprediction in the presence of significant camera and ob-

ject motion. The underlying problem is that Euclidean dis-

tance in the space-time video volume is not a good proxy

for correspondence.

Our solution is to optimize the feature space used by

the dense CRF so that distances between features associ-

ated with corresponding points in the scene are minimized.

The dense CRF operates on an embedding of the pixels into

a Euclidean feature space [10]. The Euclidean norm in this

space is used to define a continuous measure of correspon-

dence. All pairs of pixels are connected and all pairs of

pixels are regularized. In our setting, the regularization is

performed over a fully-connected graph over the video vol-

ume. The strength of the connection between a pair of pix-

els is a function of their distance in the feature space. Our

approach optimizes the feature space embedding such that

Euclidean distance in feature space is a more accurate mea-

sure of correspondence in the underlying scene.

Specifically, we establish temporal correspondences via

optical flow and long-term tracks and optimize the fea-

ture space embedding to minimize distances between cor-

responding points, subject to second-order regularization

constraints. We express the embedding objective as a lin-

ear least-squares problem and show that feature space opti-

mization can be performed efficiently over high-resolution

video volumes. The resulting embedding is used by a fully-

connected space-time CRF that performs direct long-range

regularization across the video volume, while operating at

full resolution and producing sharp pixel-level boundaries.

We evaluate the proposed semantic video segmentation

approach through extensive experiments on the CamVid and

Cityscapes datasets [2, 6]. Experimental results demon-

strate that feature space optimization increases the accu-

racy of semantic video segmentation. Our approach yields

a 66.1% mean IoU on CamVid and a 70.3% mean IoU on

the Cityscapes validation set. Both results are the highest

reported to date. In addition, the presented approach sub-

stantially increases the temporal consistency of the label-

ing. This is evaluated quantitatively in our experiments and

is also evident in the supplementary video. Figure 1 shows

results produced by the presented approach on two frames

from the Cityscapes dataset.

Figure 2. The temporal structure of the model. The video is cov-

ered by overlapping blocks. A dense CRF is defined over each

block and feature space optimization is performed within blocks.

Structured prediction is performed over multiple blocks.

2. Model

Our model is a set of cliques that cover overlapping

blocks in the video volume. We cover the video by over-

lapping temporal blocks, define a dense CRF over each

block, and build in provisions for temporally smooth pre-

diction across block boundaries. The temporal structure of

the model is illustrated in Figure 2. The block construction

is described in Section 5.

Each pixel in the video is identified by a vector

p = (b, t, i) ∈ R
3, where b is the block number, t is the

frame number within block b, and i is the index of the

pixel within the frame. The color of pixel p is denoted by

Ip ∈ R
3 and the coordinates of pixel p in its frame are

denoted by s̄p ∈ R
2. Let P be the set of pixels in the video.

Given pixel p, let Xp be a random variable with the do-

main L = {l1, ..., lL}. The states li will be referred to as la-

bels. Let X be a random field over P and let x : P → L be

a label assignment. The random field X is characterized by

a Gibbs distribution P (x|P) and the corresponding Gibbs

energy E(x|P) associated with each label assignment:

P (x|P) =
1

Z(P)
exp
(

− E(x|P)
)

,

E(x|P) =
∑

p

ψu
p(xp) +

∑

(p,q)∈E

ψp
p,q(xp, xq).

(1)

Here Z(P) =
∑

x exp
(

−E(x|P)
)

is the partition function

and E is a neighborhood structure defined on pairs of vari-

ables. The neighborhood structure is a union of cliques:

each block is covered by a clique, each pixel is covered

by two blocks, and each variable is correspondingly cov-

ered by two fully-connected subgraphs in the random field.

Our goal is to find a label assignment x∗ that minimizes the

Gibbs energy.

