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Abstract

In this paper, we present a new algorithm for finding

all intersections of three quadrics. The proposed method

is algebraic in nature and it is considerably more efficient

than the Gröbner basis and resultant-based solutions pre-

viously used in computer vision applications. We iden-

tify several computer vision problems that are formulated

and solved as systems of three quadratic equations and for

which our algorithm readily delivers considerably faster re-

sults. Also, we propose new formulations of three important

vision problems: absolute camera pose with unknown focal

length, generalized pose-and-scale, and hand-eye calibra-

tion with known translation. These new formulations allow

our algorithm to significantly outperform the state-of-the-

art in speed.

1. Introduction

Many computer vision and robotics problems can be formu-

lated as problems of finding solutions to systems of poly-

nomial equations. Examples include minimal problems of

estimating relative and absolute camera poses [26, 34, 3],

problems of calibrating radial distortion from point core-

spondences [7, 19], as well as minimization problems with

polynomial cost functions [35, 6, 22]. Fast solvers of

minimal computer vision problems are often used inside

RANSAC-style loops [12] and, consequently, are parts

of large systems like 3D reconstruction and recognition

pipelines. Maximizing the efficiency of the solvers for these

problems is of high importance.

A popular approach to dealing with polynomial prob-

lems is to design efficient specific solvers of the polyno-

mial systems for given problem classes. Such a solver can

be used to solve instances of a specific problem class only,

however, it can do it much more efficiently than any general

∗The author was supported by Czech Ministry of Education under

Project RVO37000.

solver could. The design of these specific solvers is usually

based on the Gröbner basis method or on the resultant-based

method [9]. Several tools to aid the design of the specific

solvers based on the Gröbner basis method exist, e.g. the

automatic generator by Kukelova et al. [20].

However, not every problem needs or admits a specifi-

cally designed solver. In fact, many vision problems lead,

if appropriately formulated, to the same polynomial prob-

lem: the problem of solving three quadratic equations in

three unknowns. In this paper, we propose a new algorithm

for solving this problem. Our solution is algebraic in nature

and is more efficient than current solutions, which are based

on Gröbner bases or resultants. For the sake of brevity, we

will denote the problem of solving three quadrics in three

unknowns as 3Q3 and the proposed solver as the efficient

3Q3 solver—E3Q3—throughout the rest of the paper.

In §2, we discuss the development of 3Q3, and in §3,

we formally introduce the 3Q3 problem and present the

E3Q3 solver. Further, we provide a discussion of the prob-

lem degeneracies (§3.1) as well as its computational com-

plexity (§3.2). In §4 we discuss several computer vision

problems that have been previously formulated and solved

as 3Q3 and where our algorithm readily delivers consid-

erably more efficient solutions. Finally, we present novel

3Q3 formulations for three important computer vision prob-

lems: absolute camera pose with unknown focal length

(§5.1), generalized pose-and-scale (§5.2), hand-eye calibra-

tion with known translation (§5.3). Using the E3Q3 solver,

we provide new efficient solutions that are significantly

faster than the state-of-the-art algorithm for these problems.

The speedups gained by these new solutions are summa-

rized in §6.

2. The 3Q3 problem

The problem of finding the intersection of quadrics has been

studied in mathematics [31, 18], computational physics,

computer graphics, robotics, kinematics [32], and computer

vision. Early algorithms for this special class of polyno-
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mial system came from computer-aided design. In 1978,

Levin [24] described an efficient parameterization of the in-

tersection curve of two quadrics. Xu et al. [38] later used

it to solve 3Q3, but numerical difficulties instead required

them to use the algorithm proposed in [11] which runs in

rational numbers, making the final 3Q3 solver impractically

slow.

Chionh et al. [8] presented a method for solving the 3Q3

problem based on Macaulay’s multivariate resultant. The

proposed method needs to perform more than 106 opera-

tions as well as to compute the greatest common divisor,

which may be numerically unstable.

Roth [32] describes a general 3Q3 solver using an elim-

ination method, which is based on the resultant method [9].

Its solution computes the determinant of a 6×6 polynomial

matrix. This determinant is a degree 8 polynomial in one

variable and its computation using standard symbolic meth-

ods costs more than 100K operations.

Ramalingam et al. [30] created a general 3Q3 solver as a

component of a 3D-3D registration problem. An automatic

solver generator [20] was used to obtain a Gröbner basis

solver, which needs to perform Gauss-Jordan (G-J) elimi-

nation of a 26×34 matrix and to compute eigenvalues of an

8×8 matrix.

These general solvers are all slower than our new algo-

rithm, and do not handle, except for [38], all degeneracies

and symmetries in the solution.

3. E3Q3: Efficient intersection of 3 quadrics

Now, let us formalize the 3Q3 problem. Let x, y, z be the

problem unknowns, cij , i = 1, 2, 3, j = 1, . . . , 10, the

problem coefficients and (with ci = [ci1, ci2, . . . , ci10]),

qi = ci · [x
2, y2, z2, xy, xz, yz, x, y, z, 1] (1)

the three polynomials of degree 2. The problem of 3Q3 is

to find the intersections of qi, i.e., to solve the system

qi = 0, i = 1, 2, 3. (2)

To solve Eqs. 2, let us start by ‘hiding’ the unknown x
in the coefficient field, i.e., by considering x to be a co-

efficient for a moment. This leaves us with six monomi-

als [y2, z2, yz, y, z, 1] in unknowns y, z in every equation.

By splitting these monomials into two sets {y2, z2, yz},

{y, z, 1} and by rearranging them to the left- and right-hand

sides, Eqs. 2 can be rewritten as a matrix equation:

A





y2

z2

yz



 =





p11(x) p12(x) p13(x)
p21(x) p22(x) p23(x)
p31(x) p32(x) p33(x)









y
z
1



 , (3)

where A is a coefficient matrix

A =





c12 c13 c16
c22 c23 c26
c32 c33 c36



 , (4)

and p11(x), . . . , p33(x) are polynomials in x. Note that

p13(x), p23(x), p33(x) are quadratic polynomials in x and

the remaining polynomials in Eq. 3 are linear in x.

Next, let us assume that the matrix A has full rank. Of

course, this may not always be the case, however, we will

defer the discussion on the rank of A until §3.1. For now, we

can multiply Eq. 3 by A
−1, resulting in





y2

z2

yz



 =





p′11(x) p′12(x) p′13(x)
p′21(x) p′22(x) p′23(x)
p′31(x) p′32(x) p′33(x)









y
z
1



 , (5)

where p′11(x), . . . , p
′
33(x) are linear combinations of poly-

nomials p11(x), . . . , p33(x). Again, p′13(x), p
′
23(x), p

′
33(x)

are quadratic polynomials in x and the remaining polynomi-

als in Eq. 5 are linear in x. The reason why we manipulated

Eqs. 2 into Eq. 5 is to express monomials y2, z2, and yz as

polynomial functions in y, z, and 1.

Now, let us introduce three trivial identities involving the

left-hand side monomials y2, z2, and yz from Eq. 5

(

y2
)

z = (yz) y, (6)

(yz) z =
(

z2
)

y, (7)

(yz) (yz) =
(

y2
) (

z2
)

. (8)

Expanding these identities using expressions for y2, z2, and

yz from Eq. 5 yields three equations:

(p′11(x)y + p′12(x)z + p′13(x))z

= (p′31(x)y + p′32(x)z + p′33(x))y, (9)

(p′31(x)y + p′32(x)z + p′33(x))z

= (p′21(x)y + p′22(x)z + p′23(x))y, (10)

(p′31(x)y + p′32(x)z + p′33(x))

· (p′31(x)y + p′32(x)z + p′33(x))

= (p′11(x)y + p′12(x)z + p′13(x))

· (p′21(x)y + p′22(x)z + p′23(x)). (11)

Since Eqs. 9, 10, and 11 again contain monomials y2, z2

and yz, we substitute expressions for y2, z2 and yz from

Eq. 5 into Eqs. 9-11 once more. This double substitution

transforms the identities from Eqs. 6-8 into the following

matrix equation











s
[2]
11(x) s

[2]
12(x) s

[3]
13(x)

s
[2]
21(x) s

[2]
22(x) s

[3]
23(x)

s
[3]
31(x) s

[3]
32(x) s

[4]
33(x)





















y

z

1











= M(x)











y

z

1











= 0, (12)

where the upper index [·] denotes the maximum possible

degree of the respective polynomial sij(x).
As we know from elementary linear algebra, matrix

Eq. 12 has a non-trivial solution if and only if the deter-

minant of its matrix M(x) is zero. It can be easily inferred
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from the degrees of sij(x) that det(M(x)) is an up to degree

8 polynomial in x.

The solutions to the unknown x from the original Eq. 2

can now be obtained by finding the roots of the up to de-

gree 8 polynomial det(M(x)). For example, these can be

computed as the eigenvalues of its companion matrix [17]

or more efficiently using Sturm sequences [39] in some fea-

sible interval. Solutions to the unknowns y and z can be

obtained from M(x) after substituting the particular solu-

tions for x into this matrix and solving the resulting sys-

tem of two linear equations. Alternatively, to increase sta-

bility, the solutions can be obtained from the eigenvectors

of M(x). To elaborate, let x∗ be a particular solution to

det(M(x)) = 0, let M(x∗) = USV
⊤ be SVD of the numerical

3×3 matrix M(x∗) and let v = [v1, v2, v3]
⊤ be the column

of matrix V that corresponds to the smallest singular value.

Then, the particular solutions y∗ and z∗ correspond to v1/v3
and v2/v3, respectively.