The unary term ψu
p(xp) specifies the cost of assigning
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label xp to pixel p. Pairwise terms ψp
p,q(xp, xq) couple

pairs of variables and penalize inconsistent labeling. These

terms are defined using Gaussian kernels [10]:

ψp
p,q(xp, xq) = µ(xp, xq)

M
∑

m=1

wmκm(fp, fq), (2)

where µ(xp, xq) is a label compatibility term and wm are

the mixture weights. fp and fq are features associated with

xp and xq, respectively. Each kernel has the following

form:

κm(fp, fq) = exp

(

−
‖fp − fq‖

2

σ2
m

)

. (3)

Given point p, the feature fp ∈ R
D is a vector in a

D-dimensional feature space. In semantic image segmen-

tation, the canonical feature space is five-dimensional and

combines image position and color [10]. A natural feature

space for semantic video segmentation is six-dimensional

and combines time, color, and position: fp = (tp, Ip, s̄p).
We will use this feature space as a starting point.

3. Feature Space Optimization

Feature-sensitive models of the kind described in Sec-

tion 2 have been very successful in semantic image segmen-

tation [10, 31]. However, applying such models to space-

time video volumes is not straightforward. A key difficulty

is that both the camera and the objects may be in motion

and can carry corresponding pixels apart. Thus the nat-

ural six-dimensional feature space yields a distance mea-

sure that does not appropriately model spatio-temporal cor-

respondence.

A hypothetical solution that would address this issue is

to obtain a dense metric 3D reconstruction of the scene

through time, associate each pixel with the true 3D position

of the corresponding surface element in the environment,

and use this 3D position along with time as a feature. This

would enforce a coherence assumption on surfaces that are

truly proximate in space-time. However, dense monocular

3D reconstruction of dynamic scenes is an open problem.

We therefore develop an alternative approach that does not

require understanding the three-dimensional layout of the

scene.

Our approach involves optimizing a subspace of the fea-

ture space to reduce Euclidean distance between corre-

sponding points while adhering to regularization terms that

aim to preserve object shapes. Specifically, for all points

{p}, we optimize position features {sp}. (The time and

color dimensions are fixed.) Thus the feature mapping

(tp, Ip, s̄p) is replaced by (tp, Ip, sp).
Consider a block b that consists of T×N points, where T

is the number of frames in the block andN is the number of

pixels in each frame. The optimization objective is defined

as follows:

s∗ = argmin
s

E(s),

E(s) = Eu(s) + γ1Es(s) + γ2Et(s).
(4)

Here s are the position features for all pixels in the block

and s∗ are the optimal features. The objective E(s) com-

prises a data term Eu(s), a spatial regularizer Es(s), and a

temporal regularizer Et(s). We now explain each of these

three terms. We will use p and (b, t, i) interchangeably to

denote a point in the block.

Data termE(s). The data term prevents the feature space

embedding from drifting or collapsing under the strength of

the regularization terms. The middle frame in the block is

used as an anchor. Let a = ⌊T/2⌋ be the frame number of

the anchor frame and let Pa be the set of pixels in frame a.

Let {s̄p : p ∈ Pa} be the unoptimized natural feature space

for Pa. The data term ensures that points in the anchor

frame do not drift far from their natural positions:

Eu =
∑

p∈Pa

(

sp − s̄p
)2
. (5)

Spatial regularization term Es(s). The spatial regular-

izer preserves shapes within color boundaries and detected

contours. We use anisotropic second-order regularization

over the 4-connected pixel grid [14, 12]:

Es(s) =

T
∑

t=1

N
∑

i=1

(

s(b,t,i) −
∑

j∈Ni

wijs(b,t,j)

)2

. (6)

Here Ni is the set of neighbors of point (b, t, i). The weight

wij attenuates the regularization at object boundaries:

wij = exp

(

−
‖I(b,t,i) − I(b,t,j)‖

2

σ1

)

exp

(

−
c2p
σ2

)

. (7)

The first factor in (7) is based on the color difference be-

tween the two pixels and the second factor is based on the

contour strength at pixel p. We use structured forests to

compute contour strength cp [7], such that cp ∈ [0, 1] and

cp = 1 indicates the presence of a boundary.