3.1. Problem degeneracies

The E3Q3 solver presented in §3 assumes that the matrix A

from Eq. 4 and the polynomial matrix M(x) from Eq. 12

are regular. Quadrics with coefficients that do not lead to

regular matrices A and M(x) cannot be solved by this gen-

eral E3Q3 solver, nor by any of the previously proposed

algebraic solvers for the 3Q3 problem: the Gröbner basis

solver [20] assumes that the 26×34 elimination matrix is

regular and the resultant-based solver [32] assumes regular-

ity of the 6×6 polynomial matrix. This means that these

solvers do not work for ‘degenerate’ inputs, e.g., when one

or more of the input quadrics are in fact planes or curves or

when certain coefficients vanish.

In the case of the formulation in §3 however, it is quite

easy to recognize the degenerate configurations based on

the structure of the matrix A. By using G-J elimination and,

if necessary, by interchanging of the matrix rows, matrix A

can be reduced into one of the following configurations:





0 0 0
0 0 0
0 0 0



,





0 0 1
0 0 0
0 0 0



,





0 1 •
0 0 0
0 0 0



,





0 1 0
0 0 1
0 0 0



 ,





1 • •
0 0 0
0 0 0



,





1 • 0
0 0 1
0 0 0



,





1 0 •
0 1 •
0 0 0



,





1 0 0
0 1 0
0 0 1



 ,

(13)

where ‘•’ stands for an arbitrary coefficient from R. All

other configurations can be transformed into one of these 8

configurations [38] either by interchanging variables y and

z or by assuming ‘•’ equal to 0.

A particular solver can be derived for every configura-

tion from Eq. 13, with the last configuration correspond-

ing to the non-degenerate case derived above. The deriva-

tions of the remaining configurations follow the same idea:

three equations are derived that are linear in y, z and yield a

determinant-zero problem like Eq. 12. The full treatment of

the degeneracies of E3Q3 can be found in Appendix §A.1.

3.2. Computational complexity

Let us now analyze the computational complexity of the

E3Q3 solver and compare it to the complexity of several

pre-existing methods for solving 3Q3.

First, the E3Q3 solver needs to invert a numerical 3×3

matrix. Next, by comparing and multiplying the coefficients

of quadratic and linear polynomials, the solver creates the

3×3 polynomial matrix M(x) with univariate polynomials

of degrees 2, 3, and 4 as coefficients. The determinant of

M(x) directly provides the coefficients of a degree 8 poly-

nomial in one variable. To compute the coefficients of this

polynomial, 678 additions and 1133 multiplications need to

be performed. Altogether, E3Q3 performs 1811 operations

to obtain a degree 8 univariate polynomial.

In comparison, the Gröbner basis solver [20, 30] per-

forms one G-J elimination of a 26×34 matrix. This matrix

already contains several zero elements, so the elimination

needs fewer operations than G-J elimination of a full matrix

of the same size. On average, the G-J elimination step per-

forms ∼4955 additions and ∼5511 multiplications, depend-

ing on the coefficients of the input quadrics. Altogether, the

G-J elimination step costs ∼10466 operations. This is al-

most 6 times more than the number of operations performed

by E3Q3. After the G-J step, the Gröbner basis solver needs

to compute eigenvalues of a 8×8 multiplication matrix. Bu-

jnak et al. [5] showed that it is more efficient to extract its

univariate characteristic polynomial and compute the roots

using Sturm sequences than to compute its eigenvalues and

eigenvectors. The Danilevskii method [10] for computing

the characteristic polynomial of a 8×8 matrix costs ∼1380

operations. Altogether, the Gröbner basis solver performs

∼11846 operations to obtain a degree 8 univariate polyno-

mial. This is 6.5 times more than the number of operations

performed by the E3Q3 solver. Once the degree 8 polyno-

mial is computed, both E3Q3 and the Gröbner basis solver

use the same Sturm sequences approach to recover its roots.

The following table summarizes computational costs

as the number of operations performed by the respective

solvers to obtain the final univariate polynomial.

Resultant [13, 32, 8] GB [30, 20] E3Q3

# of ops >100000 ∼11846 1811

4. 3Q3 in computer vision

The problem of finding the intersection of three quadrics

has already appeared in several computer vision problems,

from the venerable problem of estimating the absolute pose

of a calibrated camera (P3P) [12] to the recently published

generalized pose [29] and multi-camera problems [23].
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In the case of the P3P problem, the three quadratic equa-

tions are derived from the law of cosines. As such, the

quadratic equations have a specific structure and contain

only monomials of degree 2. The final system has only four

solutions and can be easily solved by simple polynomial

manipulations [12].

Guo [13] used the 3Q3 formulation to solve a variant of

the P3P problem for an uncalibrated camera; however the

problem of estimating absolute pose of a camera with un-

known focal length and aspect ratio (P4P) was solved using

Roth’s method [32], which is quite computationally expen-

sive.

4.1. Generic sources of 3Q3

In this section, we describe in more detail several generic

sources of 3Q3 that quite often appear in computer vision

and robotics problems.

4.1.1 Euclidean distances (ED)

One of the sources of quadratic equations are Euclidean

distances, which are ubiquitous in computer vision and

robotics problems.

4.1.2 Rotations (R)

A part of many computer vision and robotics problems is

the problem of estimation of unknown rotations, and these

are yet another source of quadratic equations. These equa-

tions can be the result of the constraints on the orthogo-

nality and the unit norm of rows and columns of rotation

matrices. Also, rotations can be parametrized using Cay-

ley transformation [16]. In this parametrization, a vector

x = [x, y, z]
⊤

∈ R
3 represents the following rotation ma-

trix:

R(x) =
R
′(x)

k
=

1

k

[

1+x2
−y2

−z2 2 x y − 2 z 2 y + 2 x z

2 z + 2 x y 1−x2+y2
−z2 2 y z − 2 x

2 x z − 2 y 2 x + 2 y z 1−x2
−y2+z2

]

,

(14)

where k = 1 + x2 + y2 + z2. The parametrization from

Eq. 14 produces a rotation matrix corresponding to the

quaternion w + ix+ jy + kz normalized such that w = 1.

This rotation matrix directly contains quadratic monomials

in three variables. Similarly, quaternion parameterizations

are quadratic in the parameters.

4.1.3 Nullspace vectors (NV)

Using null space vectors of some coefficient matrix, one can

often reduce the number of variables in an input system by

reparameterizing the monomial vectors and by incorporat-

ing dependencies between monomials in these vectors.

4.2. Generalized pose estimation problem (ED, NV)

The generalized pose problem generates 3Q3 both through

its use of Euclidean distances, and through nullspace vec-

tors. The goal is to estimate the unknown pose of a cali-

brated generalized camera w.r.t. known 3D points. Because

the minimal number of 2D-to-3D point correspondences

necessary to solve this problem is three, the minimal gener-

alized pose estimation problem (gP3P) can be thought of as

the problem of searching for possible poses of the camera

such that the three given rays meet the three known world

points.

Several approaches to formulating the gP3P problem as

a 3Q3 system have been proposed in the past [27, 29, 25].

Ramalingam et al. [29] presented a formulation based on

Euclidean distances. Let us now review this formulation.

First, let us represent the known ith ray in the camera

coordinate system using a point of origin Ai and a unit di-

rection vector vi. Now, an arbitrary point Xi coinciding

with the ith ray can be parametrized in the camera coordi-

nate system using scalar λi as XC
i = Ai + λivi, where the

superscript C stands for the camera coordinate system.

Now, the goal is to find XC
i , parametrized by λi, i =

1, 2, 3 that coincide with the known 3D points XW , i =
1, 2, 3 in the world coordinate system. Since the camera

motion is a rigid transformation, the mutual distances dij
between the coordinates in the world coordinate system and

the camera coordinate system are preserved, i.e.,

d2ij =
∥

∥XW
i −XW

j

∥

∥

2
=

∥

∥XC
i −XC

j

∥

∥

2

= ∥Ai + λivi −Aj − λjvj∥
2
, (15)

for (i, j) ∈ {(1, 2), (1, 3), (2, 3)}. This leads to three

quadratic equations in three unknowns λ1, λ2 and λ3.

In [29], the authors suggested to use Maple and the

resultant-based method to solve the resulting system.

Miraldo and Araujo [25] proposed a 3Q3 formulation for

the same problem. In this case, the three quadratic equations

were obtained as linear combination of four null-space vec-

tors of homography parametrization and by incorporating

this parametrization into the Euclidean distance constraints.

The authors provided a polynomial eigenvalue solution to

this 3Q3 formulation.

It is worth noting that the first formulation of the gener-

alized absolute pose problem is due to Nistér [27]. His so-

lution also leads to a 3Q3 system, however, it is formulated

using the geometric primitives inherent to the problem. Be-

cause of the geometrical nature of this specific solution, it

cannot be easily extended into a general 3Q3 solver.

4.3. Pose from one point and two lines (NV, R)

The aim of this problem is to recover the pose, i.e., the un-

known rotation and translation, of a calibrated camera given

one point and two lines in the world coordinate system and

their projections in the image.

Ramalingam et al. [28] formulated this problem using

collinearity and coplanarity constraints. Two collinearity
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equations arising from the one point correspondence and

four coplanarity equations arising from the two line corre-

spondences can be stacked and written in a matrix form as

AX = 0, where A is a 6×10 coefficient matrix of rank

6 and X = [r11, r12, r13, r21, r22, r23, t1, t2, t3, 1]
⊤

is a

10×1 vector containing the unknown elements of the rota-

tion matrix R = [r1, r2, r3] = [rij ]
3
i,j=1 and the translation

vector t = [t1, t2, t3]
⊤

. Since the matrix A has rank 6, the

solutions to the unknown vector X can be obtained by repa-

rameterizing it as a linear combination of the four vectors

spanning the null-space of A, i.e.,

X = x1n1 + x2n2 + x3n3 + n4, (16)

where ni ∈ R
10, i = 1, . . . , 4 are the null-space vectors

and x1, x2, x3 are the new unknowns.