Temporal regularization term Et(s). The temporal reg-

ularizer pulls corresponding points in different frames to as-

sume similar positions in feature space:

Et(s) =
∑

(p,q)∈K

(

sp − sq
)2
. (8)

This is the term that minimizes distances between corre-

sponding points. K is a collection of correspondence pairs

(p,q), where p and q are in different frames. Correspon-

dences are established via optical flow and long-term tracks,

as described in Section 5.
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Optimization. Objective (4) is a large-scale linear least-

squares problem with second-order regularization. We opti-

mize the objective using the biconjugate gradient stabilized

method [29] with algebraic multigrid preconditioning [22].

4. Inference

Efficient inference in the model specified by Equation (1)

can be performed by an extension of the mean-field infer-

ence algorithm introduced by Krähenbühl and Koltun [10].

Note that our model is a collection of overlapping cliques

and is thus different from the fully-connected model con-

sidered by Krähenbühl and Koltun.

Define a distribution Q that approximates the true dis-

tribution P , where similarity between distributions is mea-

sured by the KL-divergence. Assume that Q factorizes over

the individual variables: Q(x) =
∏

pQp(xp), where Qp is

a distribution over the random variable Xp. The mean-field

updates have the following form:

Qp(l) =
1

Zp

exp
(

− ψu
p(l)− S1(l)− S2(l)

)

,

S1(l) = −
∑

l′∈L

∑

q∈N 1
p

Qq(l
′)ψp

p,q(l, l
′),

S2(l) = −
∑

l′∈L

∑

q∈N 2
p

Qq(l
′)ψp

p,q(l, l
′),

Zp =
∑

l

exp
(

− ψu
p(l)− S1(l)− S2(l)

)

,

(9)

where N 1
p and N 2

p are sets of neighbors of p in the two

blocks that cover p. The updates can be performed effi-

ciently using Gaussian filtering in feature space [10]. Given

the Q distribution at the end of the final iteration, a labeling

can be obtained by assigning x∗p = argmaxlQp(l).
We now consider what happens when the video volume

is too large to fit in memory. We can partition the video

into chunks of consecutive blocks, such that inference in

each chunk is performed separately. To align the predicted

distributions across blocks, we could use a distributed op-

timization strategy such as dual decomposition [9]. How-

ever, the convergence of such schemes can be quite slow.

We therefore opt for a simple heuristic that has the added

benefit that chunks can be processed in a streaming fashion.

Consider two overlapping blocks b1 and b2, such that b1

is the last block in one chunk and b2 is the first block in the

next chunk. Let Q1 and Q2 be the distributions produced

by mean-field inference for these blocks in their respective

chunks. Let [t1, t2] be the overlap region. Let Qt be the

sought-after distribution for frame t ∈ [t1, t2] and let Q1,t

and Q2,t be the corresponding slices of Q1 and Q2. We

transition between chunks via simple linear interpolation:

Qt = Q1,t +
t− t1
t2 − t1

Q2,t. (10)

5. Implementation

We use two sets of unary potentials in our experiments.

The first is the classical TextonBoost classifier of Shotton et

al. [23], as implemented by Ladicky et al. [13]. This clas-

sifier was used in a number of prior semantic video seg-

mentation systems and enables a fair comparison to prior

work. Second, we use a convolutional network based on

the work of Yu and Koltun [30], which we refer to as the

Dilation unary. This network consists of a front-end predic-

tion module and a context aggregation module. The front-

end module is an adaptation of the VGG-16 network based

on dilated convolutions [24, 30]. The context module uses

dilated convolutions to systematically expand the receptive

field and aggregate contextual information [30]. In combi-

nation, the two modules form a high-performing convolu-

tional network for dense prediction. In particular, the Di-

lation network yielded the highest semantic segmentation

accuracy among all models evaluated by Cordts et al. [6],

without using structured prediction.