To solve for the unknowns x1, x2, x3, the orthogonality

and the unit norm constraints involving the rotation vari-

ables from the first two columns, r1, r2 can be used:

r⊤1 r1 = 1, r⊤2 r2 = 1, r⊤1 r2 = 0. (17)

Ramalingam et al. [28] solved the final 3Q3 system in

Eqs. 17 using the Gröbner basis method [20].

Note that in this particular problem formulation the con-

straints on the null space vectors comes from the properties

of the rotation matrices. However, the constraints may have

many different sources and one may use them to set up de-

pendencies between the elements of the unknown vector X

(e.g., X1 = xy = x · y = X5 ·X6).

4.4. Registration of three 3D points and three 3D
lines (NV, R)

Ramalingam et al. [30] presented a 3Q3 formulation of the

problem of 3D-3D registration of three points and three

lines. This is equivalent to the generalized camera pose

problem. The 3Q3 system was obtained by parametrizing

the rotation as a linear combination of four null-space vec-

tors and by using quadratic constraints on the elements of

the rotation matrix.

5. New 3Q3 formulations

In this section, three existing vision/robotics problems are

reformulated as 3Q3, yielding improvements in speed, ac-

curacy, and stability through the use of E3Q3.

5.1. P4Pf problem

The first problem that we will formulate as 3Q3 is the

problem of estimating the camera position, orientation, and

the focal length from four 2D-to-3D correspondences, also

known as the P4Pf problem. This problem is a part of

several structure-from-motion and localization applications

and was recently solved by Bujnak et al. [3] using the

Gröbner basis method. By using ratios of distances, the

P4Pf problem can be formulated as a system of five equa-

tions of degree 3 in four unknowns. Their solver performs

G-J elimination of a 154×180 matrix and computes eigen-

values of a 10×10 matrix. Later work [2] proposed a more

efficient solver, consisting of G-J elimination of a 78×88

and eigenvalue computations for a 10×10 matrix. Here, we

will show that for non-planar points, P4Pf can be formu-

lated as 3Q3 and efficiently solved using E3Q3.

In the following, we will assume the standard pinhole

camera model [15]. In this model, homogeneous coordi-

nates of a scene point X and the corresponding image pro-

jection u are linearly connected as αu = PX, where α ∈ R

is a scalar and P = [pij ]
3,4
i,j=1 ∈ R

3×4 is the camera pro-

jection matrix. The projection matrix P can be further de-

composed as P = K [R | t], where R = [rij ]
3
i,j=1 ∈ SO(3)

is a rotation matrix, t = [t1, t2, t3]
⊤

∈ R
3 is a transla-

tion vector, and K ∈ R
3×3 is a so-called calibration matrix.

If we assume that the only unknown camera internal pa-

rameter is the focal length f , the calibration matrix takes

on a particularly simple form K = diag[f, f, 1]. And since

the projection matrix is given only up to scale anyway, we

can parametrize K equivalently as K = diag[1, 1, w], where

w = 1
f

. Using this parametrization, the projection matrix P

can be written as

P =





p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



=





r11 r12 r13 t1
r21 r22 r23 t2
wr31 wr32 wr33 wt3



 . (18)

Now, we can give the the formal definition of the P4Pf

problem: given four 3D scene points Xi = [xi, yi, zi, 1]
⊤

,

i = 1, . . . , 4, and four corresponding image points ui =

[ui, vi, 1]
⊤

, i = 1, . . . , 4, the task is to recover the unknown

rotation R, translation t, and focal length f = 1
w

.

First, let us eliminate the αi’s by multiplying the projec-

tion equation PXi = αiui from the left by the skew sym-

metric matrix [ui]× to obtain the following matrix equation





0 −1 vi
1 0 −ui

−vi ui 0









r11 r12 r13 t1
r21 r22 r23 t2
wr31 wr32 wr33 wt3













xi

yi
zi
1









= 0. (19)

Eq. 19 encodes three polynomial equations, two of which

are linearly independent. This is caused by the fact that the

skew symmetric matrix [ui]× has rank two. The equation

corresponding to the third row of the matrix Eq. 19 can be

rewritten in the elements of the projection matrix P as

− vi (p11 xi + p12 yi + p13 zi + p14)

+ ui (p21 xi + p22 yi + p23 zi + p24) = 0. (20)

Eq. 20 is a homogeneous linear equation in 8 unknowns p11,

p12, p13, p14, p21, p22, p23, and p24. Since we have four
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2D-3D point correspondences, we can construct four spe-

cific variants of Eq. 20. The four equations can be stacked

into a matrix form as Av = 0, where A ∈ R
4×8 is a coeffi-

cient matrix and v = [p11, p12, p13, p14, p21, p22, p23, p24]
⊤

is the vector of unknowns. Assuming that A has full rank,

we can parametrize the eight unknowns in v as a linear com-

bination of four null space basis vectors ni of A:

v =
∑4

i=1 γi ni, (21)

where γi, i = 1, . . . , 4 are new unknowns. Since P can be

recovered up to scale only, one of the new unknowns can be

set to one, e.g., γ4 = 1. Eq. 21 gives us a new parametriza-

tion of the first two rows of the projection matrix P in three

unknowns γ1, γ2, and γ3. To get a detailed derivation of the

third row of P using three unknowns γ1, γ2, and γ3 as

[p31, p32, p33, p34]
⊤
= D [γ1, γ2, γ3, 1]

⊤
, (22)

using a coefficient matrix D ∈ R
4×4, see Appendix §A.4.

Now, let S denote the left 3×3 submatrix of P, S = KR.

We will exploit four constraints on the elements of S that

come from the fact that R is a rotation matrix. The first three

constraints capture the fact that the rows of S are perpendic-

ular to each other. The fourth constraint asserts the fact that

the first and the second row of S have the same norm. These

constraints, combined with the parametrization of P from

Eqs. 21 and 22, form a system of four quadratic equations

in three unknowns γ1, γ2, and γ3:

p11p21 + p12p22 + p13p23 = 0,

p31p11 + p32p12 + p33p13 = 0,

p31p21 + p32p22 + p33p23 = 0,

p211 + p212 + p213 − p221 − p222 − p223 = 0.

(23)

The system of Eqs. 23 is clearly an over-determined prob-

lem. However, by taking any three of the four equations we

can determine S by a 3Q3 system solvable by E3Q3.

Next, we will use the fact that the squared norm of the

first row of S multiplied by w2 is equal to the squared norm

of the third row:

w2 p211 + w2 p212 + w2 p213 − p231 − p232 − p233 = 0. (24)

Eq. 24 is a quadratic equation in w = 1
f

, positive roots of

which provide the solutions for the focal length f .

Finally, the last column of P, i.e., the translation vector

t, can be determined by stacking Eq. 19 for the four 2D-

3D correspondences and by solving the resulting overdeter-

mined linear system.

Note that the above approach works for non-planar 3D

points only. The solution for coplanar points is even simpler

and can be solved linearly—in fact, this case is equivalent

to homography estimation. The two cases can be joined into

one general solver, akin to the solver presented in [4].
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Figure 1: P4Pf problem: (a) Log10 of the relative error of

the focal length. (b) Error of the focal length estimates in

the presence of noise with fgt = 1.7; E3Q3-P4Pf solver

(blue), Bujnak12 [2] (red).

Experiments. We tested the presented E3Q3-based algo-

rithm for the P4Pf problem (E3Q3-P4Pf) on synthetic data

with varying focal lengths and levels of noise and compared

its stability and precision to the state-of-the-art (SOTA)

P4Pf solver Bujnak12 [2].

First, we studied the behavior of the new E3Q3-P4Pf

solver on noise-free data to check its numerical stability and

compared it to the results of Bujnak12. In this experiment,

we generated 10000 synthetic scenes with 3D points dis-

tributed at random in a [−10, 10]
3

cube. Each 3D point was

projected by a camera with random but feasible orientation

and position and with random focal length fgt ∈ [0.5, 5].
Figure 1(a) shows log10 of the relative error of the focal

length f obtained by selecting the real root closest to the

ground truth value fgt . The E3Q3-P4Pf solver (blue) is

slightly more stable than Bujnak12 (red). Still, both solvers

provide very stable results without larger errors.

In the second experiment, we studied the accuracy of

the E3Q3-P4Pf solver in the presence of image noise. Fig-

ure 1(b) shows the results for 3D scenes with different lev-

els of noise added to the image projections. In this case, the

ground truth focal length was set to fgt = 1.7. For each

noise level, ranging from 0 to 1 pixels, 1000 estimates for

random scenes and random feasible camera positions were

made. The results are represented using MATLAB boxplot

function, which shows values 25% to 75% quantile as a box

with a horizontal line at median, in Figure 1(b). The crosses

show data beyond 1.5 times the interquartile range. Figures

show that both solvers give very similar and accurate esti-

mates of the focal length. Similar results were obtained for

the estimated rotations and translations as well.

Since both E3Q3-P4Pf and Bujnak12 [2] solvers pro-

vide very similar results on simulated data, we haven’t per-

formed any real data experiments. For a detailed analysis of

the usefulness of P4Pf solvers in real applications, see [3, 2].