In all experiments, we use optical flow computed by

LDOF [3]. To evaluate the influence of the input flow,

we also conduct a controlled experiment with Discrete

Flow [19]. Long-term tracks are computed using the ap-

proach of Sundaram et al. [26]. CRF parameters are opti-

mized using grid search on a subset of the validation set.

The decomposition into blocks can be performed using

a fixed block size, such as 100 frames. Our implementation

uses a different approach that adapts block boundaries to the

content of the video. Specifically, we consider long-term

tracks [26] and spawn a new block when more than half of

the tracks in the frame were not present at the beginning

of the block. This increases the internal coherence of each

block.

6. Experiments

We evaluate the presented approach on two datasets for

road scene understanding: the CamVid dataset [2] and the

Cityscapes dataset [6]. Both datasets provide video in-

put along with pixel-level semantic annotations of selected

frames.

6.1. CamVid dataset

We begin by performing experiments on the CamVid

dataset. We use the split of Sturgess et al. [25], which has

been adopted in a number of prior works. This split par-

titions the dataset into 367 training images, 100 validation

images, and 233 test images. 11 semantic classes are used.

The primary accuracy measure we use is mean IoU (in-

tersection over union). The IoU score for a particular class

is defined as TP
TP+FP+FN

, where TP, FP, and FN is the number

of true positives, false positives, and false negatives for this

class, respectively [8].
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We have also evaluated global pixel accuracy, defined

as the total fraction of correctly classified pixels. We have

ascertained that our approach outperforms the prior work in

terms of pixel accuracy. However, this measure is severely

biased in favor of large classes, such as “sky” and “road”,

and discounts small but important classes such as “pole” or

“sign”. We therefore do not report it and discourage other

researchers from using it.

In addition to accuracy evaluation on frames that have

ground-truth label maps, we have also evaluated the tempo-

ral consistency of the labeling produced by each technique.

To this end, we have defined a consistency measure in terms

of long-term tracks [26]. A track is said to be consistently

labeled if all pixels along the track are assigned the same

label. The consistency of a labeling is defined to be the

fraction of tracks that are consistently labeled. Note that

perfect consistency can be achieved trivially at the expense

of accuracy: all pixels in all frames in the video can sim-

ply be assigned the same label. However, a combination of

high accuracy and high consistency is not easy to achieve

and we have found that high consistency does correspond

to qualitative stability.

Ablation study. We first perform a controlled study to

isolate the effect of feature space optimization on labeling

accuracy. The results of this experiment are provided in

Table 1. We use the TextonBoost unary [23]. Applying a

dense 2D CRF within each frame independently improves

both mean IoU and consistency. Applying a dense 3D CRF

over the video volume improves both metrics further. Per-

forming feature space optimization as proposed in this pa-

per improves both metrics further still.

mean IoU Consistency

TextonBoost unary 47.43 60.88

Dense 2D CRF 51.08 74.37

Dense 3D CRF 53.08 81.68

Our approach 55.23 87.33

Table 1. Ablation study with TextonBoost unaries. Spatio-

temporal resularization over the video volume increases both ac-

curacy and consistency. Feature space optimization outperforms

the baselines.

Comparison to prior work. We now compare the pre-

sented approach against state-of-the-art methods for seman-

tic video segmentation. The first set of baseline methods –

SuperParsing [27] and the method of Liu and He [17] – per-

form semantic video segmentation at the supervoxel level.

The second set of methods – Tripathi et al. [28] and Miksik

et al. [20] – operate at the pixel level. Tripathi et al. de-

fine a dense 3D CRF in the space-time volume, but do not

optimize the feature space. Miksik et al. enforce temporal

smoothness by other means. Finally, we compare to Seg-

Net, a recent convolutional network that has been evaluated

on CamVid [1].

Quantitative results are provided in Table 2. (Quantita-

tive comparison against Miksik et al. [20] is provided sepa-

rately in supplementary material, since Miksik et al. only

provided the results of their approach on a subset of the

CamVid test set.) Using the classical TextonBoost unary,

our approach achieves an accuracy gain of 8 percentage

points over the recent method of Liu and He [16] and an im-

provement of 2 percentage points over Tripathi et al. [28].