5.2. Generalized pose-and-scale problem

The second problem that we will formulate as 3Q3 is the

absolute pose problem for a generalized camera with un-

known internal scale (gsP4P). This problem has applica-
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Figure 2: gsP4P problem: Log10 of (a) the relative translation and (b) relative scale error for noise free data. (c) Error

of rotation, (d) relative error of translation and (e) relative error of scale estimates in the presence of noise for the new

E3Q3-gsP4P solver (blue) and the state-of-the-art Ventura14 solver [37] (red).

tions in structure-from-motion (SfM) alignment or loop clo-

sure integration [37]. The problem can be thought of as

the problem of estimating the position and orientation of a

set of perspective cameras as well as the scale of the trans-

lation between them, with respect to a set of known 3D

points. The generalized pose-and-scale problem was solved

by Ventura et al. [37] as a minimal problem from four cor-

respondences using the Gröbner basis method. They for-

mulated the problem as a system of ten quadratic polyno-

mial equations in five unknowns by exploiting properties of

rotation matrices. The final Gröbner basis solver was ob-

tained using the automatic generator [20]. It needs to per-

form SVD of a 8×13 matrix, G-J elimination or LU decom-

position of a 48×56 matrix, and to compute eigenvalues of

a 8×8 matrix. In the next, we will show that gsP4P can be

solved by the much simpler E3Q3 solver once it is formu-

lated as 3Q3 using Cayley’s parametrization of rotations.

Let us denote the set of known 3D points as Qi ∈ R
3.

The corresponding projections in the generalized camera

are described by rays with starting points Pi ∈ R
3 and unit

direction vectors di ∈ R
3. The problem is to estimate the

unknown rotation R ∈SO(3), translation t ∈ R
3 and scale

s ∈ R so that the rays hit the 3D points

RQi + t = sPi + αidi, i = 1, . . . , 4, (25)

where αi’s are unknown scales that stretch the direction

vectors up to the 3D points.

First, let’s start by eliminating the αi’s by multiplying

Eqs 25 from the left by the skew symmetric matrices [di]×
to obtain the following matrix equations

[di]× (RQi + t− sPi) = 0, i = 1, . . . , 4. (26)

Note that only 8 of the 12 Eqs. 26 are linearly indepen-

dent. Next, we use Cayley parametrization of rotations [16]

to transform Eqs. 26 to a 3Q3 system. Using the Cayley

parametrization R(x) = 1
k
R
′(x), see Eq. 14, Eqs. 26 can be

rewritten as

[di]×
(

1
k
R
′(x)Qi + t− sPi

)

= 0, i = 1, . . . , 4. (27)

Now, let us multiply Eqs. 27 by the denominator k to trans-

form them into polynomials. To simplify the system, let’s

Log
10

 relative translation error

-15 -10 -5 0
0

500

1000

1500

2000

2500
Ventura14
E3Q3-gsP4P

Log
10

 relative scale error

-15 -10 -5 0
0

500

1000

1500

2000

2500
Ventura14
E3Q3-gsP4P

(a) (b)

Figure 3: gsP4P problem, planar scene: (a) Log10 of the

relative translation error and (b) relative scale error for pla-

nar scenes and noise free correspondences.

replace vector kt by vector t̂ of three new unknowns and

scalar ks by a new scalar unknown ŝ. This leads to eight

linearly independent equations in seven unknowns x, y, z,

t̂, and ŝ:

[di]×
(

R
′(x)Qi + t̂− ŝPi

)

= 0, i = 1, . . . , 4. (28)

Since Eqs. 28 depend on t̂X and ŝ linearly, four of the equa-

tions can be used to eliminate these variables from the re-

maining four equations, e.g., using G-J elimination. After

the elimination, we’ll end up with a system of four quadratic

equations in three unknowns x, y and z. This system is anal-

ogous to the final system of the P4Pf-E3Q3 solver. It is an

over-determined system. Again, by taking any three of the

four equations we get a 3Q3 system and we can solve for the

rotation R(x) using the E3Q3 solver. In the final step, we re-

substitute the obtained solutions for R(x) into Eqs. 27 and

determine the unknown translation t and scale s by solving

this linear system of equations.

Experiments. As in the case of the P4Pf problem, we tested

our new E3Q3-gsP4P formulation on synthetic data only.

Here, we compared the numerical stability and precision to

the state-of-the-art gsP4P solver Ventura14 [37].

In the numerical stability experiment, we generated 10K

scenes with four 3D points distributed at random in a

[−10, 10]
3

cube or on a plane, depending on the config-

uration. For each scene, we generated four cameras with

random but feasible positions and orientations and fixed fo-

cal lengths. To simulate a generalized camera, we used the

generated 3D points as the anchor points Q′

i, the centres of

the four cameras as the starting points of rays P′

i, and we
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set the rays directions as di = (Q′

i −P′

i) / ∥Q
′

i −P′

i∥. Fi-

nally, we applied a random feasible transformation to gener-

ate the input 3D points Qi = R
⊤
gt(Q

′

i− tgt) and the starting

points Pi =
P

′

i

sgt
from Eq. 25.

Figures 2(a–b) show log10 of the relative translation er-

ror and the relative scale error obtained by selecting the real

roots closest to the ground truth values tgt and sgt for a gen-

eral 3D scene. Plots in Figure 3 show the same errors for the

planar scene. Errors for the rotation are not displayed due to

lack of space. We can see that both solvers, the new E3Q3-

gsP4P solver (blue) and the state-of-the-art Ventura14 [37]

(red), have similar numerical stability. Moreover, the E3Q3-

gsP4P solver works also for planar scenes for which the

Ventura14 solver returns only the correct scale (Fig. 3(b)),

not the correct rotation and translation (Fig. 3(a)).

In the next experiment, we have studied the accuracy

of our new E3Q3-gsP4P solver in the presence of noise

added to image rays. The noise was generated as noise

in image points of the original pinhole cameras, assuming

1000 px×1000 px image. Figure 1(b) shows the results for

general 3D scene with different levels of noise added to

the image projections. In this case, the rotation error was

measured as the rotation angle in the angle-axis representa-

tion of the relative rotation RR
−1
gt For each noise level, from

0 to 1 pixel, 1000 estimates for random scenes and ran-

dom feasible camera positions and transformations of gen-

eralized camera were made. The results are plotted using

boxplot function in Figure 2(c–d). We can see that the

Ventura14 solver (red) returns slightly more accurate esti-

mates for larger noise levels, however, the results of both

solvers are very precise even for the noise level of 1 px.

5.3. Hand-eye calibration

The last problem for which we propose a 3Q3 formulation

is the problem of hand-eye calibration (HEC) with known

translation. The HEC problem [33, 36] appeared for the first

time in the connection with cameras mounted on robotic

systems. Since then, it arose in many other fields ranging

from medical applications to automotive industry. The HEC

task is to find a rigid transformation X from the coordinate

system connected with the robot’s gripper to the coordinate

system of a rigidly attached camera.

We consider a variation of the HEC problem where the

rotation of the gripper w.r.t. the robot global coordinate sys-

tem is not known, however its translation can be measured.

This variation was recently solved using the Gröbner basis

method by Kukelova et al. [21], who formulated the prob-

lem using quaternions as a system of seven equations in

seven unknowns with 16 solutions. The final Gröbner ba-

sis solver needs to perform G-J elimination of a 187×203

matrix and to compute eigenvalues for a 16×16 matrix. In

Appendix §A.3, we will show that this variation of the HEC

problem can be formulated as a much simpler 3Q3 system,

again using Cayley’s parametrization of rotations and that

this new E3Q3 solution is a slightly more stable and noise

resistant than [21].

6. Solver speedups

Here, we present the speedups provided by the new E3Q3-

based solvers from the previous sections over the SOTA

solvers [2, 37, 21]. Unfortunately, we do not have C++

implementations of the SOTA solvers, thus we compared

only the times of the major steps performed by each solver

using C++ implementations based on Eigen linear algebra

library [1]. The timings, averaged over 10K trials on a 3.5

GHz i7 based desktop, are reported in the following table:

Method SVD G-J Eig E3Q3 Total Speedup

(3×3) (78×88) (10×10)

Bujnak12 1 164 17 - 185.0 1.0
(4×8) (4×8)

E3Q3-P4Pf 3.9 0.3 - 2.9 7.1 26.0

(8×13) (48×56) (8×8)

Ventura14 17 42 13 - 72.0 1.0
(8×14)

E3Q3-gsP4P - 0.7 - 3.2 3.9 18.5

(187×203) (16×16)

Kukelova12 - 1756 56 - 1812.0 1.0
(6×13)

E3Q3-HEC - 0.6 - 3.6 4.2 431.7

All timings are reported in µs. The bracketed dimensions

represent the sizes of the respective input matrices. The

E3Q3 solver uses Hartley’s Sturm sequences implementa-

tion [14], with relative error set to 10−14. The different

timings of the E3Q3 solver are due to the different average

number of solutions. Note that the eigenvalue computation

step (Eig) could be speeded by up to the factor of four by

using the method proposed in [5]. Still, this would not sig-

nificantly affect the overall run times.

7. Conclusion

The problem of finding the intersections of three quadrics

appears in many places in computer vision and robotics,

often through one of the generic sources: Euclidean dis-

tances, rotation parameterization, or nullspace vectors. The

main contribution of the paper is the new solution to the 3Q3

problem called E3Q3. This new method is simpler, more ef-

ficient, and significantly faster than the previously proposed

solutions. The E3Q3 solver can handle degenerate systems

as well as systems with symmetric solutions and solutions

with multiplicity, see §A.2.

Further, we have described several recent works where

the original problem led to a 3Q3 formulation and where

our new solver can readily deliver faster solutions. Last but

not least, we have proposed new formulations to three im-

portant computer vision problems. These new algorithms,

while being comparably stable and noise-resistant, signifi-

cantly outperform the state-of-the-art solutions in terms of

speed.
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basis calculations. In Computer Vision ECCV 2008, volume

5305, pages 130–143. Springer Berlin Heidelberg, 2008. 1

[7] M. Byröd, Z. Kukelova, K. Josephson, T. Pajdla, and
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