The Dilation network outperforms SegNet by 19 per-

centage points. Feature space optimization and structured

prediction yield a further accuracy gain and a 9 percentage

point boost in consistency over the Dilation unary. To assess

the sensitivity of feature space optimization to the input op-

tical flow, we provide the results of feature space optimiza-

tion when the input flow fields are computed by LDOF [3]

and Discrete Flow [19], respectively. As shown in Table 2,

the performance of the approach is virtually identical in the

two conditions.

Qualitative results are provided in Figure 3 and in the

supplementary video.

6.2. Cityscapes dataset

Cityscapes is a new dataset for scene understanding in

urban environments [6]. The dataset contains 2975 training

images, 500 validation images, and 1525 test images. 19 se-

mantic classes are used. We report results on the validation

set. Results on the test set will be provided in supplemen-

tary material.

The results are reported in Table 3. We compare to

the recent Adelaide model, a comprehensive system that

integrates convolutional networks and conditional random

fields [15]. The Dilation network yields slightly higher ac-

curacy than the Adelaide model. Using the Dilation unary,

our approach yields a further gain in accuracy and an im-

provement of more than 6 percentage points in consistency.

mean IoU Consistency

Adelaide [15] 68.6 -

Dilation unary [30] 68.65 88.14

Dilation + Our approach 70.30 94.71

Table 3. Quantitative results on the Cityscapes validation set.

7. Conclusion

We proposed feature space optimization for spatio-

temporal regularization. The key observation is that naive

regularization over the video volume does not take camera

and object motion into account. To support efficient long-

range temporal regularization, we optimize the positions of
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Without ConvNet

ALE [13] 73.4 70.2 91.1 64.24 24.4 91.1 29.1 31 13.6 72.4 28.6 53.59 72.2

SuperParsing [27] 70.4 54.8 83.5 43.3 25.4 83.4 11.6 18.3 5.2 57.4 8.9 42.03 88.8

Tripathi et al. [28] 74.2 67.9 91 66.5 23.6 90.7 26.2 28.5 16.3 71.9 28.2 53.18 76.8

Liu and He [16] 66.8 66.6 90.1 62.9 21.4 85.8 28 17.8 8.3 63.5 8.5 47.2 77.6

TextonBoost + FSO 74.4 71.8 91.6 64.9 27.7 91.0 33.8 34.1 16.8 73.9 27.6 55.2 87.3

With ConvNet

SegNet [1] 68.7 52 87 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4 62.5

Dilation [30] 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.29 79.0

Dilation + FSO – LDOF 84.0 77.2 91.3 85.7 49.8 92.6 59.3 37.6 16.9 76.2 56.8 66.11 88.3

Dilation + FSO – DiscreteFlow 84.0 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.12 88.3

Table 2. Quantitative results on the CamVid dataset [2]. This table reports per-class IoU, mean IoU, and temporal consistency. Top:

comparison to prior work that did not use convolutional networks. Using the classical TextonBoost classifier [23], our approach outperforms

the prior work. Bottom: comparison to prior work that used convolutional networks and evaluated on the CamVid dataset. Using the

Dilation network [30], our approach (FSO) yields the highest accuracy reported on the CamVid dataset to date. The performance of the

presented approach is virtually identical when two different optical flow algorithms – LDOF and Discrete Flow – are used to compute the

input flow fields.

points in the space so that distances between corresponding

points are minimized. Applying a dense random field over

this optimized feature space yields state-of-the-art semantic

video segmentation accuracy.

The presented approach can directly benefit from more

accurate optical flow and more stable and temporally ex-

tended point trajectories. We encourage further develop-

ment of these basic building blocks [5, 21]. More broadly,

the presented feature space optimization formulation has

significant limitations and more flexible approaches should

be explored.
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